Association of Radiation Dose to the Amygdala–Orbitofrontal Network with Emotion Recognition Task Performance in Patients with Low-Grade and Benign Brain Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Procedures
2.2. Measures
2.2.1. ERT Outcomes
2.2.2. Patient Characteristics
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talacchi, A.; Santini, B.; Savazzi, S.; Gerosa, M. Cognitive effects of tumour and surgical treatment in glioma patients. J. Neurooncol. 2011, 103, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Smely, C.; Preier, M.; Lange, K.W. Cognitive deficits before treatment among patients with brain tumors. Neurosurgery 2000, 47, 324–333; discussion 333–334. [Google Scholar] [CrossRef] [PubMed]
- Lageman, S.K.; Cerhan, J.H.; Locke, D.E.C.; Anderson, S.K.; Wu, W.; Brown, P.D. Comparing neuropsychological tasks to optimize brief cognitive batteries for brain tumor clinical trials. J. Neurooncol. 2010, 96, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Hahn, C.A.; Dunn, R.H.; Logue, P.E.; King, J.H.; Edwards, C.L.; Halperin, E.C. Prospective study of neuropsychologic testing and quality-of-life assessment of adults with primary malignant brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Bosma, I.; Douw, L.; Bartolomei, F.; Heimans, J.J.; van Dijk, B.W.; Postma, T.J.; Stam, C.J.; Reijneveld, J.C.; Klein, M. Synchronized brain activity and neurocognitive function in patients with low-grade glioma: A magnetoencephalography study. Neuro-Oncology 2008, 10, 734–744. [Google Scholar] [CrossRef]
- Ek, L.; Almkvist, O.; Wiberg, M.K.; Stragliotto, G.; Smits, A. Early cognitive impairment in a subset of patients with presumed low-grade glioma. Neurocase 2010, 16, 503–511. [Google Scholar] [CrossRef]
- Krupp, W.; Klein, C.; Koschny, R.; Holland, H.; Seifert, V.; Meixensberger, J. Assessment of neuropsychological parameters and quality of life to evaluate outcome in patients with surgically treated supratentorial meningiomas. Neurosurgery 2009, 64, 40–47; discussion 47. [Google Scholar] [CrossRef]
- Pertz, M.; Schlegel, U.; Thoma, P. Sociocognitive Functioning and Psychosocial Burden in Patients with Brain Tumors. Cancers 2022, 14, 767. [Google Scholar] [CrossRef]
- Goebel, S.; Mehdorn, M.H.; Wiesner, C.D. Social cognition in patients with intracranial tumors: Do we forget something in the routine neuropsychological examination? J. Neurooncol. 2018, 140, 687–696. [Google Scholar] [CrossRef]
- Makale, M.T.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Kesari, S. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat. Rev. Neurol. 2017, 13, 52–64. [Google Scholar] [CrossRef]
- Pazzaglia, S.; Briganti, G.; Mancuso, M.; Saran, A. Neurocognitive Decline Following Radiotherapy: Mechanisms and Therapeutic Implications. Cancers 2020, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Greene-Schloesser, D.; Moore, E.; Robbins, M.E. Molecular pathways: Radiation-induced cognitive impairment. Clin. Cancer Res. 2013, 19, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Greene-Schloesser, D.; Robbins, M.E. Radiation-induced cognitive impairment—From bench to bedside. Neuro-Oncology 2012, 14 (Suppl. S4), iv37–iv44. [Google Scholar] [CrossRef] [PubMed]
- Michaelidesová, A.; Konířová, J.; Bartůněk, P.; Zíková, M. Effects of Radiation Therapy on Neural Stem Cells. Genes 2019, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Bellinzona, M.; Gobbel, G.T.; Shinohara, C.; Fike, J.R. Apoptosis is induced in the subependyma of young adult rats by ionizing irradiation. Neurosci. Lett. 1996, 208, 163–166. [Google Scholar] [CrossRef]
- Lumniczky, K.; Szatmári, T.; Sáfrány, G. Ionizing Radiation-Induced Immune and Inflammatory Reactions in the Brain. Front. Immunol. 2017, 8, 517. [Google Scholar] [CrossRef]
- Constanzo, J.; Midavaine, É.; Fouquet, J.; Lepage, M.; Descoteaux, M.; Kirby, K.; Tremblay, L.; Masson-Côté, L.; Geha, S.; Longpré, J.-M.; et al. Brain irradiation leads to persistent neuroinflammation and long-term neurocognitive dysfunction in a region-specific manner. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 102, 109954. [Google Scholar] [CrossRef]
- Wu, P.H.; Coultrap, S.; Pinnix, C.; Davies, K.D.; Tailor, R.; Ang, K.K.; Browning, M.D.; Grosshans, D.R. Radiation induces acute alterations in neuronal function. PLoS ONE 2012, 7, e37677. [Google Scholar] [CrossRef]
- Weintraub, N.L.; Jones, W.K.; Manka, D. Understanding radiation-induced vascular disease. J. Am. Coll. Cardiol. 2010, 55, 1237–1239. [Google Scholar] [CrossRef]
- Venkatesulu, B.P.; Mahadevan, L.S.; Aliru, M.L.; Yang, X.; Bodd, M.H.; Singh, P.K.; Yusuf, S.W.; Abe, J.-I.; Krishnan, S. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic Transl. Sci. 2018, 3, 563–572. [Google Scholar] [CrossRef]
- Venkatesulu, B.P.; Mahadevan, L.S.; Aliru, M.L.; Yang, X.; Bodd, M.H.; Singh, P.K.; Yusuf, S.W.; Abe, J.I.; Krishnan, S. Biomarkers of radiation-induced vascular injury. Cancer Rep. 2019, 2, e1152. [Google Scholar] [CrossRef] [PubMed]
- Turchi, F.; Cuomo, A.; Amodeo, G.; Favaretto, E.; Righini, S.; Mellina, E.; La Mela, C.; Fagiolini, A. The neural bases of social cognition in major depressive disorder: A review. Riv. Psichiatr. 2017, 52, 137–149. [Google Scholar] [PubMed]
- Premack, D.; Woodruff, G. Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1978, 1, 515–526. [Google Scholar] [CrossRef]
- Beaudoin, C.; Beauchamp, M.H. Social cognition. Handb. Clin. Neurol. 2020, 173, 255–264. [Google Scholar]
- Montagne, B.; Kessels, R.P.; De Haan, E.H.; Perrett, D.I. The Emotion Recognition Task: A paradigm to measure the perception of facial emotional expressions at different intensities. Percept. Mot. Skills 2007, 104, 589–598. [Google Scholar] [CrossRef]
- Luciana, M. Practitioner review: Computerized assessment of neuropsychological function in children: Clinical and research applications of the Cambridge Neuropsychological Testing Automated Battery (CANTAB). J. Child. Psychol. Psychiatry 2003, 44, 649–663. [Google Scholar] [CrossRef]
- LaBar, K.S.; Gatenby, J.; Gore, J.C.; E LeDoux, J.; A Phelps, E. Human amygdala activation during conditioned fear acquisition and extinction: A mixed-trial fMRI study. Neuron 1998, 20, 937–945. [Google Scholar] [CrossRef]
- Adolphs, R. Fear, faces, and the human amygdala. Curr. Opin. Neurobiol. 2008, 18, 166–172. [Google Scholar] [CrossRef]
- Cardinale, E.M.; Reber, J.; O’Connell, K.; Turkeltaub, P.E.; Tranel, D.; Buchanan, T.W.; Marsh, A.A. Bilateral amygdala damage linked to impaired ability to predict others’ fear but preserved moral judgements about causing others fear. Proc. Biol. Sci. 2021, 288, 20202651. [Google Scholar] [CrossRef]
- Meisner, O.C.; Nair, A.; Chang, S.W. Amygdala connectivity and implications for social cognition and disorders. Handb. Clin. Neurol. 2022, 187, 381–403. [Google Scholar]
- Brown, P.D.; Gondi, V.; Pugh, S.; Tome, W.A.; Wefel, J.S.; Armstrong, T.S.; Bovi, J.A.; Robinson, C.; Konski, A.; Khuntia, D.; et al. Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001. J. Clin. Oncol. 2020, 38, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Scoccianti, S.; Detti, B.; Gadda, D.; Greto, D.; Furfaro, I.; Meacci, F.; Simontacchi, G.; Di Brina, L.; Bonomo, P.; Giacomelli, I.; et al. Organs at risk in the brain and their dose-constraints in adults and in children: A radiation oncologist’s guide for delineation in everyday practice. Radiother. Oncol. 2015, 114, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Kazda, T.; Jancalek, R.; Pospisil, P.; Sevela, O.; Prochazka, T.; Vrzal, M.; Burkon, P.; Slavik, M.; Hynkova, L.; Slampa, P.; et al. Why and how to spare the hippocampus during brain radiotherapy: The developing role of hippocampal avoidance in cranial radiotherapy. Radiat. Oncol. 2014, 9, 139. [Google Scholar] [CrossRef]
- Gondi, V.; Tolakanahalli, R.; Mehta, M.P.; Tewatia, D.; Rowley, H.; Kuo, J.S.; Khuntia, D.; Tomé, W.A. Hippocampal-sparing whole-brain radiotherapy: A “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Gondi, V.; Tome, W.A.; Mehta, M.P. Why avoid the hippocampus? A comprehensive review. Radiother. Oncol. 2010, 97, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Huynh-Le, M.-P.; Karunamuni, R.; Moiseenko, V.; Farid, N.; McDonald, C.R.; Hattangadi-Gluth, J.A.; Seibert, T.M. Dose-dependent atrophy of the amygdala after radiotherapy. Radiother. Oncol. 2019, 136, 44–49. [Google Scholar] [CrossRef]
- Unnikrishnan, S.; Karunamuni, R.; Salans, M.A.; Gudipati, S.; Qian, A.S.; Yu, J.; Connor, M.; Huynh-Le, M.-P.; Tibbs, M.D.; Hermann, G.; et al. Dose-Dependent Atrophy in Bilateral Amygdalae and Nuclei After Brain Radiation Therapy and Its Association With Mood and Memory Outcomes on a Longitudinal Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 834–845. [Google Scholar] [CrossRef]
- Saylik, R.; Raman, E.; Szameitat, A.J. Sex Differences in Emotion Recognition and Working Memory Tasks. Front. Psychol. 2018, 9, 1072. [Google Scholar] [CrossRef]
- Hampson, E.; Vananders, S.; Mullin, L. A female advantage in the recognition of emotional facial expressions: Test of an evolutionary hypothesis. Evol. Hum. Behav. 2006, 27, 401–416. [Google Scholar] [CrossRef]
- Hardy, S.J.; Finkelstein, A.J.; Tivarus, M.; Culakova, E.; Mohile, N.; Weber, M.; Lin, E.; Zhong, J.; Usuki, K.; Schifitto, G.; et al. Cognitive and neuroimaging outcomes in individuals with benign and low-grade brain tumours receiving radiotherapy: A protocol for a prospective cohort study. BMJ Open 2023, 13, e066458. [Google Scholar] [CrossRef]
- Law, M.Y.; Liu, B. Informatics in radiology: DICOM-RT and its utilization in radiation therapy. Radiographics 2009, 29, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Desikan, R.S.; Ségonne, F.; Fischl, B.; Quinn, B.T.; Dickerson, B.C.; Blacker, D.; Buckner, R.L.; Dale, A.M.; Maguire, R.P.; Hyman, B.T.; et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, J.E.; Insausti, R.; Lerma-Usabiaga, G.; Bocchetta, M.; Van Leemput, K.; Greve, D.N.; van der Kouwe, A.; Fischl, B.; Caballero-Gaudes, C.; Paz-Alonso, P.M. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 2018, 183, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- McMahon, S.J. The linear quadratic model: Usage, interpretation and challenges. Phys. Med. Biol. 2018, 64, 01TR01. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.M.; Oei, A.L.; Crezee, J.; Bel, A.; Franken, N.A.P.; Stalpers, L.J.A.; Kok, H.P. The alfa and beta of tumours: A review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat. Oncol. 2018, 13, 96. [Google Scholar] [CrossRef]
- Visser, M. Emotion Recognition and Aging. Comparing a Labeling Task With a Categorization Task Using Facial Representations. Front. Psychol. 2020, 11, 139. [Google Scholar] [CrossRef]
- Dalili, M.N.; Penton-Voak, I.S.; Harmer, C.J.; Munafò, M.R. Meta-analysis of emotion recognition deficits in major depressive disorder. Psychol. Med. 2015, 45, 1135–1144. [Google Scholar] [CrossRef]
- Lee, J.; Hall, R.C.W. The Impact of Gliomas on Cognition and Capacity. J. Am. Acad. Psychiatry Law Online 2019, 47, JAAPL.003841-19. [Google Scholar]
- Gainotti, G. The Role of the Right Hemisphere in Emotional and Behavioral Disorders of Patients With Frontotemporal Lobar Degeneration: An Updated Review. Front. Aging Neurosci. 2019, 11, 55. [Google Scholar] [CrossRef]
- Döllinger, L.; Laukka, P.; Högman, L.B.; Bänziger, T.; Makower, I.; Fischer, H.; Hau, S. Training Emotion Recognition Accuracy: Results for Multimodal Expressions and Facial Micro Expressions. Front. Psychol. 2021, 12, 708867. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.M.; Grimm, J.; McIntyre, R.; Anderson-Keightly, H.; Kleinberg, L.R.; Hales, R.K.; Moore, J.; Vannorsdall, T.; Redmond, K.J. A prospective evaluation of hippocampal radiation dose volume effects and memory deficits following cranial irradiation. Radiother. Oncol. 2017, 125, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Gondi, V.; Hermann, B.P.; Mehta, M.P.; Tomé, W.A. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, e487–e493. [Google Scholar] [CrossRef]
- Hayman, L.A.; Rexer, J.L.; Pavol, M.A.; Strite, D.; Meyers, C.A. Klüver-Bucy syndrome after bilateral selective damage of amygdala and its cortical connections. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Wefel, J.S.; Noll, K.R.; Rao, G.; Cahill, D.P. Neurocognitive function varies by IDH1 genetic mutation status in patients with malignant glioma prior to surgical resection. Neuro-Oncology 2016, 18, 1656–1663. [Google Scholar] [CrossRef]
- Yuksek, E.; Eroz, S.; Yassa, A.; Akturk, D.; Zakirov, F.; Akcam, F.E.; Emul, M. The Influences of Whole Brain Radiotherapy on Social Cognition and Association with Hippocampal and Frontal Dosimetry. Psychiatr. Q. 2015, 86, 533–543. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Dijkshoorn, A.B.; Li, C.; Manly, T.; Price, S.J. Glioblastoma surgery related emotion recognition deficits are associated with right cerebral hemisphere tract changes. Brain Commun. 2020, 2, fcaa169. [Google Scholar] [CrossRef]
- Campanella, F.; Fabbro, F.; Ius, T.; Shallice, T.; Skrap, M. Acute effects of surgery on emotion and personality of brain tumor patients: Surgery impact, histological aspects, and recovery. Neuro-Oncology 2015, 17, 1121–1131. [Google Scholar] [CrossRef]
Variable | Baseline Cohort n = 51 N (%) or Median (IQR *) | Subjects with Evaluable 6-Month Data n = 38 N (%) or Median (IQR *) | Median 6-Month ERTOMDCRT (IQR *) or Correlation Coefficient | p-Value |
---|---|---|---|---|
Whole Cohort | 51 (100%) | 38 (100%) | 1381.3 (498.5) | . |
Sex | 0.73 ^ | |||
Male | 20 (39%) | 14 (37%) | 1381.3 (529.5) | |
Female | 31 (61%) | 24 (63%) | 1357.3 (491.3) | |
Handedness | 0.44 ^ | |||
Right | 46 (90%) | 34 (89%) | 1406.3 (490.0) | |
Left or ambidextrous | 5 (10%) | 4 (11%) | 1133.8 (375.8) | |
Tumor histology | 0.02 ^ | |||
Meningioma | 20 (39%) | 15 (39%) | 1421.0 (344.0) | |
Schwannoma | 16 (31%) | 13 (34%) | 1095.5 (431.0) | |
Glioma | 5 (10%) | 3 (8%) | 1619.5 (1290.0) | |
Pituitary adenoma | 5 (10%) | 3 (8%) | 1570.0 (899.5) | |
Other benign or low-grade tumor | 5 (10%) | 4 (11%) | 1797.8 (757.5) | |
Tumor grade | 0.45 ^ | |||
Grade 1 or presumed grade 1 via imaging | 39 (73%) | 29 (76%) | 1297.0 (501.0) | |
Grade 2 or n/a | 12 (22%) | 9 (24%) | 1533.5 (340.5) | |
Tumor laterality | 0.07 ^ | |||
Right | 18 (35%) | 12 (32%) | 1229.8 (442.3) | |
Left | 22 (43%) | 16 (42%) | 1285.3 (528.0) | |
Bilateral or midline | 11 (22%) | 10 (26%) | 1558.5 (545.5) | |
Race | 0.42 ^ | |||
White | 43 (84%) | 32 (84%) | 1267.5 (557.5) | |
Black or African-American | 6 (12%) | 5 (13%) | 1480.0 (73.0) | |
Asian or Pacific Islander | 2 (4%) | 1 (3%) | 1203 | |
Received chemotherapy | 0.45 ^ | |||
Yes | 4 (8%) | 3 (8%) | 1619.5 (1290.0) | |
No | 47 (92%) | 35 (92%) | 1367.5 (483.5) | |
Surgical resection | 0.08 ^ | |||
Yes | 19 (37.2%) | 13 (34.2%) | 1545.0 (398.0) | |
No | 32 (62.8%) | 25 (65.8%) | 1238.0 (534.0) | |
Time from surgery to RT start (months) | 15.7 (37.5) | 14.9 (36.1) | 0.29 | 0.35 ** |
Total prescribed RT dose (Gy) | 21 (36) | 23 (36) | 0.37 | 0.02 ** |
Total prescribed RT dose category | 0.08 ^ | |||
>20 Gy | 29 (57%) | 23 (61%) | 1472.0 (416.5) | |
≤20 Gy | 22 (43%) | 15 (39%) | 1179.0 (543.5) | |
Number of RT fractions (all) | 3 (26) | 3 (26) | 0.33 | 0.05 ** |
Type of fractionation | 0.20 ^ | |||
Conventional fractionation (>5 fractions) | 22 (43%) | 17 (45%) | 1533.5 (348.5) | |
Hypofractionation (≤5 fractions) | 29 (57%) | 21 (55%) | 1233.0 (434.0) | |
Age (years) | 58 (17) | 58 (18) | 0.49 | 0.0016 ** |
Age category | 0.01 ^ | |||
≥60 years | 22 (43%) | 16 (42%) | 1546.0 (605.8) | |
<60 years | 29 (57%) | 22 (58%) | 1191.0 (552.0) | |
PHQ2 (all) | 1 (2) | 1 (2) | 0.04 | 0.85 ** |
PHQ2 score category | 0.39 ^ | |||
≥2 | 16 (31%) | 13 (34%) | 1238.0 (577.0) | |
<2 | 35 (69%) | 25 (66%) | 1395.0 (490.0) | |
Baseline ERTOMDCRT | 0.62 | <0.0001 ** |
ERTOMDCRT | ERTTH | ERTOMDRT | ||||
---|---|---|---|---|---|---|
Beta | p-Value | Beta | p-Value | Beta | p-Value | |
Amygdala | ||||||
Right | 5.94 | 0.25 | −0.06 | 0.32 | 13.40 | 0.08 |
Left | 7.34 | 0.07 | −0.07 | 0.19 | 13.12 | 0.03 |
Highest mean RT dose | 7.20 | 0.05 | −0.05 | 0.27 | 12.56 | 0.02 |
Lateral orbitofrontal cortex | ||||||
Right | 5.55 | 0.17 | −0.07 | 0.14 | 14.30 | 0.02 |
Left | 6.65 | 0.10 | −0.09 | 0.07 | 5.77 | 0.02 |
Highest mean RT dose | 6.16 | 0.08 | −0.06 | 0.14 | 12.96 | 0.01 |
Medial orbitofrontal cortex | ||||||
Right | 7.73 | 0.09 | −0.10 | 0.08 | 18.58 | 0.01 |
Left | 7.80 | 0.08 | −0.10 | 0.05 | 17.15 | 0.01 |
Highest mean RT dose | 7.98 | 0.07 | −0.10 | 0.07 | 17.30 | 0.01 |
Change in Score from Baseline to 6 Months (ms or Total Count, Interquartile Range) | p-Value | |
---|---|---|
ERTOMDCRT | ||
Whole cohort | −60.0 (458.0) | n/a |
Highest mean RT dose to amygdala ≥ 6.5 Gy ** | 0.03 ^^ | |
Yes (n = 13) | −6.5 (356.0) | |
No (n = 25) | −132.0 (509.5) | |
Highest mean RT dose to medial orbitofrontal cortex ≥ 8.2 Gy ** | 0.02 ^^ | |
Yes (n = 12) | 94.3 (438.0) | |
No (n = 26) | −132.5 (509.5) | |
Highest mean RT lateral orbitofrontal cortex ≥ 4.9 Gy ** | 0.09 ^^ | |
Yes (n = 16) | −54.8 (452.8) | |
No (n = 22) | −108.5 (617.5) | |
ERTOMDRT | ||
Whole cohort | −60.0 (458.0) | n/a |
Highest mean RT dose to amygdala ≥ 0.6 Gy ** | 0.01 ^ | |
Yes (n = 26) | 28.0 (436.0) | |
No (n = 12) | −369.3 (980.8) | |
Highest mean RT dose to medial orbitofrontal cortex ≥ 1.1 Gy ** | 0.02 ^ | |
Yes (n = 17) | 40.5 (436.0) | |
No (n = 21) | −161.5 (411.5) | |
Highest mean RT dose to lateral orbitofrontal cortex ≥ 1.1 Gy ** | 0.04 ^ | |
Yes (n = 18) | 31.5 (441.5) | |
No (n = 20) | −148.3 (656.5) | |
ERTHH | ||
Whole cohort | 2.0 (5.0) | n/a |
Highest mean RT dose to amygdala ≥28 Gy ** | 0.92 ^^ | |
Yes (n = 4) | 5.0 (13.0) | |
No (n = 34) | 2.0 (5.0) | |
Highest mean RT dose to medial orbitofrontal cortex ≥ 17.4 Gy ** | 0.05 ^^ | |
Yes (n = 4) | −2.0 (10.5) | |
No (n = 34) | 2.5 (5.0) | |
Highest mean RT dose to lateral orbitofrontal cortex ≥ 29.7 Gy ** | 0.05 ^^ | |
Yes (n = 4) | −2.0 (10.5) | |
No (n = 34) | 2.5 (5.0) |
Parameter | Estimate | Standard Error | p > |t| |
---|---|---|---|
Baseline ERTOMDCRT score | 0.48 | 0.11 | 0.0002 |
Highest mean RT dose to amygdala (Gy) | 7.84 | 3.46 | 0.03 |
Age | 6.56 | 4.59 | 0.16 |
Histology | 69.12 | 45.71 | 0.14 |
Tumor laterality | −26.86 | 78.42 | 0.73 |
PHQ2 score (depression) | −15.72 | 36.82 | 0.67 |
Sex | −35.99 | 100.88 | 0.72 |
Training | ||
---|---|---|
Variable | Relative | Importance |
Highest mean RT dose to medial orbitofrontal cortex | 1.00 | 849.4 |
Primary tumor histology | 0.76 | 646.8 |
Tumor laterality (right, left, or midline) | 0.12 | 98.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardy, S.J.; Finkelstein, A.; Milano, M.T.; Schifitto, G.; Sun, H.; Holley, K.; Usuki, K.; Weber, M.T.; Zheng, D.; Seplaki, C.L.; et al. Association of Radiation Dose to the Amygdala–Orbitofrontal Network with Emotion Recognition Task Performance in Patients with Low-Grade and Benign Brain Tumors. Cancers 2023, 15, 5544. https://doi.org/10.3390/cancers15235544
Hardy SJ, Finkelstein A, Milano MT, Schifitto G, Sun H, Holley K, Usuki K, Weber MT, Zheng D, Seplaki CL, et al. Association of Radiation Dose to the Amygdala–Orbitofrontal Network with Emotion Recognition Task Performance in Patients with Low-Grade and Benign Brain Tumors. Cancers. 2023; 15(23):5544. https://doi.org/10.3390/cancers15235544
Chicago/Turabian StyleHardy, Sara J., Alan Finkelstein, Michael T. Milano, Giovanni Schifitto, Hongying Sun, Koren Holley, Kenneth Usuki, Miriam T. Weber, Dandan Zheng, Christopher L. Seplaki, and et al. 2023. "Association of Radiation Dose to the Amygdala–Orbitofrontal Network with Emotion Recognition Task Performance in Patients with Low-Grade and Benign Brain Tumors" Cancers 15, no. 23: 5544. https://doi.org/10.3390/cancers15235544
APA StyleHardy, S. J., Finkelstein, A., Milano, M. T., Schifitto, G., Sun, H., Holley, K., Usuki, K., Weber, M. T., Zheng, D., Seplaki, C. L., & Janelsins, M. (2023). Association of Radiation Dose to the Amygdala–Orbitofrontal Network with Emotion Recognition Task Performance in Patients with Low-Grade and Benign Brain Tumors. Cancers, 15(23), 5544. https://doi.org/10.3390/cancers15235544