Sidedness-Dependent Prognostic Impact of Gene Alterations in Metastatic Colorectal Cancer in the Nationwide Cancer Genome Screening Project in Japan (SCRUM-Japan GI-SCREEN)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Targeted Sequencing
2.3. Statistical Analyses
3. Results
3.1. Patients
3.2. Prognostic Significance of Gene Alterations by Sidedness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lee, M.S.; Menter, D.G.; Kopetz, S. Right versus left colon cancer biology: Integrating the consensus molecular subtypes. J. Natl. Compr. Canc. Netw. 2017, 15, 411–419. [Google Scholar] [CrossRef]
- Loree, J.M.; Pereira, A.A.L.; Lam, M.; Willauer, A.N.; Raghav, K.; Dasari, A.; Morris, V.K.; Advani, S.; Menter, D.G.; Eng, C.; et al. Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin. Cancer Res. 2018, 24, 1062–1072. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reynies, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.C.; Loree, J.M. Current and emerging biomarkers in metastatic colorectal cancer. Curr. Oncol. 2019, 26, S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Tomasello, G.; Borgonovo, K.; Ghidini, M.; Turati, L.; Dallera, P.; Passalacqua, R.; Sgroi, G.; Barni, S. Prognostic survival associated with left-sided vs right-sided colon cancer: A systematic review and meta-analysis. JAMA Oncol. 2017, 3, 211–219. [Google Scholar] [CrossRef]
- Loupakis, F.; Yang, D.; Yau, L.; Feng, S.; Cremolini, C.; Zhang, W.; Maus, M.K.; Antoniotti, C.; Langer, C.; Scherer, S.J.; et al. Primary tumor location as a prognostic factor in metastatic colorectal cancer. J. Natl. Cancer Inst. 2015, 107, dju427. [Google Scholar] [CrossRef]
- Arnold, D.; Lueza, B.; Douillard, J.Y.; Peeters, M.; Lenz, H.J.; Venook, A.; Heinemann, V.; Van Cutsem, E.; Pignon, J.P.; Tabernero, J.; et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 2017, 28, 1713–1729. [Google Scholar] [CrossRef]
- Tejpar, S.; Stintzing, S.; Ciardiello, F.; Tabernero, J.; Van Cutsem, E.; Beier, F.; Esser, R.; Lenz, H.J.; Heinemann, V. Prognostic and predictive relevance of primary tumor location in patients with RAS wild-type metastatic colorectal cancer: Retrospective analyses of the CRYSTAL and FIRE-3 trials. JAMA Oncol. 2017, 3, 194–201. [Google Scholar] [CrossRef]
- Watanabe, J.; Muro, K.; Shitara, K.; Yamazaki, K.; Shiozawa, M.; Ohori, H.; Takashima, A.; Yokota, M.; Makiyama, A.; Akazawa, N.; et al. Panitumumab vs bevacizumab added to standard first-line chemotherapy and overall survival among patients with RAS wild-type, left-sided metastatic colorectal cancer: A randomized clinical trial. JAMA 2023, 329, 1271–1282. [Google Scholar] [CrossRef]
- Morris, V.K.; Kennedy, E.B.; Baxter, N.N.; Benson, A.B., 3rd; Cercek, A.; Cho, M.; Ciombor, K.K.; Cremolini, C.; Davis, A.; Deming, D.A.; et al. Treatment of metastatic colorectal cancer: ASCO Guideline. J. Clin. Oncol. 2023, 41, 678–700. [Google Scholar] [CrossRef]
- Roszkowska, K.A.; Piecuch, A.; Sady, M.; Gajewski, Z.; Flis, S. Gain of function (GOF) mutant p53 in cancer-current therapeutic approaches. Int. J. Mol. Sci. 2022, 23, 13287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liu, J.; Xu, D.; Zhang, T.; Hu, W.; Feng, Z. Gain-of-function mutant p53 in cancer progression and therapy. J. Mol. Cell Biol. 2020, 12, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.A.; Vousden, K.H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 2014, 25, 304–317. [Google Scholar] [CrossRef]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb. Perspect. Biol. 2010, 2, a001008. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Jiang, C.; Tse, P.; Achacoso, N.; Alexeeff, S.; Solorzano, A.V.; Chung, E.; Hu, W.; Truong, T.G.; Arora, A.; et al. TP53 gain-of-function and non-gain-of-function mutations are differentially associated with sidedness-dependent prognosis in metastatic colorectal cancer. J. Clin. Oncol. 2022, 40, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Yamashita, R.; Okamoto, W.; Komatsu, Y.; Yuki, S.; Ueno, M.; Kato, K.; Taniguchi, H.; Kagawa, Y.; Denda, T.; et al. Efficacy of targeted trials and signaling pathway landscape in advanced gastrointestinal cancers from SCRUM-Japan GI-SCREEN: A nationwide genomic profiling program. JCO Precis. Oncol. 2023, 7, e2200653. [Google Scholar] [CrossRef]
- Mizukami, T.; Takahashi, M.; Sunakawa, Y.; Yuki, S.; Kagawa, Y.; Takashima, A.; Kato, K.; Hara, H.; Denda, T.; Yamamoto, Y.; et al. Genomic landscape of primary tumor site and clinical outcome for patients with metastatic colorectal cancer receiving standard-of-care chemotherapy. Target. Oncol. 2022, 17, 343–353. [Google Scholar] [CrossRef]
- Kajiwara, T.; Nishina, T.; Nakasya, A.; Yamashita, N.; Yamashita, R.; Nakamura, Y.; Shiozawa, M.; Yuki, S.; Taniguchi, H.; Hara, H.; et al. NOTCH gene alterations in metastatic colorectal cancer in the Nationwide Cancer Genome Screening Project in Japan (SCRUM-Japan GI-SCREEN). J. Cancer Res. Clin. Oncol. 2022, 148, 2841–2854. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef]
- Mondaca, S.; Walch, H.; Nandakumar, S.; Chatila, W.K.; Schultz, N.; Yaeger, R. Specific mutations in APC, but not alterations in DNA damage response, associate with outcomes of patients with metastatic colorectal cancer. Gastroenterology 2020, 159, 1975–1978.e4. [Google Scholar] [CrossRef] [PubMed]
- Kadosh, E.; Snir-Alkalay, I.; Venkatachalam, A.; May, S.; Lasry, A.; Elyada, E.; Zinger, A.; Shaham, M.; Vaalani, G.; Mernberger, M.; et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 2020, 586, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Lau, H.C.H.; Yu, J. Gut microbiome alters functions of mutant p53 to promote tumorigenesis. Signal Transduct. Target. Ther. 2020, 5, 232. [Google Scholar] [CrossRef] [PubMed]
- White, M.G.; Wargo, J.A. Gut microbes’ impact on oncogenic drivers: Location matters. Mol. Cell 2020, 79, 878–880. [Google Scholar] [CrossRef] [PubMed]
- Hassin, O.; Nataraj, N.B.; Shreberk-Shaked, M.; Aylon, Y.; Yaeger, R.; Fontemaggi, G.; Mukherjee, S.; Maddalena, M.; Avioz, A.; Iancu, O.; et al. Different hotspot p53 mutants exert distinct phenotypes and predict outcome of colorectal cancer patients. Nat. Commun. 2022, 13, 2800. [Google Scholar] [CrossRef]
- Yaeger, R.; Chatila, W.K.; Lipsyc, M.D.; Hechtman, J.F.; Cercek, A.; Sanchez-Vega, F.; Jayakumaran, G.; Middha, S.; Zehir, A.; Donoghue, M.T.A.; et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 2018, 33, 125–136.e3. [Google Scholar] [CrossRef]
- Ciombor, K.K.; Strickler, J.H.; Bekaii-Saab, T.S.; Yaeger, R. BRAF-mutated advanced colorectal cancer: A rapidly changing therapeutic landscape. J. Clin. Oncol. 2022, 40, 2706–2715. [Google Scholar] [CrossRef]
- Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Emerging roles of c-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: A potential therapeutic target against colorectal cancer. Int. J. Mol. Sci. 2019, 20, 2340. [Google Scholar] [CrossRef]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef]
- Xiu, M.; Wang, Y.; Li, B.; Wang, X.; Xiao, F.; Chen, S.; Zhang, L.; Zhou, B.; Hua, F. The role of Notch3 signaling in cancer stemness and chemoresistance: Molecular mechanisms and targeting strategies. Front. Mol. Biosci. 2021, 8, 694141. [Google Scholar] [CrossRef]
- Varga, J.; Nicolas, A.; Petrocelli, V.; Pesic, M.; Mahmoud, A.; Michels, B.E.; Etlioglu, E.; Yepes, D.; Haupl, B.; Ziegler, P.K.; et al. AKT-dependent NOTCH3 activation drives tumor progression in a model of mesenchymal colorectal cancer. J. Exp. Med. 2020, 217, e20191515. [Google Scholar] [CrossRef] [PubMed]
- Koch, U.; Radtke, F. A third Notch in colorectal cancer progression and metastasis. J. Exp. Med. 2020, 217, e20201017. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Kazama, S.; Akiyoshi, T.; Murono, K.; Yoneyama, S.; Tanaka, T.; Tanaka, J.; Kiyomatsu, T.; Kawai, K.; Nozawa, H.; et al. Nuclear Notch3 expression is associated with tumor recurrence in patients with stage II and III colorectal cancer. Ann. Surg. Oncol. 2014, 21, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, A.; Sharma, A.K.; Damodaran, C. A review on Notch signaling and colorectal cancer. Cells 2020, 9, 1549. [Google Scholar] [CrossRef]
Factor | Group | Left-Sided CRC (n = 355) N (%) | Right-Sided CC (n = 176) N (%) | p Value 1 | ||
---|---|---|---|---|---|---|
Age | Median, years (range) | 63 | (25–86) | 64 | (23–88) | 0.28 |
<65 y | 195 | (54.9) | 89 | (50.6) | 0.36 | |
≥65 y | 160 | (45.1) | 87 | (49.4) | ||
Sex | Male | 224 | (63.1) | 81 | (46.0) | <0.01 |
Female | 131 | (36.9) | 95 | (54.0) | ||
Histology | Tubular adenocarcinoma | 315 | (88.7) | 145 | (83.3) | 0.10 |
Non-tubular adenocarcinoma 2 | 40 | (11.3) | 29 | (16.7) | ||
Adenocarcinoma of unknown differentiation | 0 | 2 | ||||
First-line chemotherapy | Anti-VEGF antibody combined therapy | 225 | (63.4) | 137 | (77.8) | <0.01 |
Anti-EGFR antibody combined therapy | 82 | (23.1) | 13 | (7.4) | ||
No biological therapy | 48 | (13.5) | 26 | (14.8) | ||
TP53 | Wild-type | 136 | (38.3) | 70 | (39.8) | 0.82 |
Non-GOF variant | 147 | (41.4) | 68 | (38.6) | ||
GOF variant | 72 | (20.3) | 38 | (21.6) | ||
KRAS | Wild-type | 210 | (59.2) | 88 | (50.0) | 0.05 |
Variant | 145 | (40.8) | 88 | (50.0) | ||
BRAF | Wild-type | 338 | (95.2) | 134 | (76.1) | <0.01 |
Non-V600E variant | 4 | (1.1) | 2 | (1.1) | ||
V600E variant | 13 | (3.7) | 40 | (22.7) | ||
PIK3CA | Wild-type | 311 | (87.6) | 140 | (79.5) | 0.02 |
Variant | 44 | (12.4) | 36 | (20.5) | ||
NOTCH1 | Wild-type | 310 | (87.3) | 152 | (86.4) | 0.22 |
Covariant | 7 | (2.0) | 8 | (4.5) | ||
Sole variant | 38 | (10.7) | 16 | (9.1) | ||
NOTCH2 | Wild-type | 341 | (96.1) | 164 | (93.2) | 0.20 |
Covariant | 5 | (1.4) | 2 | (1.1) | ||
Sole variant | 9 | (2.5) | 10 | (5.7) | ||
NOTCH3 | Wild-type | 321 | (90.4) | 152 | (86.4) | 0.34 |
Covariant | 10 | (2.8) | 7 | (4.0) | ||
Sole variant | 24 | (6.8) | 17 | (9.7) | ||
FBXW7 | Wild-type | 331 | (93.2) | 167 | (94.9) | 0.57 |
Variant | 24 | (6.8) | 9 | (5.1) | ||
SMAD4 | Wild-type | 338 | (95.2) | 162 | (92.0) | 0.17 |
Variant | 17 | (4.8) | 14 | (8.0) | ||
FLT3 | Non-amplification | 306 | (86.2) | 155 | (88.1) | 0.59 |
Amplification | 49 | (13.8) | 21 | (11.9) | ||
MYC | Non-amplification | 318 | (89.6) | 162 | (92.0) | 0.44 |
Amplification | 37 | (10.4) | 14 | (8.0) |
Median OS 1, Months (95% CI) | ||||
---|---|---|---|---|
Gene | Group | Left-Sided CRC (n = 355) | Right-Sided CC (n = 176) | p Value 2 |
TP53 | Wild-type | 29.5 (25.3 to 34.6) | 32.1 (25.3 to 41.7) | 0.79 |
Non-GOF variant | 31.1 (25.9 to 36.4) | 22.3 (17.2 to 26.4) | 0.02 | |
GOF variant | 23.9 (18.4 to 27.8) | 22.6 (14.0 to 29.7) | 0.59 | |
KRAS | Wild-type | 30.7 (26.6 to 36.4) | 25.3 (21.0 to 33.0) | 0.04 |
Variant | 27.4 (23.5 to 30.6) | 26.3 (22.1 to 28.7) | 0.67 | |
BRAF | Wild-type | 29.1 (26.6 to 31.4) | 27.1 (24.1 to 32.1) | 0.57 |
Non-V600E variant | 26.1 (6.7 to NA) | 18.8 (4.6 to NA) | 0.32 | |
V600E variant | 14.1 (6.9 to NA) | 21.0 (13.7 to 24.5) | 0.80 | |
PIK3CA | Wild-type | 28.5 (26.6 to 31.4) | 25.3 (21.9 to 28.7) | 0.10 |
Variant | 25.9 (20.8 to 34.6) | 26.7 (23.2 to 38.1) | 0.57 | |
NOTCH1 | Wild-type | 29.5 (27.7 to 33.0) | 25.2 (22.2 to 28.2) | 0.04 |
Covariant | 16.8 (4.3 to 21.1) | 31.2 (1.4 to NA) | 0.03 | |
Sole variant | 22.0 (16.1 to 35.2) | 29.7 (5.2 to NA) | 0.63 | |
NOTCH2 | Wild-type | 28.5 (26.2 to 31.4) | 26.3 (22.3 to 29.4) | 0.18 |
Covariant | 22.4 (4.7 to NA) | 21.0 (21.0 to NA) | 0.77 | |
Sole variant | 19.9 (5.6 to NA) | 24.1 (8.0 to 35.2) | 0.71 | |
NOTCH3 | Wild-type | 28.4 (25.3 to 31.1) | 25.3 (22.2 to 28.6) | 0.22 |
Covariant | 20.3 (4.3 to 23.5) | Not reached (1.4 to NA) | 0.10 | |
Sole variant | Not reached (31.3 to NA) | 26.5 (16.5 to NA) | 0.01 | |
FBXW7 | Wild-type | 28.8 (25.9 to 31.4) | 26.3 (23.2 to 28.7) | 0.16 |
Variant | 28.5 (17.4 to 40.4) | 27.0 (9.5 to NA) | 0.95 | |
SMAD4 | Wild-type | 29.1 (26.1 to 31.8) | 26.3 (23.2 to 29.4) | 0.18 |
Variant | 26.6 (9.7 to 31.2) | 26.7 (8.7 to 43.3) | 0.99 | |
FLT3 | Non-amplification | 28.4 (24.8 to 31.2) | 26.5 (22.6 to 31.2) | 0.35 |
Amplification | 33.9 (26.7 to 40.6) | 26.1 (17.2 to 28.6) | 0.08 | |
MYC | Non-amplification | 28.8 (26.6 to 31.6) | 27.2 (23.9 to 31.2) | 0.37 |
Amplification | 23.6 (14.2 to 39.4) | 11.7 (7.9 to 24.5) | 0.01 |
Gene | Group | Frequency Left vs. Right | OS Left vs. Right | Prognosis of Left-Sided CRC | Prognosis of Right-Sided CC | ||
---|---|---|---|---|---|---|---|
All (n = 355) | Anti-VEGF Antibody Combined (n = 225) | Anti-EGFR Antibody Combined (n = 82) | All (n = 176) | ||||
TP53 | GOF variant | NS | NS | Poor | NS | NS | NS |
Non-GOF variant | NS | Left > Right | NS | NS | NS | Poor | |
KRAS | Variant | NS | NS | Poor | Poor | — 1 | NS |
BRAF | V600E variant | Left < Right | NS | NS | NS | — 1 | Poor |
NOTCH3 | Sole variant | NS | Left > Right | Good | Good | — 1 | NS |
MYC | Amplification | NS | Left > Right | NS | NS | NS | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajiwara, T.; Nishina, T.; Yamashita, R.; Nakamura, Y.; Shiozawa, M.; Yuki, S.; Taniguchi, H.; Hara, H.; Ohta, T.; Esaki, T.; et al. Sidedness-Dependent Prognostic Impact of Gene Alterations in Metastatic Colorectal Cancer in the Nationwide Cancer Genome Screening Project in Japan (SCRUM-Japan GI-SCREEN). Cancers 2023, 15, 5172. https://doi.org/10.3390/cancers15215172
Kajiwara T, Nishina T, Yamashita R, Nakamura Y, Shiozawa M, Yuki S, Taniguchi H, Hara H, Ohta T, Esaki T, et al. Sidedness-Dependent Prognostic Impact of Gene Alterations in Metastatic Colorectal Cancer in the Nationwide Cancer Genome Screening Project in Japan (SCRUM-Japan GI-SCREEN). Cancers. 2023; 15(21):5172. https://doi.org/10.3390/cancers15215172
Chicago/Turabian StyleKajiwara, Takeshi, Tomohiro Nishina, Riu Yamashita, Yoshiaki Nakamura, Manabu Shiozawa, Satoshi Yuki, Hiroya Taniguchi, Hiroki Hara, Takashi Ohta, Taito Esaki, and et al. 2023. "Sidedness-Dependent Prognostic Impact of Gene Alterations in Metastatic Colorectal Cancer in the Nationwide Cancer Genome Screening Project in Japan (SCRUM-Japan GI-SCREEN)" Cancers 15, no. 21: 5172. https://doi.org/10.3390/cancers15215172
APA StyleKajiwara, T., Nishina, T., Yamashita, R., Nakamura, Y., Shiozawa, M., Yuki, S., Taniguchi, H., Hara, H., Ohta, T., Esaki, T., Shinozaki, E., Takashima, A., Yamamoto, Y., Yamazaki, K., Yoshino, T., & Hyodo, I. (2023). Sidedness-Dependent Prognostic Impact of Gene Alterations in Metastatic Colorectal Cancer in the Nationwide Cancer Genome Screening Project in Japan (SCRUM-Japan GI-SCREEN). Cancers, 15(21), 5172. https://doi.org/10.3390/cancers15215172