Impact of Modern Low Dose Involved Site Radiation Therapy on Normal Tissue Toxicity in Cervicothoracic Non-Hodgkin Lymphomas: A Biophysical Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wirth, A.; Mikhaeel, N.G.; Aleman, B.M.P.; Pinnix, C.C.; Constine, L.S.; Ricardi, U.; Illidge, T.M.; Eich, H.T.; Hoppe, B.S.; Dabaja, B.; et al. Involved Site Radiation Therapy in Adult Lymphomas: An Overview of International Lymphoma Radiation Oncology Group Guidelines. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 909–933. [Google Scholar] [CrossRef] [PubMed]
- Buglione, M.; Guerini, A.E.; Filippi, A.R.; Spiazzi, L.; Pasinetti, N.; Magli, A.; Toraci, C.; Borghetti, P.; Triggiani, L.; Alghisi, A.; et al. A Systematic Review on Intensity Modulated Radiation Therapy for Mediastinal Hodgkin’s Lymphoma. Crit. Rev. Oncol. Hematol. 2021, 167, 103437. [Google Scholar] [CrossRef] [PubMed]
- Lowry, L.; Smith, P.; Qian, W.; Falk, S.; Benstead, K.; Illidge, T.; Linch, D.; Robinson, M.; Jack, A.; Hoskin, P. Reduced dose radiotherapy for local control in non-Hodgkin lymphoma: A randomised phase III trial. Radiother. Oncol. 2011, 100, 86–92. [Google Scholar] [CrossRef]
- Koh, E.-S.; Tran, T.H.; Heydarian, M.; Sachs, R.K.; Tsang, R.W.; Brenner, D.J.; Pintilie, M.; Xu, T.; Chung, J.; Paul, N.; et al. A comparison of mantle versus involved-field radiotherapy for Hodgkin’s lymphoma: Reduction in normal tissue dose and second cancer risk. Radiat. Oncol. 2007, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Phillips, E.H.; Iype, R.; Wirth, A. PET-guided treatment for personalised therapy of Hodgkin lymphoma and aggressive non-Hodgkin lymphoma. Br. J. Radiol. 2021, 94, 20210576. [Google Scholar] [CrossRef] [PubMed]
- Reinartz, G.; Baehr, A.; Kittel, C.; Oertel, M.; Haverkamp, U.; Eich, H.T. Biophysical Analysis of Acute and Late Toxicity of Radiotherapy in Gastric Marginal Zone Lymphoma-Impact of Radiation Dose and Planning Target Volume. Cancers 2021, 13, 1390. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, J.; Illidge, T.; Specht, L.; Hoppe, R.T.; Li, Y.-X.; Tsang, R.; Wirth, A. Modern radiation therapy for extranodal lymphomas: Field and dose guidelines from the International Lymphoma Radiation Oncology Group. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 11–31. [Google Scholar] [CrossRef] [PubMed]
- Goda, J.S.; Gospodarowicz, M.; Pintilie, M.; Wells, W.; Hodgson, D.C.; Sun, A.; Crump, M.; Tsang, R.W. Long-term outcome in localized extranodal mucosa-associated lymphoid tissue lymphomas treated with radiotherapy. Cancer 2010, 116, 3815–3824. [Google Scholar] [CrossRef]
- Teckie, S.; Qi, S.; Chelius, M.; Lovie, S.; Hsu, M.; Noy, A.; Portlock, C.; Yahalom, J. Long-term outcome of 487 patients with early-stage extra-nodal marginal zone lymphoma. Ann. Oncol. 2017, 28, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Oertel, M.; Elsayad, K.; Weishaupt, C.; Steinbrink, K.; Eich, H.T. Deeskalierte Strahlentherapie beim indolenten primär kutanen B-Zell-Lymphom. Strahlenther. Onkol. 2020, 196, 126–131. [Google Scholar] [CrossRef]
- Reinartz, G.; Kardels, B.; Koch, P.; Willich, N. Analysis of failures after whole abdominal irradiation in gastrointestinal lymphomas. Is prophylactic irradiation of inguinal lymph nodes required? German Multicenter Study Group on GI-NHL, University of Muenster. Strahlenther. Onkol. 1999, 175, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Reinartz, G.; Haverkamp, U.; Wullenkord, R.; Lehrich, P.; Kriz, J.; Büther, F.; Schäfers, K.; Schäfers, M.; Eich, H.T. 4D-Listmode-PET-CT und 4D-CT für die Optimierung des PTV-Sicherheitsabstandes bei Magenlymphomen: Erfassung der intra- und interfraktionellen Magenbewegung. Strahlenther. Onkol. 2016, 192, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.A.; Normolle, D.; Balter, J.M.; McGinn, C.J.; Lawrence, T.S.; Ten Haken, R.K. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int. J. Radiat. Oncol. Biol. Phys. 2002, 53, 810–821. [Google Scholar] [CrossRef]
- Kavanagh, B.D.; Pan, C.C.; Dawson, L.A.; Das, S.K.; Li, X.A.; Ten Haken, R.K.; Miften, M. Radiation dose-volume effects in the stomach and small bowel. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S101–S107. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, M.M.; Muenz, D.G.; Schipper, M.J.; Velec, M.; Dawson, L.A.; Brock, K.K. A simulation study to assess the potential impact of developing normal tissue complication probability models with accumulated dose. Adv. Radiat. Oncol. 2018, 3, 662–672. [Google Scholar] [CrossRef]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Holyoake, D.L.P.; Aznar, M.; Mukherjee, S.; Partridge, M.; Hawkins, M.A. Modelling duodenum radiotherapy toxicity using cohort dose-volume-histogram data. Radiother. Oncol. 2017, 123, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Lyman, J.T. Complication probability as assessed from dose-volume histograms. Radiat. Res. Suppl. 1985, 8, S13–S19. [Google Scholar] [CrossRef]
- Kutcher, G.J.; Burman, C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 1623–1630. [Google Scholar] [CrossRef]
- Granton, P.V.; Palma, D.A.; Louie, A.V. Intentional avoidance of the esophagus using intensity modulated radiation therapy to reduce dysphagia after palliative thoracic radiation. Radiat. Oncol. 2017, 12, 27. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Constine, L.S.; Deasy, J.O.; Eisbruch, A.; Jackson, A.; Marks, L.B.; Ten Haken, R.K.; Yorke, E.D. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An introduction to the scientific issues. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.B.; Yorke, E.D.; Jackson, A.; Ten Haken, R.K.; Constine, L.S.; Eisbruch, A.; Bentzen, S.M.; Nam, J.; Deasy, J.O. Use of normal tissue complication probability models in the clinic. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, S10–S19. [Google Scholar] [CrossRef] [PubMed]
- Eich, H.T.; Haverkamp, U.; Engert, A.; Kocher, M.; Skripnitchenko, R.; Brillant, C.; Sehlen, S.; Dühmke, E.; Diehl, V.; Müller, R.-P. Biophysical analysis of the acute toxicity of radiotherapy in Hodgkin’s lymphoma—A comparison between extended field and involved field radiotherapy based on the data of the German Hodgkin Study Group. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 860–865. [Google Scholar] [CrossRef]
- Burman, C.; Kutcher, G.J.; Emami, B.; Goitein, M. Fitting of normal tissue tolerance data to an analytic function. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Poon, M.; Dennis, K.; DeAngelis, C.; Chung, H.; Stinson, J.; Zhang, L.; Bedard, G.; Popovic, M.; Lao, N.; Pulenzas, N.; et al. A prospective study of gastrointestinal radiation therapy-induced nausea and vomiting. Support. Care Cancer 2014, 22, 1493–1507. [Google Scholar] [CrossRef]
- Bisello, S.; Cilla, S.; Benini, A.; Cardano, R.; Nguyen, N.P.; Deodato, F.; Macchia, G.; Buwenge, M.; Cammelli, S.; Wondemagegnehu, T.; et al. Dose-Volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An “All-in-One” Multicenter-Multidisciplinary Practical Summary. Curr. Oncol. 2022, 29, 7021–7050. [Google Scholar] [CrossRef]
- The International Commission on Radiation Units and Measurements. ICRU Report 83, Prescribing, Recording, and Reporting Intensity-Modulated Photon-Beam Therapy (IMRT). ICRU 2010, 10. [Google Scholar] [CrossRef]
- Timmerman, R.D. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin. Radiat. Oncol. 2008, 18, 215–222. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE); U.S. Department of Health and Human Services: Washington, DC, USA, 2017.
- Begosh-Mayne, D.; Kumar, S.S.; Toffel, S.; Okunieff, P.; O’Dell, W. The dose-response characteristics of four NTCP models: Using a novel CT-based radiomic method to quantify radiation-induced lung density changes. Sci. Rep. 2020, 10, 10559. [Google Scholar] [CrossRef]
- Pramanik, S.; Bera, S.; Roy, S.; Ray, A.; Sarkar, S.; Majumder, D. Dosimetric validation of two different radiobiological models for parotid gland functionality of tongue cancer. Precis. Radiat. Oncol. 2021, 5, 183–190. [Google Scholar] [CrossRef]
- Adamus-Górka, M.; Mavroidis, P.; Lind, B.K.; Brahme, A. Comparison of dose response models for predicting normal tissue complications from cancer radiotherapy: Application in rat spinal cord. Cancers 2011, 3, 2421–2443. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Niemierko, A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med. Phys. 1997, 24, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.F. The linear-quadratic formula and progress in fractionated radiotherapy. Br. J. Radiol. 1989, 62, 679–694. [Google Scholar] [CrossRef]
- McMahon, S.J. The linear quadratic model: Usage, interpretation and challenges. Phys. Med. Biol. 2018, 64, 01TR01. [Google Scholar] [CrossRef]
- Brier, G.W. Verification of forecast expressed in terms of probability. Mon. Wea. Rev. 1950, 78, 1–3. [Google Scholar] [CrossRef]
- Xiang, M.; Chang, D.T.; Pollom, E.L. Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 2020, 126, 3560–3568. [Google Scholar] [CrossRef] [PubMed]
- Specht, L.; Yahalom, J.; Illidge, T.; Berthelsen, A.K.; Constine, L.S.; Eich, H.T.; Girinsky, T.; Hoppe, R.T.; Mauch, P.; Mikhaeel, N.G.; et al. Modern radiation therapy for Hodgkin lymphoma: Field and dose guidelines from the international lymphoma radiation oncology group (ILROG). Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 854–862. [Google Scholar] [CrossRef]
- Oertel, M.; Eich, H.T. Kardiovaskuläre Risikoevaluation in der Behandlung des Hodgkin-Lymphoms—auf dem Weg zur individualisierten Planung? Strahlenther. Onkol. 2023, 199, 333–336. [Google Scholar] [CrossRef]
- Oertel, M.; Hering, D.; Nacke, N.; Kittel, C.; Kröger, K.; Kriz, J.; Fuchs, M.; Baues, C.; Vordermark, D.; Engenhart-Cabillic, R.; et al. Radiation Therapy in the German Hodgkin Study Group HD 16 and HD 17 Trials: Quality Assurance and Dosimetric Analysis for Hodgkin Lymphoma in the Modern Era. Adv. Radiat. Oncol. 2023, 8, 101169. [Google Scholar] [CrossRef] [PubMed]
- Dawson, L.A.; Sharpe, M.B. Image-guided radiotherapy: Rationale, benefits, and limitations. Lancet Oncol. 2006, 7, 848–858. [Google Scholar] [CrossRef]
- Avkshtol, V.; Meng, B.; Shen, C.; Choi, B.S.; Okoroafor, C.; Moon, D.; Sher, D.; Lin, M.-H. Early Experience of Online Adaptive Radiation Therapy for Definitive Radiation of Patients With Head and Neck Cancer. Adv. Radiat. Oncol. 2023, 8, 101256. [Google Scholar] [CrossRef] [PubMed]
- Kalendralis, P.; Sloep, M.; Moni George, N.; Snel, J.; Veugen, J.; Hoebers, F.; Wesseling, F.; Unipan, M.; Veening, M.; Langendijk, J.A.; et al. Independent validation of a dysphagia dose response model for the selection of head and neck cancer patients to proton therapy. Phys. Imaging Radiat. Oncol. 2022, 24, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Pepper, N.B.; Oertel, M.; Kittel, C.; Kröger, K.J.; Elsayad, K.; Haverkamp, U.; Eich, H.T. Impact of radiation techniques on lung toxicity in patients with mediastinal Hodgkin’s lymphoma. Strahlenther. Onkol. 2021, 197, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Teckie, S.; Qi, S.; Lovie, S.; Navarrett, S.; Hsu, M.; Noy, A.; Portlock, C.; Yahalom, J. Long-term outcomes and patterns of relapse of early-stage extranodal marginal zone lymphoma treated with radiation therapy with curative intent. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 130–137. [Google Scholar] [CrossRef]
- Oertel, M.; Kittel, C.; Martel, J.; Mikesch, J.-H.; Glashoerster, M.; Stelljes, M.; Eich, H.T. Pulmonary Toxicity after Total Body Irradiation-An Underrated Complication? Estimation of Risk via Normal Tissue Complication Probability Calculations and Correlation with Clinical Data. Cancers 2021, 13, 2946. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
In Total/i | |||||
---|---|---|---|---|---|
Age (year) | |||||
Mean | 59 | ||||
Range | 19–88 | ||||
Non-Hodgkin lymphoma | aggressive | indolent | |||
68 (60%) | 46 (40%) | 114 | |||
Localization | |||||
Nodal | cervical | mediastinal | axillary | ||
44 (38%) | 32 (7%) | 8 (28%) | 84 | ||
Extranodal | thoracic | cervical spine | breast | parotid gland | |
22 (19%) | 2 (2%) | 7 (6%) | 1 (1%) | 32 | |
Esophagitis | grade 1 | grade 2 | grade 3 | ||
14 (16%) | 4 (5%) | 1 (1%) | 19/87 | ||
with Dysphagia | grade 1 | grade 2 | grade 3 | ||
12 (14%) | 5 (6%) | 1 (1%) | 18/87 | ||
only Dysphagia | grade 1 | grade 2 | |||
18 (21%) | 3 (3%) | 21/87 | |||
Nausea | grade 1 | ||||
5 (6%) | 5/87 | ||||
Pneumonitis | grade 1 | ||||
2 (3%) | 2/67 | ||||
Pericarditis | grade 1 | ||||
1 (1%) | 1/77 | ||||
Myelitis | grade 1 | ||||
2 (2%) | 2/88 |
Side Effect | Brier Score | Brier Skill Score | ||||||
---|---|---|---|---|---|---|---|---|
Esophagitis | ||||||||
grade 1 | 57.5 | 0.55 | 0.119 | 0.826 | 0.822 | 0.143 | 0.114 | −3.13 |
grade 2+ | 82.3 | 0.40 | 0.019 | 0.761 | 0.755 | 0.043 | 0.066 | −5.45 |
with Dysphagia | ||||||||
grade 1+ | 58.0 | 0.47 | 0.256 | 0.812 | 0.806 | 0.141 | 0.317 | −2.34 |
only Dysphagia | ||||||||
grade 1+ | 77.5 | 0.95 | 0.117 | 0.589 | 0.575 | 0.190 | 0.249 | −3.87 |
Nausea | ||||||||
grade 1 | 84.8 | 0.41 | 0.037 | 0.531 | 0.520 | 0.056 | 0.015 | −5.18 |
Pneumonitis | ||||||||
grade 1 | 24.5 | 0.18 | - | - | - | - | - | - |
Pericarditis | ||||||||
grade 1 | 48.0 | 0.36 | - | - | - | - | - | - |
Myelitis | ||||||||
grade 1 | 66.5 | 0.17 | - | - | - | - | - | - |
Side Effect | a-NHL (i = 68) | i-NHL (i = 46) | ||||||
---|---|---|---|---|---|---|---|---|
max-to-min | max-to-min | |||||||
Esophagitis | ||||||||
grade 1 | 17.4% ± 9.1% | 12.3% ± 5.8% | −5.1% ± 3.5% | [−11%; 0%] | 13.9% ± 11.1% | 9.1% ± 6.9% | −3.0% ± 3.4% | [−11%; 0%] |
grade 2+ | 5.4% ± 3.3% | 3.3% ± 1.8% | −2.1% ± 1.6% | [−6%; 0%] | 4.3% ± 4.3% | 2.3% ± 2.0% | −1.3% ± 1.6% | [−6%; 0%] |
with Dysphagia | ||||||||
grade 1+ | 23.8% ± 13.0% | 16.8% ± 8.3% | −6.9% ± 4.8% | [−15%; 0%] | 18.9% ±15.7% | 12.3% ± 9.6% | −3.9% ± 4.3% | [−14%; 0%] |
only Dysphagia | ||||||||
grade 1+ | 26.2% ± 6.4% | 20.9% ± 4.8% | −5.3% ± 1.6% | [−8%; −3%] | 23.8% ± 7.2% | 20.8% ± 4.9% | −1.7% ± 1.6% | [−5%; 0%] |
Nausea | ||||||||
grade 1 | 5.5% ± 3.2% | 3.5% ± 1.8% | −3.5% ± 1.8% | [−7%; −1%] | 4.3% ± 4.2% | 2.5% ± 2.3% | −1.0% ± 1.3% | [−6%; 0%] |
Pneumonitis | ||||||||
grade 1 | <1% | <1% | <1% | [−0.7%; 0%] | <1% | <1% | ND | ND |
Pericarditis | ||||||||
grade 1 | 0% | 0% | ND | ND | 0% | 0% | ND | ND |
Myelitis | ||||||||
grade 1 | <1% | <1% | <1% | [−0.7%; 0%] | <1% | <1% | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roers, J.; Rolf, D.; Baehr, A.; Pöttgen, C.; Stickan-Verfürth, M.; Siats, J.; Hering, D.A.; Moustakis, C.; Grohmann, M.; Oertel, M.; et al. Impact of Modern Low Dose Involved Site Radiation Therapy on Normal Tissue Toxicity in Cervicothoracic Non-Hodgkin Lymphomas: A Biophysical Study. Cancers 2023, 15, 5712. https://doi.org/10.3390/cancers15245712
Roers J, Rolf D, Baehr A, Pöttgen C, Stickan-Verfürth M, Siats J, Hering DA, Moustakis C, Grohmann M, Oertel M, et al. Impact of Modern Low Dose Involved Site Radiation Therapy on Normal Tissue Toxicity in Cervicothoracic Non-Hodgkin Lymphomas: A Biophysical Study. Cancers. 2023; 15(24):5712. https://doi.org/10.3390/cancers15245712
Chicago/Turabian StyleRoers, Julian, Daniel Rolf, Andrea Baehr, Christoph Pöttgen, Martina Stickan-Verfürth, Jan Siats, Dominik A. Hering, Christos Moustakis, Maximilian Grohmann, Michael Oertel, and et al. 2023. "Impact of Modern Low Dose Involved Site Radiation Therapy on Normal Tissue Toxicity in Cervicothoracic Non-Hodgkin Lymphomas: A Biophysical Study" Cancers 15, no. 24: 5712. https://doi.org/10.3390/cancers15245712
APA StyleRoers, J., Rolf, D., Baehr, A., Pöttgen, C., Stickan-Verfürth, M., Siats, J., Hering, D. A., Moustakis, C., Grohmann, M., Oertel, M., Haverkamp, U., Stuschke, M., Timmermann, B., Eich, H. T., & Reinartz, G. (2023). Impact of Modern Low Dose Involved Site Radiation Therapy on Normal Tissue Toxicity in Cervicothoracic Non-Hodgkin Lymphomas: A Biophysical Study. Cancers, 15(24), 5712. https://doi.org/10.3390/cancers15245712