Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Bacteria
2.1. H. pylori
2.2. Gastric Microbiota
3. Viruses
3.1. EBV
3.2. Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV)
3.2.1. Infection of HBV and HCV
3.2.2. Molecular Pathogenesis of HBV-Related and HCV-Related GC
3.2.3. Host Immunity of HBV-Related and HCV-Related GC
3.2.4. Diagnosis and Treatment of HBV-Related and HCV-Related GC
Biological Process | Virus Type | Mechanisms |
---|---|---|
Infection and Entry Process | EBV | EBV-infected naive B cells, forming proliferating latently infected lymphoblasts expressing latent proteins. In the germinal center, these cells exhibit a confined protein profile, expressing either EBNA1 or remaining in a latent state. A small subset might undergo lytic reactivation under signals at any time, releasing infectious viruses for spread or reinfection [172] |
HBV and HCV | Infected hepatocytes specifically [108,173]; HBV first bound to hepatocytes through low-affinity binding to heparin sulfate proteoglycans and high-affinity binding to the NTCP receptor, then entered through endocytosis. HCV interacts with 14 or more host cell factors for efficient infection [174] | |
Carcinogenic Factor | EBV | The latent membrane protein 2A (LMP2A) participated in cellular biosynthesis and influenced subsequent genes and cellular behaviors by engaging the AKT and AMPK signaling pathways [175] |
HBV | HBXIP stimulated both cellular growth, migration, and invasion in laboratory settings and living organisms [176] | |
HCV | HCV nonstructural protein genes contributed to fibrosis development, which might indirectly promote carcinogenesis, by triggering the synthesis of transforming growth factor beta and activating hepatic stellate cells; HCV core protein might play a role in promoting the development of cancer [177] | |
Inflammation | EBV | Latent EBV-positive B cells might lead inflammation via upregulated cytokines in EBV-transformed B cells such as TNF-α, TNF-β, and G-CSF [178]. Non-resolving inflammation was conducive to forming a tumor microenvironment for GC tumor initiation and development [134] |
HBV | HBx stimulated toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathways, leading to increased pro-inflammatory cytokine expression; and it triggered NLRP3 inflammasome activation, hastening the release of IL-1β and IL-18 [179] | |
HCV | Continued HCV replication within hepatocytes resulted in unregulated inflammation and the production of chemokines [180]. Non-resolving inflammation induced by different viruses was conducive to forming a tumor microenvironment for GC tumor initiation and development [134] | |
DNA Damage | EBV | Increased DNA hypermethylation of PD-L1/2 [181] |
HBV | Within HBV-infected cell nuclei, the transformation of genomic viral DNA into transcriptionally active episomal DNA (cccDNA) or transcription of viral mRNAs from cccDNA relied on cellular proteins’ enzymatic activities. HBV DNA integration into host chromosomal DNA and the accumulation of mutations in host DNA potentially triggered carcinogenesis [182] | |
HCV | The chronic inflammation caused by hepatitis C virus (HCV) might trigger oxidative stress, potentially hindering the repair of DNA damage. This could increase the vulnerability of cells to spontaneous or mutagen-induced changes [183] | |
Immune Evasion and Immune System | EBV | Evaded immune responses by utilizing lytic gene products, such as BGLF5, which diminished the levels of innate immune EBV-sensing TLR2 and the lipid antigen-presenting CD1d molecule [184] |
HBV | Did not induce significant innate immune activation via pro-inflammatory cytokines and interferons (IFN) [185] | |
HCV | To evade the initiation of interferon regulatory factor 3 (IRF3) and subsequent interferon (IFN) production triggered by RIG-I/MDA5, the HCV protease NS3/4a has developed a dual role: processing the HCV polyprotein and cleaving the vital adapter protein MAVS, essential for relaying RIG-I/MDA5-initiated signals, as well as TRIF, which mediates downstream signaling from toll-like receptor (TLR)3 that recognizes double-stranded RNA within endosomes. Consequently, this obstructs the expression of type I and III IFN [185] | |
Angiogenesis | EBV | The components produced by EBV could encourage the development of tumor angiogenesis through the PI3K/AKT signaling pathway [186] |
HBV | HBx could induce an angiogenic response by directly stimulating angiogenesis alone; and it stimulated angiogenesis through both the transcriptional activation and stabilization of HIF-1α [187] | |
HCV | Caused higher serum concentrations of the angiogenic proteins placenta growth factor (PlGF) and Ang-2 [187] | |
Cellular Proliferation | EBV | Expressed viral oncogenes that facilitate cell growth and hinder the apoptotic response, leading to uncontrolled cell proliferation [188] |
HBV | Induced cellular proliferation in part via HBx-induced miRNA-21 expression [189,190] | |
HCV | Inhibited cell proliferation via overexpression of HCV E2 [191] | |
Metastasis | EBV | The elevated expression of Indian Hedgehog gene increased metastatic potential via angiogenesis and Snail protein expression [192] |
HBV | Hepatitis B surface antigen (HBsAg) was associated with an elevated risk of distant metastasis in cancer patients [193] | |
HCV | Proteins encoded by HCV could directly trigger cellular functions that promote metastasis [194] |
3.3. Human Papillomavirus (HPV)
3.3.1. HPV Infection
3.3.2. HPV Gastric Oncogenesis
3.3.3. Clinical Significance of HPV in GC
3.4. Other Types of Viruses
4. Fungi
5. Conclusion and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, M.C.; Huang, J.; Chan, P.S.; Choi, P.; Lao, X.Q.; Chan, S.M.; Teoh, A.; Liang, P. Global incidence and mortality of gastric cancer, 1980–2018. JAMA Netw. Open 2021, 4, e2118457. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Camargo, M.C.; Gini, A.; Kunzmann, A.T.; Matsuda, T.; Meheus, F.; Verhoeven, R.H.; Vignat, J.O.; Laversanne, M. The current and future incidence and mortality of gastric cancer in 185 countries, 2020–40: A population-based modelling study. EClinicalMedicine 2022, 47, 101404. [Google Scholar] [CrossRef]
- Ning, F.-L.; Lyu, J.; Pei, J.-P.; Gu, W.-J.; Zhang, N.-N.; Cao, S.-Y.; Zeng, Y.-J.; Abe, M.; Nishiyama, K.; Zhang, C.-D. The burden and trend of gastric cancer and possible risk factors in five Asian countries from 1990 to 2019. Sci. Rep. 2022, 12, 5980. [Google Scholar] [CrossRef]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol. Rev./Przegląd Gastroenterol. 2019, 14, 26–38. [Google Scholar] [CrossRef]
- Shah, S.C.; McKinley, M.; Gupta, S.; Peek, R.M., Jr.; Martinez, M.E.; Gomez, S.L. Population-based analysis of differences in gastric cancer incidence among races and ethnicities in individuals age 50 years and older. Gastroenterology 2020, 159, 1705–1714.e1702. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Bertagnolli, M.M. Comparison of gastric cancer survival between Caucasian and Asian patients treated in the United States: Results from the Surveillance Epidemiology and End Results (SEER) database. Ann. Surg. Oncol. 2015, 22, 2965–2971. [Google Scholar] [CrossRef]
- Zhao, K.; Zhang, Y.; Xia, S.; Feng, L.; Zhou, W.; Zhang, M.; Dong, R.; Tian, D.; Liu, M.; Liao, J. Epstein-Barr virus is associated with gastric cancer precursor: Atrophic gastritis. Int. J. Med. Sci. 2022, 19, 924. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.-Y.; Sheu, B.-S.; Wu, J.-J. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed. J. 2016, 39, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Lu, Y.; Xie, J.; Fei, Y.; Zheng, G.; Wang, Z.; Liu, J.; Lv, L.; Ling, Z.; Berglund, B. Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front. Cell. Infect. Microbiol. 2021, 11, 609722. [Google Scholar] [CrossRef]
- Corcoran, B.; Stanton, C.; Fitzgerald, G.; Ross, R. Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef]
- Zi, M.; Zhang, Y.; Hu, C.; Zhang, S.; Chen, J.; Yuan, L.; Cheng, X. A literature review on the potential clinical implications of streptococci in gastric cancer. Front. Microbiol. 2022, 13, 1010465. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: A paradigm for hit-and-run carcinogenesis. Cell Host Microbe 2014, 15, 306–316. [Google Scholar] [CrossRef]
- McClain, M.S.; Beckett, A.C.; Cover, T.L. Helicobacter pylori vacuolating toxin and gastric cancer. Toxins 2017, 9, 316. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-P.; Liu, J.-X.; Lu, L.-L.; Wang, L.-L.; Xu, L.; Guo, Z.-H.; Dong, Q.-J. Overgrowth of Lactobacillus in gastric cancer. World J. Gastrointest. Oncol. 2021, 13, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Yang, J.; Jin, M.; Zhou, B.; Shi, L.; Zhao, L.; Zhang, J.; Lin, Z.; Ren, J.; Liu, L. Fecal Streptococcus alteration is associated with gastric cancer occurrence and liver metastasis. MBio 2021, 12, e02994-21. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Meng, W.; Wang, B.; Qiao, L. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014, 345, 196–202. [Google Scholar] [CrossRef]
- Aghamohammad, S.; Sepehr, A.; Miri, S.T.; Najafi, S.; Pourshafie, M.R.; Rohani, M. Anti-inflammatory and immunomodulatory effects of Lactobacillus spp. as a preservative and therapeutic agent for IBD control. Immun. Inflamm. Dis. 2022, 10, e635. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Zhou, L. Detection of gastritis-associated pathogens by culturing of gastric juice and mucosa. Int. J. Clin. Exp. Pathol. 2018, 11, 2214. [Google Scholar]
- Shi, Y.; Wang, P.; Guo, Y.; Liang, X.; Li, Y.; Ding, S. Helicobacter pylori-induced DNA damage is a potential driver for human gastric cancer AGS cells. DNA Cell Biol. 2019, 38, 272–280. [Google Scholar] [CrossRef]
- Bernard, J.N.; Chinnaiyan, V.; Almeda, J.; Catala-Valentin, A.; Andl, C.D. Lactobacillus sp. Facilitate the Repair of DNA Damage Caused by Bile-Induced Reactive Oxygen Species in Experimental Models of Gastroesophageal Reflux Disease. Antioxidants 2023, 12, 1314. [Google Scholar] [CrossRef] [PubMed]
- Dufour, D.; Zhao, H.; Gong, S.-G.; Lévesque, C.M. A DNA-damage inducible gene promotes the formation of antibiotic persisters in response to the quorum sensing signaling peptide in Streptococcus mutans. Genes 2022, 13, 1434. [Google Scholar] [CrossRef]
- Lina, T.T.; Alzahrani, S.; Gonzalez, J.; Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Immune evasion strategies used by Helicobacter pylori. World J. Gastroenterol. WJG 2014, 20, 12753. [Google Scholar] [CrossRef]
- Tomkinson, S.; Triscott, C.; Schenk, E.; Foey, A. The Potential of Probiotics as Ingestible Adjuvants and Immune Modulators for Antiviral Immunity and Management of SARS-CoV-2 Infection and COVID-19. Pathogens 2023, 12, 928. [Google Scholar] [CrossRef]
- Kolar, S.L.; Kyme, P.; Tseng, C.W.; Soliman, A.; Kaplan, A.; Liang, J.; Nizet, V.; Jiang, D.; Murali, R.; Arditi, M. Group B Streptococcus evades host immunity by degrading hyaluronan. Cell Host Microbe 2015, 18, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhou, N.; Chai, N.; Liu, X.; Jiang, H.; Wu, Q.; Li, Q. Helicobacter pylori promotes angiogenesis depending on Wnt/beta-catenin-mediated vascular endothelial growth factor via the cyclooxygenase-2 pathway in gastric cancer. BMC Cancer 2016, 16, 321. [Google Scholar] [CrossRef] [PubMed]
- Mager, D. Bacteria and cancer: Cause, coincidence or cure? A review. J. Transl. Med. 2006, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Wang, X.; Wang, Y.; Li, R.; Li, G.; He, Y.; Liu, S.; Luo, Y.; Wang, L.; Lei, Z. Helicobacter pylori promotes gastric cancer progression by upregulating semaphorin 5A expression via ERK/MMP9 signaling. Mol. Ther.-Oncolytics 2021, 22, 256–264. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, S.; Shi, J.; Xie, Q.; Li, N.; Guan, J.; Evivie, S.E.; Liu, F.; Li, B.; Huo, G. Effects of Lactobacillus acidophilus KLDS1. 0901 on proliferation and apoptosis of colon cancer cells. Front. Microbiol. 2022, 12, 788040. [Google Scholar] [CrossRef]
- Kumar, R.; Taylor, J.C.; Jain, A.; Jung, S.Y.; Garza, V.; Xu, Y. Modulation of the extracellular matrix by Streptococcus gallolyticus subsp. gallolyticus and importance in cell proliferation. PLoS Pathog. 2022, 18, e1010894. [Google Scholar] [CrossRef]
- Liu, L.-P.; Sheng, X.-P.; Shuai, T.-K.; Zhao, Y.-X.; Li, B.; Li, Y.-M. Helicobacter pylori promotes invasion and metastasis of gastric cancer by enhancing heparanase expression. World J. Gastroenterol. 2018, 24, 4565. [Google Scholar] [CrossRef]
- Motevaseli, E.; Dianatpour, A.; Ghafouri-Fard, S. The role of probiotics in cancer treatment: Emphasis on their in vivo and in vitro anti-metastatic effects. Int. J. Mol. Cell. Med. 2017, 6, 66. [Google Scholar]
- Yu, L.; Maishi, N.; Akahori, E.; Hasebe, A.; Takeda, R.; Matsuda, A.Y.; Hida, Y.; Nam, J.M.; Onodera, Y.; Kitagawa, Y. The oral bacterium Streptococcus mutans promotes tumor metastasis by inducing vascular inflammation. Cancer Sci. 2022, 113, 3980. [Google Scholar] [CrossRef]
- Wroblewski, L.E.; Peek, R.M., Jr.; Wilson, K.T. Helicobacter pylori and gastric cancer: Factors that modulate disease risk. Clin. Microbiol. Rev. 2010, 23, 713–739. [Google Scholar] [CrossRef]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 2001, 345, 784–789. [Google Scholar] [CrossRef]
- Jang, J.Y.; Chun, H.J. Efficacy of Helicobacter pylori eradication for the prevention of metachronous gastric cancer after endoscopic resection for early gastric cancer. World J. Gastroenterol. WJG 2014, 20, 2760. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.J.; Lin, J.C.; Tu, S.P. Etiology and prevention of gastric cancer. Gastrointest. Tumors 2016, 3, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hooi, J.K.; Lai, W.Y.; Ng, W.K.; Suen, M.M.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.; Wu, J.C. Global prevalence of Helicobacter pylori infection: Systematic review and meta-analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef]
- Ishaq, S.; Nunn, L. Helicobacter pylori and gastric cancer: A state of the art review. Gastroenterol. Hepatol. Bed Bench 2015, 8, S6. [Google Scholar] [PubMed]
- Kumar, S.; Patel, G.K.; Ghoshal, U.C. Helicobacter pylori-induced inflammation: Possible factors modulating the risk of gastric cancer. Pathogens 2021, 10, 1099. [Google Scholar] [CrossRef]
- Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori virulence factors—Mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 2020, 10, 27. [Google Scholar] [CrossRef]
- Mungazi, S.G.; Chihaka, O.B.; Muguti, G.I. Prevalence of Helicobacter pylori in asymptomatic patients at surgical outpatient department: Harare hospitals. Ann. Med. Surg. 2018, 35, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, K.; Kodama, M.; Fukuda, M.; Hirashita, Y.; Tsutsumi, K.; Fukuda, K.; Ogawa, R.; Okamoto, K.; Okimoto, T.; Murakami, K. Comparison of the improvement in gastric mucosal tissue after Helicobacter pylori eradication between young and elderly people. Arab J. Gastroenterol. 2023, 24, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Correa, P.; Houghton, J. Carcinogenesis of Helicobacter pylori. Gastroenterology 2007, 133, 659–672. [Google Scholar] [CrossRef]
- Takenaka, R.; Okada, H.; Kato, J.; Makidono, C.; Hori, S.; Kawahara, Y.; Miyoshi, M.; Yumoto, E.; Imagawa, A.; Toyokawa, T. Helicobacter pylori eradication reduced the incidence of gastric cancer, especially of the intestinal type. Aliment. Pharmacol. Ther. 2007, 25, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.J.; Kook, M.-C.; Kim, Y.-I.; Cho, S.-J.; Lee, J.Y.; Kim, C.G.; Park, B.; Nam, B.-H. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 2018, 378, 1085–1095. [Google Scholar] [CrossRef]
- Wong, B.C.-Y.; Lam, S.K.; Wong, W.M.; Chen, J.S.; Zheng, T.T.; Feng, R.E.; Lai, K.C.; Hu, W.H.C.; Yuen, S.T.; Leung, S.Y. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: A randomized controlled trial. JAMA 2004, 291, 187–194. [Google Scholar] [CrossRef]
- Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kim, Y.-I.; Kook, M.-C.; Park, B.; Joo, J. Family history of gastric cancer and Helicobacter pylori treatment. N. Engl. J. Med. 2020, 382, 427–436. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, X.; Liu, X.; Ling, Z.; Ji, F. Role of the gastric microbiome in gastric cancer: From carcinogenesis to treatment. Front. Microbiol. 2021, 12, 641322. [Google Scholar] [CrossRef]
- Pereira-Marques, J.; Ferreira, R.M.; Pinto-Ribeiro, I.; Figueiredo, C. Helicobacter pylori infection, the gastric microbiome and gastric cancer. Adv. Exp. Med. Biol. 2019, 1149, 195–210. [Google Scholar]
- Wen, J.; Lau, H.C.-H.; Peppelenbosch, M.P.; Yu, J. Gastric Microbiota beyond H. pylori: An Emerging Critical Character in Gastric Carcinogenesis. Biomedicines 2021, 9, 1680. [Google Scholar] [CrossRef]
- Weng, C.-Y.; Xu, J.-L.; Sun, S.-P.; Wang, K.-J.; Lv, B. Helicobacter pylori eradication: Exploring its impacts on the gastric mucosa. World J. Gastroenterol. 2021, 27, 5152. [Google Scholar] [CrossRef]
- Wang, L.; Xin, Y.; Zhou, J.; Tian, Z.; Liu, C.; Yu, X.; Meng, X.-y.; Jiang, W.; Zhao, S.; Dong, Q. Gastric Mucosa-Associated Microbial Signatures of Early Gastric Cancer. Front. Microbiol. 2020, 11, 1548. [Google Scholar] [CrossRef]
- Aviles-Jimenez, F.; Vazquez-Jimenez, F.; Medrano-Guzman, R.; Mantilla, A.; Torres, J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep. 2014, 4, 4202. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, J.; Xin, Y.; Geng, C.; Tian, Z.; Yu, X.; Dong, Q. Bacterial overgrowth and diversification of microbiota in gastric cancer. Eur. J. Gastroenterol. Hepatol. 2016, 28, 261–266. [Google Scholar] [CrossRef]
- Chen, X.-H.; Wang, A.; Chu, A.-N.; Gong, Y.-H.; Yuan, Y. Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues. Front. Microbiol. 2019, 10, 1261. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ji, R.; Zhao, X.; Cao, X.; Wang, Q.; Jiang, Q.; Zhang, Y.; Zheng, W.; Wu, X.; Yang, A. Alterations in Gastric Mucosal Microbiota in Gastric Carcinogenesis: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 754959. [Google Scholar] [CrossRef]
- Hsieh, Y.-Y.; Tung, S.-Y.; Pan, H.-Y.; Yen, C.-W.; Xu, H.-W.; Lin, Y.-J.; Deng, Y.-F.; Hsu, W.-T.; Wu, C.-S.; Li, C. Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci. Rep. 2018, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018, 67, 1024–1032. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, M.N.; Lee, J.; Choi, I.J.; Kim, Y.-I.; Ahn, Y.; Park, C.; Kim, J. Association between the relative abundance of gastric microbiota and the risk of gastric cancer: A case-control study. Sci. Rep. 2019, 9, 13589. [Google Scholar] [CrossRef]
- Qi, Y.-F.; Sun, J.-N.; Ren, L.-F.; Cao, X.-L.; Dong, J.-H.; Tao, K.; Guan, X.-M.; Cui, Y.-N.; Su, W. Intestinal Microbiota Is Altered in Patients with Gastric Cancer from Shanxi Province, China. Dig. Dis. Sci. 2019, 64, 1193–1203. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, B.; Pan, H.; Wang, D.; Liu, M.; Yang, Y.; Zou, M.; Yang, J.; Xiao, K.; Zhao, R. Detection of microbial 16S rRNA gene in the serum of patients with gastric cancer. Front. Oncol. 2019, 9, 608. [Google Scholar] [CrossRef]
- Liang, W.; Yang, Y.; Wang, H.; Wang, H.; Yu, X.; Lu, Y.; Shen, S.; Teng, L. Gut microbiota shifts in patients with gastric cancer in perioperative period. Medicine 2019, 98, e16626. [Google Scholar] [CrossRef] [PubMed]
- Gantuya, B.; El Serag, H.B.; Matsumoto, T.; Ajami, N.J.; Uchida, T.; Oyuntsetseg, K.; Bolor, D.; Yamaoka, Y. Gastric mucosal microbiota in a Mongolian population with gastric cancer and precursor conditions. Aliment. Pharmacol. Ther. 2020, 51, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, J.; Shi, X.; Du, Y.; Niu, Y.; Jin, G.; Wang, Z.; Lyu, J. Gut microbiome analysis as a predictive marker for the gastric cancer patients. Appl. Microbiol. Biotechnol. 2021, 105, 803–814. [Google Scholar] [PubMed]
- Park, J.Y.; Seo, H.; Kang, C.-S.; Shin, T.-S.; Kim, J.W.; Park, J.-M.; Kim, J.G.; Kim, Y.-K. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci. Rep. 2022, 12, 4285. [Google Scholar] [PubMed]
- Ai, B.; Mei, Y.; Liang, D.; Wang, T.; Cai, H.; Yu, D. Uncovering the special microbiota associated with occurrence and progression of gastric cancer by using RNA-sequencing. Sci. Rep. 2023, 13, 5722. [Google Scholar] [CrossRef]
- Bakhti, S.Z.; Latifi-Navid, S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol. 2021, 21, 258. [Google Scholar]
- Tsai, Y.T.; Cheng, P.C.; Pan, T.M. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol. 2012, 96, 853–862. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, H.; Liu, G.; Wu, J.; Yuan, Y.; Shang, A. Tumor microenvironment: Lactic acid promotes tumor development. J. Immunol. Res. 2022, 2022, 3119375. [Google Scholar] [CrossRef]
- Castaño-Rodríguez, N.; Goh, K.-L.; Fock, K.M.; Mitchell, H.M.; Kaakoush, N.O. Dysbiosis of the microbiome in gastric carcinogenesis. Sci. Rep. 2017, 7, 15957. [Google Scholar]
- Vinasco, K.; Mitchell, H.M.; Kaakoush, N.O.; Castano-Rodriguez, N. Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2019, 1872, 188309. [Google Scholar]
- Rajilic-Stojanovic, M.; Figueiredo, C.; Smet, A.; Hansen, R.; Kupcinskas, J.; Rokkas, T.; Andersen, L.; Machado, J.C.; Ianiro, G.; Gasbarrini, A. Systematic review: Gastric microbiota in health and disease. Aliment. Pharmacol. Ther. 2020, 51, 582–602. [Google Scholar]
- Fakharian, F.; Asgari, B.; Nabavi-Rad, A.; Sadeghi, A.; Soleimani, N.; Yadegar, A.; Zali, M.R. The interplay between Helicobacter pylori and the gut microbiota: An emerging driver influencing the immune system homeostasis and gastric carcinogenesis. Front. Cell. Infect. Microbiol. 2022, 12, 953718. [Google Scholar]
- Nouri, Z.; Choi, S.W.; Choi, I.J.; Ryu, K.W.; Woo, S.M.; Park, S.-J.; Lee, W.J.; Choi, W.; Jung, Y.-S.; Myung, S.-K. Exploring Connections between Oral Microbiota, Short-Chain Fatty Acids, and Specific Cancer Types: A Study of Oral Cancer, Head and Neck Cancer, Pancreatic Cancer, and Gastric Cancer. Cancers 2023, 15, 2898. [Google Scholar]
- Huang, K.; Gao, X.; Wu, L.; Yan, B.; Wang, Z.; Zhang, X.; Peng, L.; Yu, J.; Sun, G.; Yang, Y. Salivary microbiota for gastric cancer prediction: An exploratory study. Front. Cell. Infect. Microbiol. 2021, 11, 640309. [Google Scholar]
- Sun, J.H.; Li, X.L.; Yin, J.; Li, Y.H.; Hou, B.X.; Zhang, Z. A screening method for gastric cancer by oral microbiome detection. Oncol. Rep. 2018, 39, 2217–2224. [Google Scholar]
- Bakhti, S.Z.; Latifi-Navid, S. Oral microbiota and Helicobacter pylori in gastric carcinogenesis: What do we know and where next? BMC Microbiol. 2021, 21, 71. [Google Scholar]
- Tseng, C.-H.; Lin, J.-T.; Ho, H.J.; Lai, Z.-L.; Wang, C.-B.; Tang, S.-L.; Wu, C.-Y. Gastric microbiota and predicted gene functions are altered after subtotal gastrectomy in patients with gastric cancer. Sci. Rep. 2016, 6, 20701. [Google Scholar]
- Hu, Y.; Pang, W.; Huang, Y.; Zhang, Y.; Zhang, C. The Gastric Microbiome Is Perturbed in Advanced Gastric Adenocarcinoma Identified Through Shotgun Metagenomics. Front. Cell. Infect. Microbiol. 2018, 8, 433. [Google Scholar]
- Wu, F.; Yang, L.; Hao, Y.; Zhou, B.; Hu, J.; Yang, Y.; Bedi, S.; Sanichar, N.G.; Cheng, C.; Perez-Perez, G.I.; et al. Oral and gastric microbiome in relation to gastric intestinal metaplasia. Int. J. Cancer 2022, 150, 928–940. [Google Scholar] [CrossRef]
- Pereira-Marques, J.; Ferreira, R.M.; Machado, J.C.; Figueiredo, C. The influence of the gastric microbiota in gastric cancer development. Best Pract. Res. Clin. Gastroenterol. 2021, 50, 101734. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, D.; Lehr, K.; Vilchez-Vargas, R.; Jonaitis, L.V.; Urba, M.; Kupcinskas, J.; Skieceviciene, J.; Link, A. Comparison of genomic and transcriptional microbiome analysis in gastric cancer patients and healthy individuals. World J. Gastroenterol. 2023, 29, 1202. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Tong, D.; Jiang, C.; Zhu, X.; Wei, Z.; Gong, T.; Jin, C. Relationships among microbiota, gastric cancer, and immunotherapy. Front. Microbiol. 2022, 13, 987763. [Google Scholar] [CrossRef]
- Cho, J.; Kang, M.-S.; Kim, K.-M. Epstein-Barr virus-associated gastric carcinoma and specific features of the accompanying immune response. J. Gastric Cancer 2016, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.; Zhang, X.; Zhang, Y.; Xiao, H.; Luo, B. LMP2A induces DNA methylation and expression repression of AQP3 in EBV-associated gastric carcinoma. Virology 2019, 534, 87–95. [Google Scholar] [CrossRef]
- Ribeiro, J.; Oliveira, A.; Malta, M.; Oliveira, C.; Silva, F.; Galaghar, A.; Afonso, L.P.; Neves, M.C.; Medeiros, R.; Pimentel-Nunes, P. Clinical and pathological characterization of Epstein-Barr virus-associated gastric carcinomas in Portugal. World J. Gastroenterol. 2017, 23, 7292. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, K.-M. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers 2023, 15, 469. [Google Scholar] [CrossRef]
- De Re, V.; Brisotto, G.; Repetto, O.; De Zorzi, M.; Caggiari, L.; Zanussi, S.; Alessandrini, L.; Canzonieri, V.; Miolo, G.; Puglisi, F. Overview of epstein–barr-virus-associated gastric cancer correlated with prognostic classification and development of therapeutic options. Int. J. Mol. Sci. 2020, 21, 9400. [Google Scholar] [CrossRef]
- de Sousa, H.M.L.; Ribeiro, J.P.C.; Timóteo, M.B. Epstein-Barr virus-associated gastric cancer: Old entity with new relevance. In Epstein-Barr Virus: New Trends; IntechOpen: London, UK, 2021; p. 45. [Google Scholar]
- Wang, J.; Zheng, X.; Qin, Z.; Wei, L.; Lu, Y.; Peng, Q.; Gao, Y.; Zhang, X.; Zhang, X.; Li, Z. Epstein–Barr virus miR-BART3-3p promotes tumorigenesis by regulating the senescence pathway in gastric cancer. J. Biol. Chem. 2019, 294, 4854–4866. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Wei, L.; Peng, Q.; Gao, Y.; Fu, Y.; Lu, Y.; Qin, Z.; Zhang, X.; Lu, J. Epstein-Barr virus microRNA miR-BART5-3p inhibits p53 expression. J. Virol. 2018, 92, e01022-18. [Google Scholar] [CrossRef]
- Abusalah, M.A.H.; Irekeola, A.A.; Hanim Shueb, R.; Jarrar, M.t.; Yean Yean, C. Prognostic Epstein-Barr Virus (EBV) miRNA biomarkers for survival outcome in EBV-associated epithelial malignancies: Systematic review and meta-analysis. PLoS ONE 2022, 17, e0266893. [Google Scholar] [CrossRef]
- Qiu, M.Z.; He, C.Y.; Lu, S.X.; Guan, W.L.; Wang, F.; Wang, X.J.; Jin, Y.; Wang, F.H.; Li, Y.H.; Shao, J.Y. Prospective observation: Clinical utility of plasma Epstein–Barr virus DNA load in EBV-associated gastric carcinoma patients. Int. J. Cancer 2020, 146, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.Y.; Liu, Y.Y.; Liu, K.H.; Hsu, J.T.; Chen, T.C.; Chiu, C.T.; Yeh, T.S. Comprehensive profiling of virus microRNAs of Epstein–Barr virus-associated gastric carcinoma: Highlighting the interactions of ebv-Bart9 and host tumor cells. J. Gastroenterol. Hepatol. 2017, 32, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Young, L.S.; Yap, L.F.; Murray, P.G. Epstein–Barr virus: More than 50 years old and still providing surprises. Nat. Rev. Cancer 2016, 16, 789–802. [Google Scholar] [CrossRef] [PubMed]
- Lima, Á.; Sousa, H.; Medeiros, R.; Nobre, A.; Machado, M. PD-L1 expression in EBV associated gastric cancer: A systematic review and meta-analysis. Discov. Oncol. 2022, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Nishikawa, J.; Sakai, K.; Iizasa, H.; Yoshiyama, H.; Yanagihara, M.; Shuto, T.; Shimokuri, K.; Kanda, T.; Suehiro, Y. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer 2019, 22, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Dong, M.; Wang, H.-y.; Zhao, X.-x.; Chen, J.-n.; Zhang, Y.-w.; Huang, Y.; Xue, L.; Li, H.-g.; Du, H.; Wu, X.-y. Expression and prognostic roles of PIK3CA, JAK2, PD-L1, and PD-L2 in Epstein-Barr virus–associated gastric carcinoma. Hum. Pathol. 2016, 53, 25–34. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Zeng, B.; Hu, G.; Gan, R. Epstein–Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 2020, 495, 191–199. [Google Scholar] [CrossRef]
- Liu, W.; Luo, B. The impact of EBV on the epigenetics of gastric carcinoma. Future Virol. 2020, 15, 183–193. [Google Scholar] [CrossRef]
- Yang, X.; Lou, J.; Shan, W.; Ding, J.; Jin, Z.; Hu, Y.; Du, Q.; Liao, Q.; Xie, R.; Xu, J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front. Physiol. 2021, 12, 567650. [Google Scholar] [CrossRef] [PubMed]
- Samir, S.; Ahmed, H.O.; Diab, T.M.; Mostafa, A.; Elmeligy, H.A.; Kamel, A.; Khalil, H. Rate of Epstein-Barr Virus in Gastric Adenocarcinoma in Egyptian Patients in View of the WHO Classification and Correlation with p16 Immunoreactivity. Open Access Maced. J. Med. Sci. 2022, 10, 1218–1225. [Google Scholar] [CrossRef]
- Jang, H.; Seo, A.N.; Kim, M. Clinicopathological Characteristics of Advanced Epstein–Barr Virus-associated Gastric Cancer Highlighting Aberrant p53 Expression. Anticancer Res. 2022, 42, 4955–4962. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, R.; Paul, C.; Banerjee, J.; Kaul, R.; Banerjee, S. Virus Association with Gastric Inflammation and Cancer: An Updated Overview. J. Med. Microbiol. Infect. Dis. 2022, 10, 163–178. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.Z.; Chen, X.L.; Zhang, W.H.; Liu, K.; Wang, Y.J.; Tang, H.R.; Hu, J.K.; the SIGES research group. Associations between hepatitis B virus exposure and the risk of extrahepatic digestive system cancers: A hospital-based, case–control study (SIGES). Cancer Med. 2021, 10, 3741–3755. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, Z.; Wu, W.; Ruan, L.; Yu, C.; Xi, Y.; Wang, L.; Wang, K.; Mo, J.; Zhao, S. Chronic hepatitis virus infection are associated with high risk of gastric cancer: A systematic review and cumulative analysis. Front. Oncol. 2021, 11, 703558. [Google Scholar] [CrossRef]
- World Health Organization. Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 10 August 2023).
- Sabeena, S.; Ravishankar, N. Horizontal Modes of Transmission of Hepatitis B Virus (HBV): A Systematic Review and Meta-Analysis. Iran. J. Public Health 2022, 51, 2181. [Google Scholar] [CrossRef]
- Lemoine, M.; Nayagam, S.; Thursz, M. Viral hepatitis in resource-limited countries and access to antiviral therapies: Current and future challenges. Future Virol. 2013, 8, 371–380. [Google Scholar] [CrossRef]
- Stasi, C.; Silvestri, C.; Voller, F. Emerging trends in epidemiology of hepatitis B virus infection. J. Clin. Transl. Hepatol. 2017, 5, 272. [Google Scholar] [CrossRef]
- Tian, T.; Song, C.; Jiang, L.; Dai, J.; Lin, Y.; Xu, X.; Yu, C.; Ge, Z.; Ding, Y.; Wen, Y. Hepatitis B virus infection and the risk of cancer among the Chinese population. Int. J. Cancer 2020, 147, 3075–3084. [Google Scholar] [CrossRef] [PubMed]
- Sundquist, K.; Sundquist, J.; Ji, J. Risk of hepatocellular carcinoma and cancers at other sites among patients diagnosed with chronic hepatitis B virus infection in Sweden. J. Med. Virol. 2014, 86, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Wongtrakul, W.; Charoenngam, N.; Ponvilawan, B.; Rujirachun, P.; Wattanachayakul, P.; Srikulmontri, T.; Hong, N.; Rai, P.; Ungprasert, P. Hepatitis B virus infection and risk of gastric cancer: A systematic review and meta-analysis. Minerva Gastroenterol. 2021. online ahead of print. [Google Scholar] [CrossRef]
- Yu, R.; Huang, J.; Peng, H.; Yin, S.; Xie, W.; Ren, S.; Peng, X.-E. Association Between Hepatitis B Virus and Gastric Cancer: A Systematic Review and Meta-Analysis. Infect. Med. 2023, 11, e00201. [Google Scholar] [CrossRef]
- Liu, T.; Song, C.; Zhang, Y.; Siyin, S.T.; Zhang, Q.; Song, M.; Cao, L.; Shi, H. Hepatitis B virus infection and the risk of gastrointestinal cancers among Chinese population: A prospective cohort study. Int. J. Cancer 2022, 150, 1018–1028. [Google Scholar] [CrossRef]
- Niedźwiedzka-Rystwej, P.; Grywalska, E.; Hrynkiewicz, R.; Wołącewicz, M.; Becht, R.; Roliński, J. The double-edged sword role of viruses in gastric cancer. Cancers 2020, 12, 1680. [Google Scholar] [CrossRef]
- Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 533–550. [Google Scholar] [CrossRef]
- World Health Organization. Hepatitis C. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-c (accessed on 10 October 2023).
- Alter, M.J. Epidemiology of hepatitis C virus infection. World J. Gastroenterol. WJG 2007, 13, 2436. [Google Scholar] [CrossRef]
- Cheng, J.-S.; Hu, J.-H.; Lin, Y.-s.; Lin, M.-S.; Ku, H.-P.; Chien, R.-N.; Chang, M.-L. Interferon-based therapy did not attenuate hepatitis C-associated rheumatic disorder risk: A nationwide population-based cohort study. Res. Sq. 2020. preprint. [Google Scholar] [CrossRef]
- Sun, D.; Ding, M.; Ruan, M.; Yang, L.; Qi, X. Association between Hepatitis C Virus and Extrahepatic Tumors; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Morozov, S.; Batskikh, S. Commentary: Hepatitis B virus infection: An insight into the clinical connection and molecular interaction between hepatitis B virus and host extrahepatic cancer risk. Front. Immunol. 2023, 14, 1200405. [Google Scholar] [CrossRef]
- Shiffman, M.L. Approach to the patient with chronic hepatitis B and decompensated cirrhosis. Liver Int. 2020, 40, 22–26. [Google Scholar] [CrossRef]
- Huang, X.; Yan, M.; Deng, Z.; Yao, L.; Han, D.; Sun, L. Natural history of decompensated cirrhosis with serum hepatitis B DNA < 2000 IU/mL: A retrospective study. BMC Gastroenterol. 2022, 22, 452. [Google Scholar]
- Toshikuni, N.; Arisawa, T.; Tsutsumi, M. Hepatitis C-related liver cirrhosis-strategies for the prevention of hepatic decompensation, hepatocarcinogenesis, and mortality. World J. Gastroenterol. WJG 2014, 20, 2876. [Google Scholar] [CrossRef] [PubMed]
- Jeng, K.-S.; Chang, C.-F.; Sheen, I.-S.; Jeng, C.-J.; Wang, C.-H. Upper Gastrointestinal Cancer and Liver Cirrhosis. Cancers 2022, 14, 2269. [Google Scholar] [CrossRef]
- Xiang, Z.; Li, Y.; Zhu, C.; Hong, T.; He, X.; Zhu, H.; Jiang, D. Gastrointestinal Cancers and Liver Cirrhosis: Implications on Treatments and Prognosis. Front. Oncol. 2021, 11, 766069. [Google Scholar] [CrossRef]
- Wei, X.l.; Luo, H.y.; Li, C.f.; Jin, Y.; Zeng, Z.l.; Ju, H.q.; Wu, Q.n.; Wang, Y.; Mao, M.j.; Liu, W.l. Hepatitis B virus infection is associated with younger median age at diagnosis and death in cancers. Int. J. Cancer 2017, 141, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Qiu, M.; Jin, Y.; Huang, Y.; Wang, R.; Chen, W.; Wang, D.; Wang, F.; Luo, H.; Zhang, D. Hepatitis B virus infection is associated with gastric cancer in China: An endemic area of both diseases. Br. J. Cancer 2015, 112, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Jaroenlapnopparat, A.; Bhatia, K.; Coban, S. Inflammation and Gastric Cancer. Diseases 2022, 10, 35. [Google Scholar] [CrossRef]
- Tian, Y.; Ou, J.-h.J. Genetic and epigenetic alterations in hepatitis B virus-associated hepatocellular carcinoma. Virol. Sin. 2015, 30, 85–91. [Google Scholar] [CrossRef]
- Piazuelo, M.B.; Riechelmann, R.P.; Wilson, K.T.; Algood, H.M.S. Resolution of gastric cancer-promoting inflammation: A novel strategy for anti-cancer therapy. Curr. Top Microbiol. Immunol. 2019, 421, 319–359. [Google Scholar]
- Ali, A.; Abdel-Hafiz, H.; Suhail, M.; Al-Mars, A.; Zakaria, M.K.; Fatima, K.; Ahmad, S.; Azhar, E.; Chaudhary, A.; Qadri, I. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J. Gastroenterol. WJG 2014, 20, 10238. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Lv, J.; Liu, Y.; Chen, J.G.; Ge, Z.; Zhu, J.; Dai, J.; Du, L.-B.; Yu, C.; Guo, Y. Associations between hepatitis B virus infection and risk of all cancer types. JAMA Netw. Open 2019, 2, e195718. [Google Scholar] [CrossRef] [PubMed]
- Fujii, R.; Zhu, C.; Wen, Y.; Marusawa, H.; Bailly-Maitre, B.; Matsuzawa, S.-i.; Zhang, H.; Kim, Y.; Bennett, C.F.; Jiang, W. HBXIP, cellular target of hepatitis B virus oncoprotein, is a regulator of centrosome dynamics and cytokinesis. Cancer Res. 2006, 66, 9099–9107. [Google Scholar] [CrossRef]
- Yang, Z.; Jiang, X.; Li, D.; Jiang, X. HBXIP promotes gastric cancer via METTL3-mediated MYC mRNA m6A modification. Aging 2020, 12, 24967. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, X.; Zhang, S.; Cui, M.; Liu, F.; Sun, B.; Zhang, W.; Zhang, X.; Ye, L. HBXIP up-regulates ACSL1 through activating transcriptional factor Sp1 in breast cancer. Biochem. Biophys. Res. Commun. 2017, 484, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Lu, F.; Zhang, L.; Wang, G.; Geng, R.; Miao, Y. HBXIP regulates gastric cancer glucose metabolism and malignancy through PI3K/AKT and p53 signaling. OncoTargets Ther. 2020, 13, 3359–3374. [Google Scholar] [CrossRef]
- DiDonato, J.A.; Mercurio, F.; Karin, M. NF-κB and the link between inflammation and cancer. Immunol. Rev. 2012, 246, 379–400. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hou, Y.; Yao, Z.; Zhan, Y.; Chen, W.; Liu, Y. Expressivity of Interleukin-8 and gastric cancer prognosis susceptibility: A systematic review and meta-analysis. Dose-Response 2021, 19, 15593258211037127. [Google Scholar] [CrossRef]
- Xiu, M.; Zeng, X.; Shan, R.; Wen, W.; Li, J.; Wan, R. The oncogenic role of HBXIP. Biomed. Pharmacother. 2021, 133, 111045. [Google Scholar] [CrossRef]
- Gish, R.G.; Basit, S.A.; Ryan, J.; Dawood, A.; Protzer, U. Hepatitis B core antibody: Role in clinical practice in 2020. Curr. Hepatol. Rep. 2020, 19, 254–265. [Google Scholar] [CrossRef]
- Malczewski, A.B.; Navarro, S.; Coward, J.I.; Ketheesan, N. Microbiome-derived metabolome as a potential predictor of response to cancer immunotherapy. J. Immunother. Cancer 2020, 8, e001383. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Baba, Y.; Ishimoto, T.; Gu, X.; Zhang, J.; Nomoto, D.; Okadome, K.; Baba, H.; Qiu, P. Gut microbiome in gastrointestinal cancer: A friend or foe? Int. J. Biol. Sci. 2022, 18, 4101–4117. [Google Scholar] [CrossRef]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the normal gut microbiota. World J. Gastroenterol. WJG 2015, 21, 8787. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Nakayama, J.; Moriya, K.; Kawaratani, H.; Momoda, R.; Ito, K.; Iio, E.; Nojiri, S.; Fujiwara, K.; Yoneda, M. Gut dysbiosis associated with hepatitis C virus infection. Clin. Infect. Dis. 2018, 67, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.S.; Warrington, R.; Watson, W.; Kim, H.L. An introduction to immunology and immunopathology. Allergy Asthma Clin. Immunol. 2018, 14, 49. [Google Scholar] [CrossRef]
- De Leon-Oliva, D.; Garcia-Montero, C.; Fraile-Martinez, O.; Boaru, D.L.; García-Puente, L.; Rios-Parra, A.; Garrido-Gil, M.J.; Casanova-Martín, C.; García-Honduvilla, N.; Bujan, J. AIF1: Function and Connection with Inflammatory Diseases. Biology 2023, 12, 694. [Google Scholar] [CrossRef]
- Negash, A.A.; Ramos, H.J.; Crochet, N.; Lau, D.T.; Doehle, B.; Papic, N.; Delker, D.A.; Jo, J.; Bertoletti, A.; Hagedorn, C.H. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog. 2013, 9, e1003330. [Google Scholar] [CrossRef]
- Xie, W.-h.; Ding, J.; Xie, X.-x.; Yang, X.-h.; Wu, X.-F.; Chen, Z.-x.; Guo, Q.-l.; Gao, W.-y.; Wang, X.-z.; Li, D. Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation. Inflamm. Res. 2020, 69, 683–696. [Google Scholar] [CrossRef]
- Megahed, F.A.K.; Zhou, X.; Sun, P. The interactions between HBV and the innate immunity of hepatocytes. Viruses 2020, 12, 285. [Google Scholar] [CrossRef]
- Marusawa, H.; Jenkins, B.J. Inflammation and gastrointestinal cancer: An overview. Cancer Lett. 2014, 345, 153–156. [Google Scholar] [CrossRef]
- Isogawa, M.; Robek, M.D.; Furuichi, Y.; Chisari, F.V. Toll-like receptor signaling inhibits hepatitis B virus replication in vivo. J. Virol. 2005, 79, 7269–7272. [Google Scholar] [CrossRef]
- Li, K.; Lemon, S.M. Innate immune responses in hepatitis C virus infection. Proc. Semin. Immunopathol. 2013, 35, 53–72. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Ramos, B.; Nunes, A.; Ribeiro, D. Hepatitis C virus: Evading the intracellular innate immunity. J. Clin. Med. 2020, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Schwerk, J.; Negash, A.; Savan, R.; Gale, M. Innate immunity in hepatitis C virus infection. Cold Spring Harb. Perspect. Med. 2021, 11, a036988. [Google Scholar] [CrossRef] [PubMed]
- Kayesh, M.E.H.; Kohara, M.; Tsukiyama-Kohara, K. Toll-like receptor response to hepatitis B virus infection and potential of TLR agonists as immunomodulators for treating chronic hepatitis B: An overview. Int. J. Mol. Sci. 2021, 22, 10462. [Google Scholar] [CrossRef]
- Murira, A.; Lamarre, A. Type-I interferon responses: From friend to foe in the battle against chronic viral infection. Front. Immunol. 2016, 7, 609. [Google Scholar] [CrossRef]
- Sanada, T.; Tsukiyama-Kohara, K.; Shin-I, T.; Yamamoto, N.; Kayesh, M.E.H.; Yamane, D.; Takano, J.-i.; Shiogama, Y.; Yasutomi, Y.; Ikeo, K. Construction of complete Tupaia belangeri transcriptome database by whole-genome and comprehensive RNA sequencing. Sci. Rep. 2019, 9, 12372. [Google Scholar] [CrossRef]
- Heim, M.H.; Thimme, R. Innate and adaptive immune responses in HCV infections. J. Hepatol. 2014, 61, S14–S25. [Google Scholar] [CrossRef]
- Li, M.; Wu, S.; Luo, H.; Niu, J.; Yan, Y.; Fang, Y.; Ke, L.; Chen, W.; Xu, H.; Li, H. Serological and Molecular Characterization of Hepatitis B Virus Infection in Gastric Cancer. Front. Cell. Infect. Microbiol. 2022, 524, 894836. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Hasan, A.; Pozzoli, G.; Cenciarelli, C. Cancer immunotherapy with immune checkpoint inhibitors (ICIs): Potential, mechanisms of resistance, and strategies for reinvigorating T cell responsiveness when resistance is acquired. Cancer Cell Int. 2023, 23, 64. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Jin, Y.; Chen, F.; Ni, H.; Hu, C.; Xu, Y.; Xuan, H.; Hu, D.; Deng, W.; Zhang, Y. Clinicopathological evidence of hepatitis B virus infection in the development of gastric adenocarcinoma. J. Med. Virol. 2020, 92, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Högner, A.; Moehler, M. Immunotherapy in gastric cancer. Curr. Oncol. 2022, 29, 1559–1574. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, Y.; Zhang, P.; Chu, Q. Acquired resistance to immune checkpoint blockades: The underlying mechanisms and potential strategies. Front. Immunol. 2021, 12, 693609. [Google Scholar] [CrossRef]
- Hu-Lieskovan, S.; Malouf, G.G.; Jacobs, I.; Chou, J.; Liu, L.; Johnson, M.L. Addressing resistance to immune checkpoint inhibitor therapy: An urgent unmet need. Future Oncol. 2021, 17, 1401–1439. [Google Scholar] [CrossRef]
- Bai, R.; Chen, N.; Li, L.; Du, N.; Bai, L.; Lv, Z.; Tian, H.; Cui, J. Mechanisms of cancer resistance to immunotherapy. Front. Oncol. 2020, 10, 1290. [Google Scholar] [CrossRef]
- Lao, Y.; Shen, D.; Zhang, W.; He, R.; Jiang, M. Immune Checkpoint Inhibitors in Cancer Therapy—How to Overcome Drug Resistance? Cancers 2022, 14, 3575. [Google Scholar] [CrossRef]
- Chen, C.-W.; Cheng, J.-S.; Chen, T.-D.; Le, P.-H.; Ku, H.-P.; Chang, M.-L. The irreversible HCV-associated risk of gastric cancer following interferon-based therapy: A joint study of hospital-based cases and nationwide population-based cohorts. Ther. Adv. Gastroenterol. 2019, 12, 1756284819855732. [Google Scholar] [CrossRef]
- Thorley-Lawson, D.A.; Hawkins, J.B.; Tracy, S.I.; Shapiro, M. The pathogenesis of Epstein–Barr virus persistent infection. Curr. Opin. Virol. 2013, 3, 227–232. [Google Scholar] [CrossRef]
- Zhu, Y.-Z.; Qian, X.-J.; Zhao, P.; Qi, Z.-T. How hepatitis C virus invades hepatocytes: The mystery of viral entry. World J. Gastroenterol. WJG 2014, 20, 3457. [Google Scholar] [CrossRef] [PubMed]
- Herrscher, C.; Roingeard, P.; Blanchard, E. Hepatitis B virus entry into cells. Cells 2020, 9, 1486. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xiao, H.; Song, H.; An, S.; Luo, B. Transcriptome sequencing of LMP2A-transfected gastric cancer cells identifies potential biomarkers in EBV-associated gastric cancer. Virus Genes 2022, 58, 515–526. [Google Scholar] [CrossRef]
- Fang, X.; Tan, T.; Gao, B.; Zhao, Y.; Liu, T.; Xia, Q. Germacrone Regulates HBXIP-Mediated Cell Cycle, Apoptosis and Promotes the Formation of Autophagosomes to Inhibit the Proliferation of Gastric Cancer Cells. Front Oncol. 2020, 10, 537322. [Google Scholar] [CrossRef] [PubMed]
- Zamor, P.J.; Delemos, A.S.; Russo, M.W. Viral hepatitis and hepatocellular carcinoma: Etiology and management. J. Gastrointest. Oncol. 2017, 8, 229. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, B.A.; Bhaduri-McIntosh, S. Inflammation and Epstein–Barr Virus at the Crossroads of Multiple Sclerosis and Post-Acute Sequelae of COVID-19 Infection. Viruses 2023, 15, 949. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wan, P.; Zhang, Y.; Tan, Q.; Qudus, M.S.; Yue, Z.; Luo, W.; Zhang, W.; Ouyang, J.; Li, Y. Innate immunity, inflammation, and intervention in HBV infection. Viruses 2022, 14, 2275. [Google Scholar] [CrossRef]
- Li, H.; Huang, M.-H.; Jiang, J.-D.; Peng, Z.-G. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J. Gastroenterol. 2018, 24, 5297. [Google Scholar] [CrossRef]
- Naseem, M.; Barzi, A.; Brezden-Masley, C.; Puccini, A.; Berger, M.D.; Tokunaga, R.; Battaglin, F.; Soni, S.; McSkane, M.; Zhang, W. Outlooks on Epstein-Barr virus associated gastric cancer. Cancer Treat. Rev. 2018, 66, 15–22. [Google Scholar] [CrossRef]
- Gómez-Moreno, A.; Garaigorta, U. Hepatitis B virus and DNA damage response: Interactions and consequences for the infection. Viruses 2017, 9, 304. [Google Scholar] [CrossRef]
- Pal, S.; Polyak, S.J.; Bano, N.; Qiu, W.C.; Carithers, R.L.; Shuhart, M.; Gretch, D.R.; Das, A. Hepatitis C virus induces oxidative stress, DNA damage and modulates the DNA repair enzyme NEIL1. J. Gastroenterol. Hepatol. 2010, 25, 627–634. [Google Scholar] [CrossRef]
- Yao, Y.; Kong, W.; Yang, L.; Ding, Y.; Cui, H. Immunity and Immune Evasion Mechanisms of Epstein–Barr Virus. Viral Immunol. 2023, 36, 303–317. [Google Scholar] [CrossRef]
- Ortega-Prieto, A.M.; Dorner, M. Immune evasion strategies during chronic hepatitis B and C virus infection. Vaccines 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, Y.; Wang, C.; Gan, R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 2021, 21, 93. [Google Scholar] [CrossRef]
- Vrancken, K.; Paeshuyse, J.; Liekens, S. Angiogenic activity of hepatitis B and C viruses. Antivir. Chem. Chemother. 2012, 22, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Price, A.M.; Dai, J.; Bazot, Q.; Patel, L.; Nikitin, P.A.; Djavadian, R.; Winter, P.S.; Salinas, C.A.; Barry, A.P.; Wood, K.C. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection. Elife 2017, 6, e22509. [Google Scholar] [CrossRef]
- Madden, C.R.; Slagle, B.L. Stimulation of cellular proliferation by hepatitis B virus X protein. Dis. Markers 2001, 17, 153–157. [Google Scholar] [CrossRef]
- Damania, P.; Sen, B.; Dar, S.B.; Kumar, S.; Kumari, A.; Gupta, E.; Sarin, S.K.; Venugopal, S.K. Hepatitis B virus induces cell proliferation via HBx-induced microRNA-21 in hepatocellular carcinoma by targeting programmed cell death protein4 (PDCD4) and phosphatase and tensin homologue (PTEN). PLoS ONE 2014, 9, e91745. [Google Scholar] [CrossRef] [PubMed]
- Ke, P.-Y.; Chen, S.S.-L. Hepatitis C virus and cellular stress response: Implications to molecular pathogenesis of liver diseases. Viruses 2012, 4, 2251–2290. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.O.; Tang, C.-M.; Yu, J. Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: Disease and treatments. World J. Gastroenterol. WJG 2014, 20, 6448. [Google Scholar] [CrossRef]
- He, B.; Gao, R.; Lv, S.; Chen, A.; Huang, J.; Wang, L.; Feng, Y.; Feng, J.; Liu, B.; Lei, J.; et al. Cancer cell employs a microenvironmental neural signal trans-activating nucleus-mitochondria coordination to acquire stemness. Signal Transduct. Target. Ther. 2023, 8, 275. [Google Scholar] [CrossRef]
- Khera, L.; Paul, C.; Kaul, R. Hepatitis C Virus mediated metastasis in hepatocellular carcinoma as a therapeutic target for cancer management. Curr. Drug Metab. 2018, 19, 224–235. [Google Scholar] [CrossRef]
- Burd, E.M. Human papillomavirus and cervical cancer. Clin. Microbiol. Rev. 2003, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Hildesheim, A.; Schiffman, M.; Bromley, C.; Wacholder, S.; Herrero, R.; Rodriguez, A.C.; Bratti, M.C.; Sherman, M.E.; Scarpidis, U.; Lin, Q.-Q. Human papillomavirus type 16 variants and risk of cervical cancer. J. Natl. Cancer Inst. 2001, 93, 315–318. [Google Scholar] [CrossRef]
- Zeng, Z.-m.; Luo, F.-f.; Zou, L.-x.; He, R.-q.; Pan, D.-h.; Chen, X.; Xie, T.-t.; Li, Y.-q.; Peng, Z.-g.; Chen, G. Human papillomavirus as a potential risk factor for gastric cancer: A meta-analysis of 1917 cases. OncoTargets Ther. 2016, 9, 7105–7114. [Google Scholar] [CrossRef]
- Baj, J.; Forma, A.; Dudek, I.; Chilimoniuk, Z.; Dobosz, M.; Dobrzyński, M.; Teresiński, G.; Buszewicz, G.; Flieger, J.; Portincasa, P. The Involvement of Human Papilloma Virus in Gastrointestinal Cancers. Cancers 2022, 14, 2607. [Google Scholar] [CrossRef] [PubMed]
- Roesch-Dietlen, F.; Cano-Contreras, A.; Sánchez-Maza, Y.; Espinosa-González, J.; Vázquez-Prieto, M.; Díaz-Roesch, F.; Carrasco-Arroniz, M.; Cruz-Palacios, A.; Grube-Pagola, P.; Sumoza-Toledo, A. Frequency of human papillomavirus infection in patients with gastrointestinal cancer. Rev. Gastroenterol. México 2018, 83, 253–258. [Google Scholar] [CrossRef]
- Tomaić, V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers 2016, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Sofiani, V.H.; Veisi, P.; Rukerd, M.R.Z.; Ghazi, R.; Nakhaie, M. The complexity of human papilloma virus in cancers: A narrative review. Infect. Agents Cancer 2023, 18, 13. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, H.; Wang, Z.; Zhang, P.; Albers, A.E.; Kaufmann, A.M.; Zheng, Z.M.; Qian, X. Integration and viral oncogene expression of human papillomavirus type 16 in oropharyngeal squamous cell carcinoma and gastric cancer. J. Med. Virol. 2023, 95, e28761. [Google Scholar] [CrossRef]
- Yuan, X.-y.; Wang, M.-y.; Wang, X.-y.; Chang, A.-y.; Li, J. Non-detection of Epstein-Barr virus and Human Papillomavirus in a region of high gastric cancer risk indicates a lack of a role for these viruses in gastric carcinomas. Genet. Mol. Biol. 2013, 36, 183–184. [Google Scholar] [CrossRef]
- Firoz, A.; Ali, H.M.; Rehman, S.; Rather, I.A. Gastric Cancer and Viruses: A Fine Line between Friend or Foe. Vaccines 2022, 10, 600. [Google Scholar] [CrossRef]
- Guven-Maiorov, E.; Tsai, C.-J.; Nussinov, R. Oncoviruses can drive cancer by rewiring signaling pathways through interface mimicry. Front. Oncol. 2019, 9, 1236. [Google Scholar] [CrossRef] [PubMed]
- Rokas, A. Evolution of the human pathogenic lifestyle in fungi. Nat. Microbiol. 2022, 7, 607–619. [Google Scholar] [CrossRef]
- Hallen-Adams, H.E.; Suhr, M.J. Fungi in the healthy human gastrointestinal tract. Virulence 2017, 8, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Coker, O.O. Non-bacteria microbiome (virus, fungi, and archaea) in gastrointestinal cancer. Microbiome Gastrointest. Cancer 2023, 37, 91–106. [Google Scholar]
- Zwolińska-Wciso, M.; Budak, A.; Trojanowska, D.; Bogda–, J.; Stachura, J. Fungal colonization of the stomach and its clinical relevance: Die Pilzbesiedlung des Magens und ihre klinische Relevanz. Mycoses 1998, 41, 327–334. [Google Scholar] [CrossRef]
- Talapko, J.; Meštrović, T.; Dmitrović, B.; Juzbašić, M.; Matijević, T.; Bekić, S.; Erić, S.; Flam, J.; Belić, D.; Petek Erić, A. A Putative Role of Candida albicans in Promoting Cancer Development: A Current State of Evidence and Proposed Mechanisms. Microorganisms 2023, 11, 1476. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Xiong, Y.; Zhao, J.; Gao, Z.; Ma, J.; Wu, Z.; Song, Y.; Hong, X. Candida albicans disorder is associated with gastric carcinogenesis. Theranostics 2021, 11, 4945. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, Z. The research progress in the interaction between Candida albicans and cancers. Front. Microbiol. 2022, 13, 988734. [Google Scholar] [CrossRef] [PubMed]
- Drummond, R.A.; Gaffen, S.L.; Hise, A.G.; Brown, G.D. Innate defense against fungal pathogens. Cold Spring Harb. Perspect. Med. 2015, 5, a019620. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef]
- Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17, e334–e343. [Google Scholar] [CrossRef]
- Leventakos, K.; Lewis, R.E.; Kontoyiannis, D.P. Fungal infections in leukemia patients: How do we prevent and treat them? Clin. Infect. Dis. 2010, 50, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Lao, M.; Li, C.; Li, J.; Chen, D.; Ding, M.; Gong, Y. Opportunistic invasive fungal disease in patients with type 2 diabetes mellitus from Southern China: Clinical features and associated factors. J. Diabetes Investig. 2020, 11, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Shoham, S.; Marr, K.A. Invasive fungal infections in solid organ transplant recipients. Future Microbiol. 2012, 7, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, A.; Jaiswal, A.; Verma, P.K.; Singhal, R. A prospective study of fungal colonization and invasive fungal disease in long-term mechanically ventilated patients in a respiratory intensive care unit. Indian J. Crit. Care Med. 2018, 22, 597. [Google Scholar]
- Zhao, Y.; Zhang, J.; Cheng, A.S.; Yu, J.; To, K.F.; Kang, W. Gastric cancer: Genome damaged by bugs. Oncogene 2020, 39, 3427–3442. [Google Scholar] [CrossRef]
Biological Process | H. pylori | Lactobacillus | Streptococcus |
---|---|---|---|
Infection and Entry Process | At the beginning, urease neutralized the acidic stomach; made use of flagella to reach gastric epithelial cells; interaction between bacterial adhesins and host cell receptors [8] | Obtained through oral administration [9]; intrinsically resistant to acid (generally below pH 3.0) [10] | Naturally existed in the digestive tract [11] |
Carcinogenic Factor | cagA: entered gastric epithelial cells through bacterial type IV secretion; disrupted various host cell signaling routes by serving as an external scaffold or hub protein [12]. vacA: inhibited parietal cells ability to produce acids, leading to hypochlorhydria; supported the growth of nitrate-producing bacteria, which typically did not thrive in the naturally acidic conditions of the stomach [13] | Did not directly cause carcinogenesis but contributes to it indirectly by influencing changes in the gastric microbial community [14] | Unclear carcinogenic mechanism; increased e.g., interleukin-8 (IL-8), cyclooxygenase 2 (COX2) might be carcinogenic factors towards GC [15] |
Inflammation | Enhanced the expression of numerous pro-inflammatory cytokines, including interleukin (IL)-1, IL-6, IL-8, TNF-α, NF-κB, promoting gastric inflammation [16] | Normal level of Lactobacillus presented anti-inflammatory effects on HT-29 cells by modulating JAK/STAT and NF-κB signaling pathways [17] | To our best knowledge, there has been limited understanding of the precise mechanism by which Streptococcus causes inflammation in the stomach. However, several case studies have associated Streptococcus with acute gastritis [18] |
DNA Damage | Upon oxidative DNA damage in gastric cancer cells, activation of the DNA damage response pathway occurred. Particularly, Chk1 and Chk2 phosphorylation signified the activation of Chk1 and Chk2, which could stop the cell cycle, potentially leading to mitotic exit and genomic instability [19] | Aided in the restoration of DNA damage caused by reactive oxygen species generated by bile [20] | Came across reactive oxygen species generated by the host’s innate immune response against persisters, culminating to DNA damage [21] |
Immune Evasion and Immune System | Evaded pattern recognition receptor detection by evading recognition by toll-like receptors (TLRs) and inhibiting signaling mediated by c-type lectin (DC-SIGN) [22] | Enhanced immune system through strengthening the cytotoxic impact of natural killer (NK) cells and impacted the production of various essential pro-inflammatory cytokines, such as IL-1β, IL-4, IL-5, IL-6, IL-8, and IL-13 [23] | The breakdown of inflammatory hyaluronan fragments produced by the host into disaccharides enabled Group B Streptococcus to avoid being detected by the immune system [24] |
Angiogenesis | H. pylori infection upregulated the expression of angiogenic factors produced by GC cells including VEGF, interleukin-8, and platelet-derived endothelial growth factor. Specifically, the standard H. pylori strain NCTC11637 significantly raised VEGF expression in gastric epithelial cells like SGC7901 and MKN45, which was achieved by enhancing the expression of COX-2 [25] | Produced high amounts of lactic acids and other metabolites that inhibit angiogenesis of tumor growth via downregulating COX2 expression [23] | As illustrated in Figure 1, Streptococcus cell-related proteins induced chemokine release, prostaglandin E2 (PGE2), and COX-2 over-expression, which promoted cancer angiogenesis [26] |
Cellular Proliferation | Stimulated the production of MMP9 in gastric cancer cells via the semaphorin 5A-mediated ERK signaling pathway, and also stimulated the proliferation, growth, migration, and invasiveness of gastric cancer cells through its effects on semaphorin 5A [27] | Produced lactic acid bacteria that could exert cytotoxic effects by impeding the proliferation of cancer cells [28] | Streptococcus-infected cells mediated by extracellular-matrix-induced cell proliferation [29] |
Metastasis | Increased the expression of HPA, which might be linked to MAPK activation, to encourage the invasion and metastasis of GC [30] | They adjusted the microenvironment to hinder cancer metastasis [31] when not in excessive growth | Compromising vascular integrity by reducing adhesion molecules in endothelial cells, aiding the transendothelial migration of tumor cells and promoting metastasis [32] |
Year | Region/Country | Method | Genera Increased (↑) and/or Decreased (↓) in GC versus Non-Cancer | References |
---|---|---|---|---|
2018 | Taiwan, China | 16S ribosomal DNA analysis | H. pylori ↓ Clostridium, Fusobacterium, and Lactobacillus ↑ | [57] |
2018 | China | 16S rRNA gene analysis | Peptostreptococcus, Streptococcus, Parvimonas, Slackia, Dialister ↑ | [58] |
2018 | Portugal | 16S rRNA gene profiling | Helicobacter ↓; Citrobacter, Clostridium, Lactobacillus, Achromobacter and Rhodococcus ↑ | [59] |
2019 | Korea | Metagenomic 16S rRNA gene sequencing | Helicobacteraceae, Propionibacteriaceae, and Prevotellaceae ↑ | [60] |
2019 | China | 16S rRNA gene sequencing | Higher species richness; Lower butyrate-producing bacteria; Other symbiotic bacteria, especially Lactobacillus, Escherichia, and Klebsiella. Lactobacillus and Lachnospira ↑ | [61] |
2019 | China | 16S rRNA Gene Amplification Sequence Processing | Acinetobacter, Bacteroides, Haemophilus parainfluenzae ↑ | [62] |
2019 | China | 16S rRNA gene sequencing | Escherichia/Shigella, Veillonella, and Clostridium XVIII ↑; Bacteroides ↓; Both groups with very low abundance of Helicobacter | [63] |
2020 | Mongolia | 16S rRNA gene amplicon sequencing | Lactobacillus ↑ Enterococcus ↑ | [64] |
2021 | China | 16S rRNA gene sequencing | Higher microbial diversity; 27 genera e.g., Leptotrichia, Fusobacterium, Prevotella, Porphyromonas, Capnocytophaga Lactococcus, Streptococcus ↑ | [65] |
2022 | Korea | 16S rRNA gene profiling | Verrucomicrobia, Deferribacteres, and Lachnospiraceae NK4A136 group ↓ | [66] |
2023 | / | Integration of RNA-Seq data | Gemella, Pseudomonas, Acidovorax ↑ | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, W.S.; Xie, F.; Chen, B.; Yu, J.; Lo, K.W.; Tse, G.M.K.; To, K.F.; Kang, W. Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers 2023, 15, 4993. https://doi.org/10.3390/cancers15204993
Shin WS, Xie F, Chen B, Yu J, Lo KW, Tse GMK, To KF, Kang W. Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers. 2023; 15(20):4993. https://doi.org/10.3390/cancers15204993
Chicago/Turabian StyleShin, Wing Sum, Fuda Xie, Bonan Chen, Jun Yu, Kwok Wai Lo, Gary M. K. Tse, Ka Fai To, and Wei Kang. 2023. "Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus" Cancers 15, no. 20: 4993. https://doi.org/10.3390/cancers15204993
APA StyleShin, W. S., Xie, F., Chen, B., Yu, J., Lo, K. W., Tse, G. M. K., To, K. F., & Kang, W. (2023). Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers, 15(20), 4993. https://doi.org/10.3390/cancers15204993