Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Scan Time Reduction
3. Dose Reduction
4. Longitudinal and Delayed Imaging
5. Parametric Imaging
5.1. Image-Derived Input Function
5.2. Shortened Scan Protocols
5.2.1. Late-Time Scanning
5.2.2. Dual-Window Imaging
5.2.3. Second Injection
5.2.4. Early Time Scanning
6. Dual Tracer
7. Drawbacks
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Filippi, L.; Dimitrakopoulou-Strauss, A.; Evangelista, L.; Schillaci, O. Long axial field-of-view PET/CT devices: Are we ready for the technological revolution? Expert Rev. Med. Devices 2022, 19, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Pantel, A.R.; Viswanath, V.; Daube-Witherspoon, M.E.; Dubroff, J.G.; Muehllehner, G.; Parma, M.J.; Pryma, D.A.; Schubert, E.K.; Mankoff, D.A.; Karp, J.S. PennPET Explorer: Human Imaging on a Whole-Body Imager. J. Nucl. Med. 2020, 61, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Karp, J.S.; Viswanath, V.; Geagan, M.J.; Muehllehner, G.; Pantel, A.R.; Parma, M.J.; Perkins, A.E.; Schmall, J.P.; Werner, M.E.; Daube-Witherspoon, M.E. PennPET Explorer: Design and Preliminary Performance of a Whole-Body Imager. J. Nucl. Med. 2020, 61, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Spencer, B.A.; Berg, E.; Schmall, J.P.; Omidvari, N.; Leung, E.K.; Abdelhafez, Y.G.; Tang, S.; Deng, Z.; Dong, Y.; Lv, Y.; et al. Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View. J. Nucl. Med. 2021, 62, 861–870. [Google Scholar] [CrossRef]
- Prenosil, G.A.; Sari, H.; Furstner, M.; Afshar-Oromieh, A.; Shi, K.; Rominger, A.; Hentschel, M. Performance Characteristics of the Biograph Vision Quadra PET/CT System with a Long Axial Field of View Using the NEMA NU 2-2018 Standard. J. Nucl. Med. 2022, 63, 476–484. [Google Scholar] [CrossRef]
- GE Healthcare (United States). Omni Legend. Available online: https://www.gehealthcare.com/products/molecular-imaging/pet-ct/omni-legend (accessed on 26 June 2023).
- Vandenberghe, S.; Moskal, P.; Karp, J.S. State of the art in total body PET. EJNMMI Phys. 2020, 7, 35. [Google Scholar] [CrossRef]
- Viswanath, V.; Sari, H.; Pantel, A.R.; Conti, M.; Daube-Witherspoon, M.E.; Mingels, C.; Alberts, I.; Eriksson, L.; Shi, K.; Rominger, A.; et al. Abbreviated scan protocols to capture (18)F-FDG kinetics for long axial FOV PET scanners. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3215–3225. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y.; Yu, H.; Chen, S.; Tan, H.; Qi, C.; Dong, Y.; Wang, Y.; Deng, Z.; Shi, H. Total-body (18)F-FDG PET/CT scan in oncology patients: How fast could it be? Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2384–2394. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, G.; Yu, H.; Gu, J.; Shi, H. Diagnostic performance of total-body (18)F-FDG PET/CT with fast 2-min acquisition for liver tumours: Comparison with conventional PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3538–3546. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, P.; He, Y.; Yu, H.; Tan, H.; Liu, G.; Gu, J.; Shi, H. Ultrafast 30-s total-body PET/CT scan: A preliminary study. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2504–2513. [Google Scholar] [CrossRef]
- Alberts, I.; Hunermund, J.N.; Prenosil, G.; Mingels, C.; Bohn, K.P.; Viscione, M.; Sari, H.; Vollnberg, B.; Shi, K.; Afshar-Oromieh, A.; et al. Clinical performance of long axial field of view PET/CT: A head-to-head intra-individual comparison of the Biograph Vision Quadra with the Biograph Vision PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2395–2404. [Google Scholar] [CrossRef]
- Alberts, I.; Sari, H.; Mingels, C.; Afshar-Oromieh, A.; Pyka, T.; Shi, K.; Rominger, A. Long-axial field-of-view PET/CT: Perspectives and review of a revolutionary development in nuclear medicine based on clinical experience in over 7000 patients. Cancer Imaging 2023, 23, 28. [Google Scholar] [CrossRef]
- Alberts, I.; Schepers, R.; Zeimpekis, K.; Sari, H.; Rominger, A.; Afshar-Oromieh, A. Combined [68 Ga]Ga-PSMA-11 and low-dose 2-[18F]FDG PET/CT using a long-axial field of view scanner for patients referred for [177Lu]-PSMA-radioligand therapy. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 951–956. [Google Scholar] [CrossRef]
- Slart, R.; Tsoumpas, C.; Glaudemans, A.; Noordzij, W.; Willemsen, A.T.M.; Borra, R.J.H.; Dierckx, R.; Lammertsma, A.A. Long axial field of view PET scanners: A road map to implementation and new possibilities. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4236–4245. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Feng, T.; Zhao, Y.; Xu, T.; Fu, F.; Huang, Z.; Meng, N.; Li, H.; Shao, F.; Wang, M. Whole-Body Parametric Imaging of (18)F-FDG PET Using uEXPLORER with Reduced Scanning Time. J. Nucl. Med. 2022, 63, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Hu, P.C.; Wu, R.Z.; Gu, Y.S.; Chen, S.G.; Yu, H.J.; Wang, X.Q.; Song, J.; Shi, H.C. The image quality, lesion detectability, and acquisition time of (18)F-FDG total-body PET/CT in oncological patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2507–2515. [Google Scholar] [CrossRef]
- Rausch, I.; Mannheim, J.G.; Kupferschlager, J.; la Fougere, C.; Schmidt, F.P. Image quality assessment along the one metre axial field-of-view of the total-body Biograph Vision Quadra PET/CT system for (18)F-FDG. EJNMMI Phys. 2022, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Bensch, F.; Smeenk, M.M.; van Es, S.C.; de Jong, J.R.; Schroder, C.P.; Oosting, S.F.; Lub-de Hooge, M.N.; Menke-van der Houven van Oordt, C.W.; Brouwers, A.H.; Boellaard, R.; et al. Comparative biodistribution analysis across four different (89)Zr-monoclonal antibody tracers-The first step towards an imaging warehouse. Theranostics 2018, 8, 4295–4304. [Google Scholar] [CrossRef] [PubMed]
- Ulaner, G.A.; Sobol, N.B.; O’Donoghue, J.A.; Kirov, A.S.; Riedl, C.C.; Min, R.; Smith, E.; Carter, L.M.; Lyashchenko, S.K.; Lewis, J.S.; et al. CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging Radiol. 2020, 295, 606–615. 295. [CrossRef]
- Brouwers, A.H.; van Sluis, J.; van Snick, J.H.; Schroder, C.P.; Baas, I.O.; Boellaard, R.; Glaudemans, A.; Borra, R.J.H.; Lammertsma, A.A.; Dierckx, R.; et al. First-time imaging of [(89)Zr]trastuzumab in breast cancer using a long axial field-of-view PET/CT scanner. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3593–3595. [Google Scholar] [CrossRef]
- Mohr, P.; van Sluis, J.; Providencia, L.; van Snick, J.H.; Lub-de Hooge, M.N.; Willemsen, A.T.; Glaudemans, A.; Boellaard, R.; Lammertsma, A.A.; Brouwers, A.H.; et al. Long Versus Short Axial Field of View Immuno-PET/CT: Semiquantitative Evaluation for (89)Zr-Trastuzumab. J. Nucl. Med. 2023, 24, jnumed.123.265621. [Google Scholar] [CrossRef]
- Meirelles, G.S.; Erdi, Y.E.; Nehmeh, S.A.; Squire, O.D.; Larson, S.M.; Humm, J.L.; Schoder, H. Deep-inspiration breath-hold PET/CT: Clinical findings with a new technique for detection and characterization of thoracic lesions. J. Nucl. Med. 2007, 48, 712–719. [Google Scholar] [CrossRef]
- Nehmeh, S.A.; Erdi, Y.E.; Meirelles, G.S.; Squire, O.; Larson, S.M.; Humm, J.L.; Schoder, H. Deep-inspiration breath-hold PET/CT of the thorax. J. Nucl. Med. 2007, 48, 22–26. [Google Scholar] [PubMed]
- Cheng, Z.; Chen, L.; Wang, X.; Wang, Y.; Zhao, M.; Zan, K.; Liu, W.; Cui, X.; Chai, L.; Ge, M.; et al. Role of breath-hold lung PET in stage IA pulmonary adenocarcinoma. Insights Imaging 2023, 14, 100. [Google Scholar] [CrossRef] [PubMed]
- Serai, S.D.; Hu, H.H.; Ahmad, R.; White, S.; Pednekar, A.; Anupindi, S.A.; Lee, E.Y. Newly Developed Methods for Reducing Motion Artifacts in Pediatric Abdominal MRI: Tips and Pearls. AJR Am. J. Roentgenol. 2020, 214, 1042–1053. [Google Scholar] [CrossRef]
- Kyme, A.Z.; Fulton, R.R. Motion estimation and correction in SPECT, PET and CT. Phys. Med. Biol. 2021, 66, 18TR02. [Google Scholar] [CrossRef]
- Sun, L.S.; Li, G.; DiMaggio, C.J.; Byrne, M.W.; Ing, C.; Miller, T.L.; Bellinger, D.C.; Han, S.; McGowan, F.X. Feasibility and pilot study of the Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) project. J. Neurosurg. Anesthesiol. 2012, 24, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Borgwardt, L.; Brok, J.S.; Andersen, K.F.; Madsen, J.; Gillings, N.; Fosbøl, M.Ø.; Denholt, C.L.; Wehner, P.S.; Enevoldsen, L.H.; Oturai, P.; et al. [18F]mFBG long axial field of view PET-CT without general anaesthesia reveals concise extension of neuroblastoma in a 9-month-old boy. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2563–2564. [Google Scholar] [CrossRef]
- Brix, G.; Lechel, U.; Glatting, G.; Ziegler, S.I.; Münzing, W.; Müller, S.P.; Beyer, T. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J. Nucl. Med. 2005, 46, 608–613. [Google Scholar] [PubMed]
- Hosono, M.; Takenaka, M.; Monzen, H.; Tamura, M.; Kudo, M.; Nishimura, Y. Cumulative radiation doses from recurrent PET–CT examinations. Br. J. Radiol. 2021, 94, 20210388. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.W.; Kim, J.P.; Lee, H.J.; Paeng, J.C.; Lee, J.S.; Cheon, G.J.; Lee, D.S.; Chung, J.K.; Kang, K.W. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea. J. Korean Med. Sci. 2016, 31 (Suppl. S1), S69–S74. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, Y.; Yuan, J.; Wang, H.; Liang, D.; Fan, W.; Hu, Z.; Zhang, N. High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning. Quant. Imaging Med. Surg. 2022, 12, 5326–5342. [Google Scholar] [CrossRef]
- Sminia, P.; Lammertsma, A.; Greuter, M.; Wiegman, M.; De Lange, F.; De Fluiter-Zeeman, M.; Franken, K.; Vegter, A.; Spilt, A.; Van de Kamer, J.B. Human Exposure to Ionising Radiation for Clinical and Research Purposes: Radiation Dose & Risk Estimates. 2020. Available online: https://radiationdosimetry.org/ncs/documents/ncs-26-human-exposure-to-ionising-radiation-for-clinical-and-research-purposes-radiation-dose-risk-estimates (accessed on 6 July 2023).
- Sui, X.; Tan, H.; Yu, H.; Xiao, J.; Qi, C.; Cao, Y.; Chen, S.; Zhang, Y.; Hu, P.; Shi, H. Exploration of the total-body PET/CT reconstruction protocol with ultra-low (18)F-FDG activity over a wide range of patient body mass indices. EJNMMI Phys. 2022, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.M.; Li, Y.H.; Chen, T.; Zhang, W.G.; Wang, L.H.; Feng, J.; Li, C.; Zhang, X.; Fan, W.; Hu, Y.Y. Image quality and lesion detectability in low-dose pediatric (18)F-FDG scans using total-body PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3378–3385. [Google Scholar] [CrossRef] [PubMed]
- Despierres, M.; Boudy, A.S.; Selleret, L.; Gligorov, J.; Richard, S.; Thomassin, I.; Dabi, Y.; Zilberman, S.; Touboul, C.; Montravers, F.; et al. Feasibility, Safety and Impact of (18F)-FDG PET/CT in patients with pregnancy-associated cancer: Experience of the French CALG (Cancer Associé à La Grossesse) network. Acta Oncol. 2022, 61, 302–308. [Google Scholar] [CrossRef]
- Nguyen, T.; Bhosale, P.R.; Cassia, L.; Surabhi, V.; Javadi, S.; Milbourne, A.; Faria, S.C. Malignancy in pregnancy: Multimodality imaging and treatment. Cancer 2023, 129, 1479–1491. [Google Scholar] [CrossRef]
- Van Sluis, J.; Bellido, M.; Glaudemans, A.; Slart, R. Long Axial Field-of-View PET for Ultra-Low-Dose Imaging of Non-Hodgkin Lymphoma during Pregnancy. Diagnostics 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.M.; Mackewn, J.; Chicklore, S.; Cook, G.J.R.; Mallia, A.; Pike, L. Optimisation of CT protocols in PET-CT across different scanner models using different automatic exposure control methods and iterative reconstruction algorithms. EJNMMI Phys. 2021, 8, 58. [Google Scholar] [CrossRef]
- Harun, H.H.; Karim, M.K.A.; Abbas, Z.; Sabarudin, A.; Muniandy, S.C.; Razak, H.R.A.; Ng, K.H. The influence of iterative reconstruction level on image quality and radiation dose in CT pulmonary angiography examinations. Radiat. Phys. Chem. 2021, 178, 108989. [Google Scholar] [CrossRef]
- Casey, M.; Hamill, J.; Yan, S. White Paper: Dose Reduction Techniques for CT-Based PET Attenuation Correction; Siemens Healthineers: Erlangen, Germany, 2021. [Google Scholar]
- Basu, S.; Kung, J.; Houseni, M.; Zhuang, H.; Tidmarsh, G.F.; Alavi, A. Temporal profile of fluorodeoxyglucose uptake in malignant lesions and normal organs over extended time periods in patients with lung carcinoma: Implications for its utilization in assessing malignant lesions. Q. J. Nucl. Med. Mol. Imaging 2009, 53, 9–19. [Google Scholar]
- Cheng, G.; Alavi, A.; Lim, E.; Werner, T.J.; Del Bello, C.V.; Akers, S.R. Dynamic changes of FDG uptake and clearance in normal tissues. Mol. Imaging Biol. 2013, 15, 345–352. [Google Scholar] [CrossRef]
- Berg, E.; Gill, H.; Marik, J.; Ogasawara, A.; Williams, S.; van Dongen, G.; Vugts, D.; Cherry, S.R.; Tarantal, A.F. Total-Body PET and Highly Stable Chelators Together Enable Meaningful (89)Zr-Antibody PET Studies up to 30 Days After Injection. J. Nucl. Med. 2020, 61, 453–460. [Google Scholar] [CrossRef]
- Badawi, R.D.; Shi, H.; Hu, P.; Chen, S.; Xu, T.; Price, P.M.; Ding, Y.; Spencer, B.A.; Nardo, L.; Liu, W.; et al. First Human Imaging Studies with the EXPLORER Total-Body PET Scanner. J. Nucl. Med. 2019, 60, 299–303. [Google Scholar] [CrossRef]
- Alberts, I.; Prenosil, G.; Mingels, C.; Bohn, K.P.; Viscione, M.; Sari, H.; Rominger, A.; Afshar-Oromieh, A. Feasibility of late acquisition [68Ga]Ga-PSMA-11 PET/CT using a long axial field-of-view PET/CT scanner for the diagnosis of recurrent prostate cancer-first clinical experiences. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4456–4462. [Google Scholar] [CrossRef]
- Dijkers, E.C.; Oude Munnink, T.H.; Kosterink, J.G.; Brouwers, A.H.; Jager, P.L.; de Jong, J.R.; van Dongen, G.A.; Schroder, C.P.; Lub-de Hooge, M.N.; de Vries, E.G. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin. Pharmacol. Ther. 2010, 87, 586–592. [Google Scholar] [CrossRef]
- Bensch, F.; van der Veen, E.L.; Lub-de Hooge, M.N.; Jorritsma-Smit, A.; Boellaard, R.; Kok, I.C.; Oosting, S.F.; Schroder, C.P.; Hiltermann, T.J.N.; van der Wekken, A.J.; et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat. Med. 2018, 24, 1852–1858. [Google Scholar] [CrossRef]
- Lamberts, L.E.; Menke-van der Houven van Oordt, C.W.; ter Weele, E.J.; Bensch, F.; Smeenk, M.M.; Voortman, J.; Hoekstra, O.S.; Williams, S.P.; Fine, B.M.; Maslyar, D.; et al. ImmunoPET with Anti-Mesothelin Antibody in Patients with Pancreatic and Ovarian Cancer before Anti-Mesothelin Antibody-Drug Conjugate Treatment. Clin. Cancer Res. 2016, 22, 1642–1652. [Google Scholar] [CrossRef]
- Zhuang, H.; Pourdehnad, M.; Lambright, E.S.; Yamamoto, A.J.; Lanuti, M.; Li, P.; Mozley, P.D.; Rossman, M.D.; Albelda, S.M.; Alavi, A. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J. Nucl. Med. 2001, 42, 1412–1417. [Google Scholar]
- Houshmand, S.; Salavati, A.; Segtnan, E.A.; Grupe, P.; Hoilund-Carlsen, P.F.; Alavi, A. Dual-time-point Imaging and Delayed-time-point Fluorodeoxyglucose-PET/Computed Tomography Imaging in Various Clinical Settings. PET Clin. 2016, 11, 65–84. [Google Scholar] [CrossRef]
- Soffers, F.; Helsen, N.; Van den Wyngaert, T.; Carp, L.; Hoekstra, O.S.; Goethals, L.; Martens, M.; Deben, K.; Spaepen, K.; De Bree, R.; et al. Dual time point imaging in locally advanced head and neck cancer to assess residual nodal disease after chemoradiotherapy. EJNMMI Res. 2022, 12, 34. [Google Scholar] [CrossRef]
- Keyes, J.W., Jr. SUV: Standard uptake or silly useless value? J. Nucl. Med. 1995, 36, 1836–1839. [Google Scholar]
- Huang, S.C. Anatomy of SUV. Standardized uptake value. Nucl. Med. Biol. 2000, 27, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Lammertsma, A.A.; Hoekstra, C.J.; Giaccone, G.; Hoekstra, O.S. How should we analyse FDG PET studies for monitoring tumour response? Eur. J. Nucl. Med. Mol. Imaging 2006, 33 (Suppl. S1), 16–21. [Google Scholar] [CrossRef] [PubMed]
- De Geus-Oei, L.F.; Visser, E.P.; Krabbe, P.F.; van Hoorn, B.A.; Koenders, E.B.; Willemsen, A.T.; Pruim, J.; Corstens, F.H.; Oyen, W.J. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring 18F-FDG PET studies. J. Nucl. Med. 2006, 47, 945–949. [Google Scholar] [PubMed]
- Lan, X.; Fan, K.; Li, K.; Cai, W. Dynamic PET imaging with ultra-low-activity of (18)F-FDG: Unleashing the potential of total-body PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4138–4141. [Google Scholar] [CrossRef]
- Liu, G.; Hu, P.; Yu, H.; Tan, H.; Zhang, Y.; Yin, H.; Hu, Y.; Gu, J.; Shi, H. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of (18)F-FDG in healthy volunteers. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2373–2383. [Google Scholar] [CrossRef]
- Liu, G.; Xu, H.; Hu, P.; Tan, H.; Zhang, Y.; Yu, H.; Li, X.; Shi, H. Kinetic metrics of (18)F-FDG in normal human organs identified by systematic dynamic total-body positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2363–2372. [Google Scholar] [CrossRef]
- Wang, G.; Nardo, L.; Parikh, M.; Abdelhafez, Y.G.; Li, E.; Spencer, B.A.; Qi, J.; Jones, T.; Cherry, S.R.; Badawi, R.D. Total-Body PET Multiparametric Imaging of Cancer Using a Voxelwise Strategy of Compartmental Modeling. J. Nucl. Med. 2022, 63, 1274–1281. [Google Scholar] [CrossRef]
- Sari, H.; Mingels, C.; Alberts, I.; Hu, J.; Buesser, D.; Shah, V.; Schepers, R.; Caluori, P.; Panin, V.; Conti, M.; et al. First results on kinetic modelling and parametric imaging of dynamic (18)F-FDG datasets from a long axial FOV PET scanner in oncological patients. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1997–2009. [Google Scholar] [CrossRef]
- Chen, R.; Yang, X.; Ng, Y.L.; Yu, X.; Huo, Y.; Xiao, X.; Zhang, C.; Chen, Y.; Zheng, C.; Li, L.; et al. First Total-Body Kinetic Modeling and Parametric Imaging of Dynamic (68)Ga-FAPI-04 PET in Pancreatic and Gastric Cancer. J. Nucl. Med. 2023, 64, 960–967. [Google Scholar] [CrossRef]
- Mullani, N.A.; Herbst, R.S.; O’Neil, R.G.; Gould, K.L.; Barron, B.J.; Abbruzzese, J.L. Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: A comparison with 15O-labeled water-measured blood flow. J. Nucl. Med. 2008, 49, 517–523. [Google Scholar] [CrossRef]
- Slimani, L.; Kudomi, N.; Oikonen, V.; Jarvisalo, M.; Kiss, J.; Naum, A.; Borra, R.; Viljanen, A.; Sipila, H.; Ferrannini, E.; et al. Quantification of liver perfusion with [(15)O]H(2)O-PET and its relationship with glucose metabolism and substrate levels. J. Hepatol. 2008, 48, 974–982. [Google Scholar] [CrossRef]
- Naganawa, M.; Gallezot, J.D.; Shah, V.; Mulnix, T.; Young, C.; Dias, M.; Chen, M.K.; Smith, A.M.; Carson, R.E. Assessment of population-based input functions for Patlak imaging of whole body dynamic (18)F-FDG PET. EJNMMI Phys. 2020, 7, 67. [Google Scholar] [CrossRef] [PubMed]
- Van Sluis, J.; Yaqub, M.; Brouwers, A.H.; Dierckx, R.; Noordzij, W.; Boellaard, R. Use of population input functions for reduced scan duration whole-body Patlak (18)F-FDG PET imaging. EJNMMI Phys. 2021, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Qi, J.; Wang, G. Relative Patlak plot for dynamic PET parametric imaging without the need for early-time input function. Phys. Med. Biol. 2018, 63, 165004. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Cheng, Z.; Duan, Y.; Zhang, Q.; Zhang, N.; Gu, F.; Wang, Y.; Zhou, Y.; Wang, H.; Liang, D.; et al. Accurate total-body K(i) parametric imaging with shortened dynamic (18) F-FDG PET scan durations via effective data processing. Med. Phys. 2023, 50, 2121–2134. [Google Scholar] [CrossRef]
- Oliveira, F.P.; Ferreira, S.M.; Silva, M.G.; Castanheira, J.C.; Teixeira, R.J.; Costa, D.C. Patlak plot based on the first 30 minutes post-injection dynamic (18)F-florbetaben positron emission tomography scan separates amyloid-beta positive from negative studies. Br. J. Radiol. 2022, 95, 20211023. [Google Scholar] [CrossRef]
- Feng, T.; Zhao, Y.; Shi, H.; Li, H.; Zhang, X.; Wang, G.; Price, P.M.; Badawi, R.D.; Cherry, S.R.; Jones, T. Total-Body Quantitative Parametric Imaging of Early Kinetics of (18)F-FDG. J. Nucl. Med. 2021, 62, 738–744. [Google Scholar] [CrossRef]
- Tseng, J.; Dunnwald, L.K.; Schubert, E.K.; Link, J.M.; Minoshima, S.; Muzi, M.; Mankoff, D.A. 18F-FDG kinetics in locally advanced breast cancer: Correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J. Nucl. Med. 2004, 45, 1829–1837. [Google Scholar]
- Sugawara, Y.; Zasadny, K.R.; Grossman, H.B.; Francis, I.R.; Clarke, M.F.; Wahl, R.L. Germ cell tumor: Differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology 1999, 211, 249–256. [Google Scholar] [CrossRef]
- Cheng, C.; Pan, L.; Koczan, D.; Dimitrakopoulou-Strauss, A. Gene expression profiling of colon cancer by correlation with 18F-FDG kinetics as measured by dynamic positron emission tomography-computed tomography (dPET-CT). J. Nucl. Med. 2015, 56 (Suppl. S3), 1341. [Google Scholar]
- Song, S.L.; Deng, C.; Wen, L.F.; Liu, J.J.; Wang, H.; Feng, D.; Wong, C.Y.; Huang, G. 18F-FDG PET/CT-related metabolic parameters and their value in early prediction of chemotherapy response in a VX2 tumor model. Nucl. Med. Biol. 2010, 37, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Jiang, C.; Ge, J.; Lu, J.; Li, L.; Yu, H.; Wu, J.; Wang, J.; Wu, P.; Zuo, C. The impact of probable rapid eye movement sleep behavior disorder on Parkinson’s disease: A dual-tracer PET imaging study. Park. Relat. Disord. 2022, 95, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.H.; Jhou, R.H.; Ke, C.C.; Chang, C.W.; Chang, C.W.; Yang, B.H.; Huang, W.S.; Shih, B.F.; Liu, R.S. Dual-tracer positron emission tomography/computed tomography as an imaging probe of de novo lipogenesis in preclinical models of hepatocellular carcinoma. Front. Med. 2022, 9, 1008200. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Dondi, F.; Bauckneht, M.; Albertelli, M.; Durmo, R.; Filice, A.; Versari, A.; Morbelli, S.; Berruti, A.; Bertagna, F. The diagnostic and prognostic role of combined [(18)F]FDG and [(68)Ga]-DOTA-peptides PET/CT in primary pulmonary carcinoids: A multicentric experience. Eur. Radiol. 2023, 33, 4167–4177. [Google Scholar] [CrossRef]
- Van Sluis, J.; Borra, R.; Tsoumpas, C.; van Snick, J.H.; Roya, M.; Ten Hove, D.; Brouwers, A.H.; Lammertsma, A.A.; Noordzij, W.; Dierckx, R.; et al. Extending the clinical capabilities of short- and long-lived positron-emitting radionuclides through high sensitivity PET/CT. Cancer Imaging 2022, 22, 69. [Google Scholar] [CrossRef]
- Liu, G.; Mao, W.; Yu, H.; Hu, Y.; Gu, J.; Shi, H. One-stop [(18)F]FDG and [(68)Ga]Ga-DOTA-FAPI-04 total-body PET/CT examination with dual-low activity: A feasibility study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2271–2281. [Google Scholar] [CrossRef]
- Vandenberghe, S.; Karakatsanis, N.A.; Akl, M.A.; Maebe, J.; Surti, S.; Dierckx, R.A.; Pryma, D.A.; Nehmeh, S.A.; Bouhali, O.; Karp, J.S. The potential of a medium-cost long axial FOV PET system for nuclear medicine departments. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 652–660. [Google Scholar] [CrossRef]
- Moskal, P.; Stepien, E.L. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators. PET Clin. 2020, 15, 439–452. [Google Scholar] [CrossRef]
- Surti, S.; Werner, M.E.; Karp, J.S. Evaluation of cost-effective system designs for long axial field-of-view PET scanners. Phys. Med. Biol. 2023, 68, 105012. [Google Scholar] [CrossRef]
- Chaudhari, A.S.; Mittra, E.; Davidzon, G.A.; Gulaka, P.; Gandhi, H.; Brown, A.; Zhang, T.; Srinivas, S.; Gong, E.; Zaharchuk, G.; et al. Low-count whole-body PET with deep learning in a multicenter and externally validated study. Npj Digit. Med. 2021, 4, 127. [Google Scholar] [CrossRef]
- Katsari, K.; Penna, D.; Arena, V.; Polverari, G.; Ianniello, A.; Italiano, D.; Milani, R.; Roncacci, A.; Illing, R.O.; Pelosi, E. Artificial intelligence for reduced dose 18F-FDG PET examinations: A real-world deployment through a standardized framework and business case assessment. EJNMMI Phys. 2021, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- Nai, Y.H.; Schaefferkoetter, J.; Fakhry-Darian, D.; O’Doherty, S.; Totman, J.J.; Conti, M.; Townsend, D.W.; Sinha, A.K.; Tan, T.H.; Tham, I.; et al. Validation of low-dose lung cancer PET-CT protocol and PET image improvement using machine learning. Phys. Med. 2021, 81, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Sanaat, A.; Shiri, I.; Arabi, H.; Mainta, I.; Nkoulou, R.; Zaidi, H. Deep learning-assisted ultra-fast/low-dose whole-body PET/CT imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2405–2415. [Google Scholar] [CrossRef] [PubMed]
- Mehranian, A.; Wollenweber, S.D.; Walker, M.D.; Bradley, K.M.; Fielding, P.A.; Huellner, M.; Kotasidis, F.; Su, K.H.; Johnsen, R.; Jansen, F.P.; et al. Deep learning-based time-of-flight (ToF) image enhancement of non- PET scans. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3740–3749. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, J.; Toyonaga, T.; Shao, D.; Onofrey, J.A.; Lu, Y. Deep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application. Phys. Med. Biol. 2023, 68, 035014. [Google Scholar] [CrossRef]
- Teimoorisichani, M.; Panin, V.; Rothfuss, H.; Sari, H.; Rominger, A.; Conti, M. A CT-less approach to quantitative PET imaging using the LSO intrinsic radiation for long-axial FOV PET scanners. Med. Phys. 2022, 49, 309–323. [Google Scholar] [CrossRef]
- Prieto, E.; Garcia-Velloso, M.J.; Aquerreta, J.D.; Rosales, J.J.; Bastidas, J.F.; Soriano, I.; Irazola, L.; Rodriguez-Otero, P.; Quincoces, G.; Marti-Climent, J.M. Ultra-low dose whole-body CT for attenuation correction in a dual tracer PET/CT protocol for multiple myeloma. Phys. Med. 2021, 84, 1–9. [Google Scholar] [CrossRef]
- Zaman, M.U.; Fatima, N.; Zaman, A.; Zaman, U.; Tahseen, R. Significantly Low Effective Dose from 18FDG PET/CT Scans Using Dose Reducing Strategies: “Lesser is Better”. Asian Pac. J. Cancer Prev. 2016, 17, 3465–3468. [Google Scholar]
- Menke-van der Houven van Oordt, C.W.; McGeoch, A.; Bergstrom, M.; McSherry, I.; Smith, D.A.; Cleveland, M.; Al-Azzam, W.; Chen, L.; Verheul, H.; Hoekstra, O.S.; et al. Immuno-PET Imaging to Assess Target Engagement: Experience from (89)Zr-Anti-HER3 mAb (GSK2849330) in Patients with Solid Tumors. J. Nucl. Med. 2019, 60, 902–909. [Google Scholar] [CrossRef]
- Wijngaarden, J.E.; Huisman, M.C.; Jauw, Y.W.S.; van Dongen, G.; Greuter, H.; Schuit, R.C.; Cleveland, M.; Gootjes, E.C.; Vugts, D.J.; Menke-van der Houven van Oordt, C.W.; et al. Validation of simplified uptake measures against dynamic Patlak K(i) for quantification of lesional (89)Zr-Immuno-PET antibody uptake. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1897–1905. [Google Scholar] [CrossRef]
- Sanabria-Bohorquez, S.M.; Labar, D.; Leveque, P.; Bol, A.; De Volder, A.G.; Michel, C.; Veraart, C. [11C]flumazenil metabolite measurement in plasma is not necessary for accurate brain benzodiazepine receptor quantification. Eur. J. Nucl. Med. 2000, 27, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.P.; Feng, D.; Meikle, S.R.; Fulham, M.J. Simultaneous estimation of physiological parameters and the input function–in vivo PET data. IEEE Trans. Inf. Technol. Biomed. 2001, 5, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.; Eriksson, L. Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI Phys. 2016, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Pratt, E.C.; Lopez-Montes, A.; Volpe, A.; Crowley, M.J.; Carter, L.M.; Mittal, V.; Pillarsetty, N.; Ponomarev, V.; Udias, J.M.; Grimm, J.; et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat. Biomed. Eng. 2023, 7, 1028–1039. [Google Scholar] [CrossRef] [PubMed]
Characteristics\System | PennPET Explorer | uExplorer | Biograph Vision Quadra | Omni Legend |
---|---|---|---|---|
Manufacturer | University of Pennsylvania, KAGE Medical, and Philips | UC Davis and United Imaging Healthcare | Siemens Healthineers | General Electric Healthcare |
Axial field-of-view (cm) | 140 1 | 194 | 106 | 128 1 |
Scintillator | LYSO 2 | LYSO 2 | LSO 2 | BGO 2 |
Sensitivity (kcps/MBq) | 55 | 174 | 174 | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roya, M.; Mostafapour, S.; Mohr, P.; Providência, L.; Li, Z.; van Snick, J.H.; Brouwers, A.H.; Noordzij, W.; Willemsen, A.T.M.; Dierckx, R.A.J.O.; et al. Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers 2023, 15, 5173. https://doi.org/10.3390/cancers15215173
Roya M, Mostafapour S, Mohr P, Providência L, Li Z, van Snick JH, Brouwers AH, Noordzij W, Willemsen ATM, Dierckx RAJO, et al. Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers. 2023; 15(21):5173. https://doi.org/10.3390/cancers15215173
Chicago/Turabian StyleRoya, Mostafa, Samaneh Mostafapour, Philipp Mohr, Laura Providência, Zekai Li, Johannes H. van Snick, Adrienne H. Brouwers, Walter Noordzij, Antoon T. M. Willemsen, Rudi A. J. O. Dierckx, and et al. 2023. "Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology" Cancers 15, no. 21: 5173. https://doi.org/10.3390/cancers15215173
APA StyleRoya, M., Mostafapour, S., Mohr, P., Providência, L., Li, Z., van Snick, J. H., Brouwers, A. H., Noordzij, W., Willemsen, A. T. M., Dierckx, R. A. J. O., Lammertsma, A. A., Glaudemans, A. W. J. M., Tsoumpas, C., Slart, R. H. J. A., & van Sluis, J. (2023). Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers, 15(21), 5173. https://doi.org/10.3390/cancers15215173