The Effect of Metalloestrogens on the Effectiveness of Aromatase Inhibitors in a Hormone-Dependent Breast Cancer Cell Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Cell Culture
2.2.2. Drugs and Metalloestrogens Solutions
2.2.3. Cell Viability Assay
2.2.4. Apoptosis and Necrosis Assay
2.2.5. Cell Cycle Analysis
2.2.6. Flow Cytometric Analysis
2.2.7. Preparation of Cell Lysates
2.2.8. Determination of Total Protein Concentration in Cell Lysates
2.2.9. ELISA Assays for Bcl-2 and BAX Proteins Detection
2.2.10. Statistical Analysis
3. Results
3.1. Effect of Metalloestrogens, Aromatase Inhibitors, and Their Combination on Cell Viability
3.1.1. Metalloestrogens and Aromatase Inhibitors Alone
3.1.2. Metalloestrogens and Aromatase Inhibitors in Combination
- Effects on MCF-7 cells.
- Effects on MCF-7/DOX cells.
3.2. The Effect of Metalloestrogens on Proapoptotic and Necrotic Effects of Aromatase Inhibitors
3.2.1. Effects on MCF-7 Cells
3.2.2. Effects on MCF-7/DOX Cells
3.3. The Effect of Aromatase Inhibitors and Their Combination with Metalloestrogens on the Cell Cycle
3.3.1. Exemestane
3.3.2. Letrozole
3.4. The Effect of Aromatase Inhibitors and Their Combination with Metalloestrogens on Bcl-2/BAX Ratio
3.4.1. The Effect of the Combination of Exemestane and Metalloestrogens on the Bcl-2/BAX Ratio
3.4.2. The Effect of the Combination of Letrozole and Metalloestrogens on the Bcl-2/BAX Ratio
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Breast Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/breast-cancer (accessed on 16 November 2022).
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Jassem, J.; Krzakowski, M.; Bobek-Billewicz, B.; Duchnowska, R.; Jeziorski, A.; Olszewski, W.; Senkus-Konefka, E.; Tchórzewska-Korba, H.; Wysocki, P. Breast cancer. Oncol. Clin. Pract. 2020, 16, 207–260. [Google Scholar]
- Abubakar, M.; Chang-Claude, J.; Ali, H.R.; Chatterjee, N.; Coulson, P.; Daley, F.; Blows, F.; Benitez, J.; Milne, R.L.; Brenner, H.; et al. Etiology of hormone receptor positive breast cancer differs by levels of histologic grade and proliferation. Int. J. Cancer 2018, 143, 746–757. [Google Scholar] [CrossRef] [Green Version]
- Waks, A.G.; Winer, E.P. Breast cancer treatment. A review. JAMA 2019, 321, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Balic, M.; Thomssen, C.; Würstlein, R.; Gnant, M.; Harbeck, N. St. Gallen/Vienna 2019: A brief of summary of the consensus discussion on the optimal primary breast cancer treatment. Breast Care 2019, 14, 103–110. [Google Scholar] [CrossRef]
- ESMO Clinical Practice Guidelines: Breast Cancer. Available online: https://www.esmo.org/guidelines/breast-cancer (accessed on 16 November 2022).
- Peters, A.; Tadi, P. Aromatase Inhibitors; StatPearls Publishing: Treasure Island, FL, USA; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557856/ (accessed on 16 November 2022).
- Wang, X.; Ha, D.; Yoshitake, R.; Chan, Y.S.; Sadava, D.; Chen, S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int. J. Mol. Sci. 2021, 22, 8798. [Google Scholar] [CrossRef]
- Sawicka, E.; Boszkiewicz, K.; Wolniak, M.; Piwowar, A. The importance of environmental exposure on selected xenoestrogens in the pathogenesis of breast cancer. Postepy Hig. Med. Dosw. 2020, 74, 155–170. [Google Scholar] [CrossRef]
- Boszkiewicz, K.; Sawicka, E.; Piwowar, A. The impact of xenoestrogens on effectiveness of treatment for hormone-dependent breast cancer–current state of knowledge and perspectives for research. Ann Agric Environ Med. 2020, 27, 526–534. [Google Scholar] [CrossRef]
- Amaral Mendes, J.J. The endocrine disrupters: A major medical challenge. Food Chem. Toxicol. 2002, 40, 781–788. [Google Scholar] [CrossRef]
- Chen, F.; Chien, M.; Chern, I. Impact of low concentrations of phthalates on the effects of 17β-estradiol in MCF-7 breast cancer cells. Taiwan J. Obstet. Gynecol. 2016, 55, 826–834. [Google Scholar] [CrossRef]
- Mlynarcikova, A.; Macho, L.; Ficova, M. Bisfenol A alone and in combination with estradiol modulates cell cycle and apoptosis-related proteins and genes in MCF-7 cells. Endocr. Regul. 2013, 47, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, H.; Liu, S. Low-dose bisphenol A exposure: A seemingly instigating carcinogenic effect in breast cancer. Adv. Sci. 2016, 4, 1600248. [Google Scholar] [CrossRef] [Green Version]
- Choe, S.Y.; Kim, S.J.; Kim, H.G.; Lee, J.H.; Choi, Y.; Lee, H.; Kim, Y. Evaluation of estrogenicity of major heavy metals. Sci. Total Environ. 2003, 312, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Eve, L.; Fervers, B.; Romancer, M.L.; Etienne-Selloum, N. Exposure to endocrine disrupting chemicals and risk of breast cancer. Int. J. Mol. Sci. 2020, 21, 9139. [Google Scholar] [CrossRef]
- Jones, J.L.; Daley, B.J.; Enderson, B.L.; Zhou, J.R.; Karlstad, M.D. Genistein inhibits tamoxifen effects on cell proliferation and cell cycle arrest in T47D breast cancer cells. Am. Surg. 2002, 68, 575–577. [Google Scholar] [CrossRef]
- Ju, Y.H.; Doerge, D.R.; Allred, K.F.; Allred, C.D.; Helferich, W.G. Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice. Cancer Res. 2002, 62, 2474–2477. [Google Scholar] [PubMed]
- Liu, B.; Edgerton, S.; Yang, X.; Kim, A.; Ordonez-Ercan, D.; Mason, T.; Alvarez, K.; McKimmey, C.; Liu, N.; Thor, A. Low-dose dietary phytoestrogen abrogates tamoxifen-associated mammary tumour prevention. Cancer Res. 2005, 65, 879–886. [Google Scholar] [CrossRef]
- Constantinou, A.I.; White, B.E.P.; Tonetti, D.; Yang, Y.; Liang, W.; Li, W.; van Breemen, R.B. The soy isoflavone didzein improves the capacity of tamoxifen to prevent mammary tumours. Eur. J. Cancer. 2005, 41, 647–654. [Google Scholar] [CrossRef]
- Seo, H.S.; DeNardo, D.G.; Jacquot, Y.; Laios, I.; Salazar Vidal, D.; Rojas Zambrana, C.; Leclercq, G.; Brown, P.H. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer Res. Treat. 2006, 99, 121–134. [Google Scholar] [CrossRef]
- Goodson III, A.H.; Luciani, M.G.; Sayeed, S.A.; Jaffee, I.M.; Moore II, D.H.; Dairkee, S.H. Activation of the mTOR pathway by low levels of xenoestrogens in breast epithelial cells from high-risk women. Carcinogenesis 2011, 32, 1724–1733. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Yang, X.; Hartman, J.A.; Cooke, P.S.; Doerge, D.R.; Ju, Y.H.; Helferich, W.G. Low-dose dietary genistein negates the therapeutic effect of tamoxifen in anthymic nude mice. Carcinogenesis 2012, 33, 895–901. [Google Scholar] [CrossRef]
- Warth, B.; Raffeiner, P.; Granados, A.; Huan, T.; Fang, M.; Forsberg, E.M.; Benton, H.P.; Goetz, L.; Johnson, C.H.; Siuzdak, G. Metabolomics reveals that dietary xenoestrogens alter cellular metabolism induced by palbociclib/letrozole combination cancer therapy. Cell Chem. Biol. 2018, 25, 291–300. [Google Scholar] [CrossRef] [Green Version]
- LaPensee, E.W.; Tuttle, T.R.; Fox, S.R.; Ben-Jonathan, N. Bisphenol A at low nanomolar doses confers chemoresistance in estrogen receptor-α- positive and -negative breast cancer cells. Environ. Health Perspect. 2009, 117, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Darbre, P.D. Aluminium and the human breast. Morphologie 2016, 100, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D.; Bakir, A.; Iskakova, E. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture. J. Inorg. Biochem. 2013, 128, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Terpilowska, S.; Siwicki, A.K. Cell cycle and transmembrane mitochondrial potential analysis after treatment with chromium(III), iron (III), molybdenum (III) or nickel (II) and their mixtures. Toxicol. Res. 2019, 8, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicka, E.; Jurkowska, K.; Piwowar, A. Estrogenowe działanie chromu–ważny metaloestrogen w modulowaniu szlaków endokrynnych. Farm. Pol. 2019, 75, 357–364. [Google Scholar] [CrossRef]
- Christowitz, C.; Davis, T.; Isaacs, A.; van Niekerk, G.; Hattingh, S.; Engelbrecht, A.M. Mechanisms of doxorubicin-induced drug re-sistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer 2019, 19, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devarajan, E.; Chen, J.; Multani, A.S.; Pathak, S.; Sahin, A.A.; Mehta, K. Human breast cancer MCF-7 cell line contains inherently drug-resistant subclones with distinct genotypic and phenotypic features. Int. J. Oncology 2002, 20, 913–920. [Google Scholar] [CrossRef]
- Sharifi, S.; Barar, J.; Hejazi, M.S.; Samadi, N. Roles of the Bcl-2/BAX ratio, caspase-8 and 9 in resistance of breast cancer cells to paclitaxel. Asian Pac. J. Cancer Prev. 2014, 15, 8617–8622. [Google Scholar] [CrossRef] [Green Version]
- van Duursen, M.B.M.; Smeets, E.J.W.; Rijk, J.C.W.; Nijmeijer, S.M.; van den Berg, M. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferaton and overcome breast cancer treatment in an in vitro breast cancer model. Toxicol. App. Pharmacol. 2013, 269, 132–140. [Google Scholar] [CrossRef]
- Nißlein, T.; Freudenstein, J. Coadministration of the aromatase inhibitor formestane and an isopropanolic extract of black cohosh in a rat model of chemically induced mammary carcinoma. Planta Med. 2007, 73, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Du, Y.; Zhang, Y.; Pan, Y. Synergistic effects of combined treatment with simvastatin and exemestane on MCF-7 human breast cancer cells. Mol. Med. Rep. 2015, 12, 456–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urade, R.; Chou, C.K.; Chou, H.L.; Chen, B.H.; Wang, T.N.; Tsai, E.M.; Hung, C.T.; Wu, S.J.; Chiu, C.C. Phthalate derivative DEHP disturbs the antiproliferative effect of camptoth-ecin in human lung cancer cells by attenuating DNA damage and activating Akt/NF-κB signaling pathway. Environ Toxicol. 2022, 17. [Google Scholar] [CrossRef]
- Chimento, A.; De Luca, A.; Avena, P.; De Amicis, F.; Casaburi, I.; Sirianni, R.; Pezzi, V. Estrogen Receptors-Mediated Apoptosis in Hormone-Dependent Cancers. Int. J. Mol. Sci. 2022, 23, 1242. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Augusto, T.V.; Amaral, C.; Almeida, C.F.; Teixeira, N.; Correia-da-Silva, G. Differential biological effects of aromatase inhibitors: Apoptosis, autophagy, senescence and modulation of the hormonal status in breast cancer cells. Mol. Cell Endocrinol. 2021, 537, 111426. [Google Scholar] [CrossRef]
- Amaral, C.; Borges, M.; Melo, S.; Silva, E.T.; Correia-da-Silva, G.; Teixeira, N. Apoptosis and Autophagy in Breast Cancer Cells following Exemestane Treatment. PLoS ONE 2012, 7, e42398. [Google Scholar] [CrossRef] [Green Version]
- Thiantanawat, A.; Long, B.J.; Brodie, A.M. Signaling pathways of apoptosis activated by aromatase inhibitors and antiestrogens. Cancer Res. 2003, 63, 8037–8050. [Google Scholar]
- Zha, H.; Aime-Sempe, C.; Sato, T.; Reed, J.C. Proapoptotic protein Bax heterodimerizes with Bcl2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J. Biol. Chem. 1996, 271, 7440–7444. [Google Scholar] [CrossRef] [PubMed]
Sample | %G1 (G0/G1) | %S | %G2 (G2/M) |
---|---|---|---|
MCF-7 | |||
Control | 73.19 | 24.03 | 2.78 |
EXE1 | 79.51 | 0.23 | 20.26 |
EXE1AL | 81.72 | 7.95 | 10.33 |
EXE1CR | 84.78 | 1.65 | 13.57 |
EXE2 | 82.96 | 6.09 | 10.95 |
EXE2AL | 76.18 | 5.70 | 18.12 |
EXE2CR | 80.43 | 5.01 | 14.56 |
MCF-7/DOX | |||
Control | 63.73 | 29.22 | 7.05 |
EXE1 | 75.86 | 0.07 | 24.07 |
EXE1AL | 76.81 | 0.00 | 23.20 |
EXE1CR | 76.14 | 0.00 | 23.86 |
EXE2 | 71.61 | 0.62 | 27.77 |
EXE2AL | 71.70 | 5.94 | 22.36 |
EXE2CR | 72.07 | 3.64 | 24.29 |
Sample | %G1 (G0/G1) | %S | %G2 (G2/M) |
---|---|---|---|
MCF-7 | |||
Control | 73.19 | 24.03 | 2.78 |
LET1 | 83.00 | 12.70 | 4.30 |
LET1AL | 85.48 | 13.14 | 1.38 |
LET1CR | 82.03 | 13.54 | 4.43 |
LET2 | 81.68 | 14.02 | 4.30 |
LET2AL | 82.09 | 17.46 | 0.45 |
LET2CR | 86.90 | 13.10 | 0.00 |
MCF-7/DOX | |||
Control | 63.73 | 29.22 | 7.05 |
LET1 | 77.05 | 21.54 | 1.41 |
LET1AL | 74.72 | 18.39 | 6.88 |
LET1CR | 78.62 | 20.30 | 1.08 |
LET2 | 73.74 | 19.79 | 6.48 |
LET2AL | 77.73 | 13.93 | 8.35 |
LET2CR | 80.23 | 10.47 | 9.30 |
Sample | Bcl-2/BAX Ratio | p |
---|---|---|
MCF-7 | ||
Control | 14.59 | |
EXE1 | 5.88 | |
EXE1AL | 9.47 | 0.0084 * 1 |
EXE1CR | 18.44 | <0.0001 * 1 |
EXE2 | 11.22 | |
EXE2AL | 10.46 | 0.9609 2 |
EXE2CR | 10.99 | >0.9999 2 |
MCF-7/DOX | ||
Control | 17.28 | |
EXE1 | 39.15 | |
EXE1AL | 90.72 | <0.0001 * 1 |
EXE1CR | 90.42 | <0.0001 * 1 |
EXE2 | 16.70 | |
EXE2AL | 30.48 | <0.0001 * 2 |
EXE2CR | 56.90 | <0.0001 * 2 |
Sample | Bcl-2/BAX Ratio | p |
---|---|---|
MCF-7 | ||
Control | 14.59 | |
LET1 | 9.76 | |
LET1AL | 11.58 | 0.3400 1 |
LET1CR | 11.65 | 0.3020 1 |
LET2 | 9.09 | |
LET2AL | 7.27 | 0.3400 2 |
LET2CR | 7.44 | 0.4440 2 |
MCF-7/DOX | ||
Control | 17.28 | |
LET1 | 23.71 | |
LET1AL | 22.66 | 0.8474 1 |
LET1CR | 25.59 | 0.3073 1 |
LET2 | 13.97 | |
LET2AL | 20.44 | <0.0001 * 2 |
LET2CR | 27.87 | <0.0001 * 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boszkiewicz, K.; Moreira, H.; Sawicka, E.; Szyjka, A.; Piwowar, A. The Effect of Metalloestrogens on the Effectiveness of Aromatase Inhibitors in a Hormone-Dependent Breast Cancer Cell Model. Cancers 2023, 15, 457. https://doi.org/10.3390/cancers15020457
Boszkiewicz K, Moreira H, Sawicka E, Szyjka A, Piwowar A. The Effect of Metalloestrogens on the Effectiveness of Aromatase Inhibitors in a Hormone-Dependent Breast Cancer Cell Model. Cancers. 2023; 15(2):457. https://doi.org/10.3390/cancers15020457
Chicago/Turabian StyleBoszkiewicz, Kamila, Helena Moreira, Ewa Sawicka, Anna Szyjka, and Agnieszka Piwowar. 2023. "The Effect of Metalloestrogens on the Effectiveness of Aromatase Inhibitors in a Hormone-Dependent Breast Cancer Cell Model" Cancers 15, no. 2: 457. https://doi.org/10.3390/cancers15020457
APA StyleBoszkiewicz, K., Moreira, H., Sawicka, E., Szyjka, A., & Piwowar, A. (2023). The Effect of Metalloestrogens on the Effectiveness of Aromatase Inhibitors in a Hormone-Dependent Breast Cancer Cell Model. Cancers, 15(2), 457. https://doi.org/10.3390/cancers15020457