3q26.2/MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. Conventional Karyotype Analysis
2.3. Fluorescence In Situ Hybridization (FISH) Analysis
2.4. Morphological Examination
2.5. Immunophenotyping by Flow Cytometry
2.6. Gene Mutation Profiling
2.7. Statistical Analysis
3. Results
3.1. General Information and Clinicopathologic Characteristics
3.2. Immunophenotypic Features
3.3. Cytogenetic Characteristics
3.4. Gene Mutation Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arber, D.A.; Brunning, R.D.; Le Beau, M.M.; Falini, B.; Vardiman, J.W. Acute myeloid leukemia with recurrent genetic abnormalities. In WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues; Swerdlow, S.H., Ed.; International Agency for Research on Cancer: Lyon, France, 2016; pp. 140–155. [Google Scholar]
- Lugthart, S.; van Drunen, E.; van Norden, Y.; van Hoven, A.; Erpelinck, C.A.; Valk, P.J.; Beverloo, H.B.; Löwenberg, B.; Delwel, R. High EVI1 levels predict adverse outcome in acute myeloid leukemia: Prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 2008, 111, 4329–4337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugthart, S.; Gröschel, S.; Beverloo, H.B.; Kayser, S.; Valk, P.J.; van Zelderen-Bhola, S.L.; Jan Ossenkoppele, G.; Vellenga, E.; van den Berg-de Ruiter, E.; Schanz, U.; et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia. J. Clin. Oncol. 2010, 28, 3890–3898. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Sun, J.; Cotta, C.V.; Medeiros, L.J.; Lin, P. Myelodysplastic syndrome with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) has a high risk for progression to acute myeloid leukemia. Am. J. Clin. Pathol. 2011, 136, 282–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Konoplev, S.N.; Wang, X.; Cui, W.; Chen, S.S.; Medeiros, L.J.; Lin, P. De novo acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2): A clinicopathologic and cytogenetic study of an entity recently added to the WHO classification. Mod. Pathol. 2011, 24, 384–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Gröschel, S.; Sanders, M.A.; Hoogenboezem, R.; de Wit, E.; Bouwman, B.A.M.; Erpelinck, C.; van der Velden, V.H.J.; Havermans, M.; Avellino, R.; van Lom, K.; et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell 2014, 157, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Suzuki, M.; Otsuki, A.; Shimizu, R.; Bresnick, E.H.; Engel, J.D.; Yamamoto, M. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 2014, 25, 415–427. [Google Scholar] [CrossRef] [Green Version]
- De Braekeleer, M.; Le Bris, M.J.; De Braekeleer, E.; Basinko, A.; Morel, F.; Douet-Guilbert, N. 3q26/EVI1 rearrangements in myeloid hemopathies: A cytogenetic review. Future Oncol. 2015, 11, 1675–1686. [Google Scholar] [CrossRef]
- Tang, Z.; Tang, G.; Hu, S.; Patel, K.P.; Yin, C.C.; Wang, W.; Lin, P.; Toruner, G.A.; Ok, C.Y.; Gu, J.; et al. Deciphering the complexities of MECOM rearrangement-driven chromosomal aberrations. Cancer Genet. 2019, 233–234, 21–31. [Google Scholar] [CrossRef]
- Ottema, S.; Mulet-Lazaro, R.; Beverloo, H.B.; Erpelinck, C.; van Herk, S.; van der Helm, R.; Havermans, M.; Grob, T.; Valk, P.J.M.; Bindels, E.; et al. Atypical 3q26/MECOM rearrangements genocopy inv(3)/t(3;3) in acute myeloid leukemia. Blood 2020, 136, 224–234. [Google Scholar] [CrossRef]
- Trubia, M.; Albano, F.; Cavazzini, F.; Cambrin, G.R.; Quarta, G.; Fabbiano, F.; Ciambelli, F.; Magro, D.; Hernandezo, J.M.; Mancini, M.; et al. Characterization of a recurrent translocation t(2;3)(p15-22;q26) occurring in acute myeloid leukaemia. Leukemia 2006, 20, 48–54. [Google Scholar] [CrossRef] [Green Version]
- De Braekeleer, M.; Guéganic, N.; Tous, C.; Le Bris, M.J.; Basinko, A.; Morel, F.; Douet-Guilbert, N. Breakpoint heterogeneity in (2;3)(p15-23;q26) translocations involving EVI1 in myeloid hemopathies. Blood Cells Mol. Dis. 2015, 54, 160–163. [Google Scholar] [CrossRef]
- Henzan, H.; Yoshimoto, G.; Okeda, A.; Nagasaki, Y.; Hirano, G.; Takase, K.; Tanimoto, T.; Miyamoto, T.; Fukuda, T.; Nagafuji, K.; et al. Myeloid/natural killer cell blast crisis representing an additional translocation, t(3;7)(q26;q21) in Philadelphia-positive chronic myelogenous leukemia. Ann. Hematol. 2004, 83, 784–788. [Google Scholar] [CrossRef]
- Storlazzi, C.T.; Anelli, L.; Albano, F.; Zagaria, A.; Ventura, M.; Rocchi, M.; Panagopoulos, I.; Pannunzio, A.; Ottaviani, E.; Liso, V.; et al. A novel chromosomal translocation t(3;7)(q26;q21) in myeloid leukemia resulting in overexpression of EVI1. Ann. Hematol. 2004, 83, 78–83. [Google Scholar] [CrossRef]
- Haferlach, C.; Bacher, U.; Grossmann, V.; Schindela, S.; Zenger, M.; Kohlmann, A.; Kern, W.; Haferlach, T.; Schnittger, S. Three novel cytogenetically cryptic EVI1 rearrangements associated with increased EVI1 expression and poor prognosis identified in 27 acute myeloid leukemia cases. Genes Chromosomes Cancer 2012, 51, 1079–1085. [Google Scholar] [CrossRef]
- Capela de Matos, R.R.; Othman, M.A.K.; Ferreira, G.M.; Costa, E.S.; Melo, J.B.; Carreira, I.M.; de Souza, M.T.; Lopes, B.A.; Emerenciano, M.; Land, M.G.P.; et al. Molecular approaches identify a cryptic MECOM rearrangement in a child with a rapidly progressive myeloid neoplasm. Cancer Genet. 2018, 221, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Raynaud, S.D.; Baens, M.; Grosgeorge, J.; Rodgers, K.; Reid, C.D.; Dainton, M.; Dyer, M.; Fuzibet, J.G.; Gratecos, N.; Taillan, B.; et al. Fluorescence in situ hybridization analysis of t(3; 12)(q26; p13): A recurring chromosomal abnormality involving the TEL gene (ETV6) in myelodysplastic syndromes. Blood 1996, 88, 682–689. [Google Scholar] [CrossRef] [Green Version]
- Peeters, P.; Wlodarska, I.; Baens, M.; Criel, A.; Selleslag, D.; Hagemeijer, A.; Van den Berghe, H.; Marynen, P. Fusion of ETV6 to MDS1/EVI1 as a result of t(3;12)(q26;p13) in myeloproliferative disorders. Cancer Res. 1997, 57, 564–569. [Google Scholar]
- Pekarsky, Y.; Rynditch, A.; Wieser, R.; Fonatsch, C.; Gardiner, K. Activation of a novel gene in 3q21 and identification of intergenic fusion transcripts with ecotropic viral insertion site I in leukemia. Cancer Res. 1997, 57, 3914–3919. [Google Scholar]
- Roulston, D.; Espinosa, R., III; Nucifora, G.; Larson, R.A.; Le Beau, M.M.; Rowley, J.D. CBFA2(AML1) translocations with novel partner chromosomes in myeloid leukemias: Association with prior therapy. Blood 1998, 92, 2879–2885. [Google Scholar] [CrossRef]
- Bohlander, S.K. Fusion genes in leukemia: An emerging network. Fusion genes in leukemia: An emerging network. Cytogenet. Cell Genet. 2000, 91, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Iijima, Y.; Ito, T.; Oikawa, T.; Eguchi, M.; Eguchi-Ishimae, M.; Kamada, N.; Kishi, K.; Asano, S.; Sakaki, Y.; Sato, Y. A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line with a t(1;12)(q25;p13) translocation. Blood 2000, 95, 2126–2131. [Google Scholar]
- Nakamura, Y.; Nakazato, H.; Sato, Y.; Furusawa, S.; Mitani, K. Expression of the TEL/EVI1 fusion transcript in a patient with chronic myelogenous leukemia with t(3;12)(q26;p13). Am. J. Hematol. 2002, 69, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Cristóbal, I.; Blanco, F.J.; Garcia-Orti, L.; Marcotegui, N.; Vicente, C.; Rifon, J.; Novo, F.J.; Bandres, E.; Calasanz, M.J.; Bernabeu, C.; et al. SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood 2010, 115, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Duhoux, F.P.; Ameye, G.; Montano-Almendras, C.P.; Bahloula, K.; Mozziconacci, M.J.; Laibe, S.; Wlodarska, I.; Michaux, L.; Talmant, P.; Richebourg, S.; et al. PRDM16 (1p36) translocations define a distinct entity of myeloid malignancies with poor prognosis but may also occur in lymphoid malignancies. Br. J. Haematol. 2012, 156, 76–88. [Google Scholar] [CrossRef]
- Achkar, W.A.; Aljapawe, A.; Liehr, T.; Wafa, A. De novo acute myeloid leukemia subtype-M4 with initial trisomy 8 and later acquired t(3;12)(q26;p12) leading to ETV6/MDS1/EVI1 fusion transcript expression: A case report. Oncol. Lett. 2014, 7, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Yang, J.J.; Han, Y.; Kim, S.; Yang, H.S.; Yoon, H.J.; Lee, J.H.; Lee, W.I.; Park, T.S. A Rare Case of ETV6/MECOM Rearrangement in Therapy-Related Acute Myeloid Leukemia with t(3;12) and Monosomy 7. Clin. Lab. 2017, 63, 415–418. [Google Scholar] [CrossRef]
- Noris, P.; Pecci, A. Hereditary thrombocytopenias: A growing list of disorders. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 385–399. [Google Scholar] [CrossRef] [Green Version]
- Shiba, N.; Yoshida, K.; Hara, Y.; Yamato, G.; Shiraishi, Y.; Matsuo, H.; Okuno, Y.; Chiba, K.; Tanaka, H.; Kaburagi, T.; et al. Transcriptome analysis offers a comprehensive illustration of the genetic background of pediatric acute myeloid leukemia. Blood Adv. 2019, 3, 3157–3169. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Yakushijin, K.; Ichikawa, H.; Okamura, A.; Nagao, S.; Kakiuchi, S.; Kurata, K.; Kawamoto, S.; Matsui, K.; Nakamachi, Y.; et al. Coexpression of ETV6/MDS1/EVI1 and ETV6/EVI1 fusion transcripts in acute myeloid leukemia with t(3;12)(q26.2;p13) and thrombocytosis. Leuk. Lymphoma 2019, 60, 1294–1298. [Google Scholar] [CrossRef]
- Aypar, U.; Yao, J.; Londono, D.M.; Khoobyar, R.; Scalise, A.; Arcila, M.E.; Roshal, M.; Xiao, W.; Zhang, Y. Rare and novel RUNX1 fusions in myeloid neoplasms: A single-institute experience. Genes Chromosomes Cancer 2021, 60, 100–107. [Google Scholar] [CrossRef]
- Nagel, S.; Pommerenke, C.; Meyer, C.; Drexler, H.G. NKL Homeobox Gene VENTX Is Part of a Regulatory Network in Human Conventional Dendritic Cells. Int. J. Mol. Sci. 2021, 22, 5902. [Google Scholar] [CrossRef]
- Ronaghy, A.; Hu, S.; Tang, Z.; Wang, W.; Tang, G.; Loghavi, S.; Medeiros, L.J.; Muzzafar, T. Myeloid neoplasms associated with t(3;12)(q26.2;p13) are clinically aggressive, show myelodysplasia, and frequently harbor chromosome 7 abnormalities. Mod. Pathol. 2021, 34, 300–313. [Google Scholar] [CrossRef]
- D’Angiò, M.; Fazio, G.; Grioni, A.; Palamini, S.; Sala, S.; Galbiati, M.; Biondi, A.; Balduzzi, A.; Rizzari, C.; Cazzaniga, G. High EVI1 Expression due to NRIP1/EVI1 Fusion in Therapy-related Acute Myeloid Leukemia: Description of the First Pediatric Case. Hemasphere 2020, 4, e471. [Google Scholar] [CrossRef]
- Stengel, A.; Shahswar, R.; Haferlach, T.; Walter, W.; Hutter, S.; Meggendorfer, M.; Kern, W.; Haferlach, C. Whole transcriptome sequencing detects a large number of novel fusion transcripts in patients with AML and MDS. Blood Adv. 2020, 4, 5393–5401. [Google Scholar] [CrossRef]
- Senyuk, V.; Sinha, K.K.; Li, D.; Rinaldi, C.R.; Yanamandra, S.; Nucifora, G. Repression of RUNX1 activity by EVI1: A new role of EVI1 in leukemogenesis. Cancer Res. 2007, 67, 5658–5666. [Google Scholar] [CrossRef] [Green Version]
- Tokita, K.; Maki, K.; Mitani, K. RUNX1/EVI1, which blocks myeloid differentiation, inhibits CCAAT-enhancer binding protein alpha function. Cancer Sci. 2007, 98, 1752–1757. [Google Scholar] [CrossRef]
- Kellaway, S.G.; Keane, P.; Kennett, E.; Bonifer, C. RUNX1-EVI1 disrupts lineage determination and the cell cycle by interfering with RUNX1 and EVI1 driven gene regulatory networks. Haematologica 2021, 106, 1569–1580. [Google Scholar] [CrossRef] [Green Version]
- Kiehlmeier, S.; Rafiee, M.R.; Bakr, A.; Mika, J.; Kruse, S.; Müller, J.; Schweiggert, S.; Herrmann, C.; Sigismondo, G.; Schmezer, P.; et al. Identification of therapeutic targets of the hijacked super-enhancer complex in EVI1-rearranged leukemia. Leukemia 2021, 35, 3127–3138. [Google Scholar] [CrossRef]
- Lennon, P.A.; Abruzzo, L.V.; Medeiros, L.J.; Cromwell, C.; Zhang, X.; Yin, C.C.; Kornblau, S.M.; Konopieva, M.; Lin, P. Aberrant EVI1 expression in acute myeloid leukemias associated with the t(3;8)(q26;q24). Cancer Genet. Cytogenet. 2007, 177, 37–42. [Google Scholar] [CrossRef]
- Xu, X.; Su, M.; Levy, N.B.; Mohtashamian, A.; Monaghan, S.; Kaur, P.; Zaremba, C.; Garcia, R.; Broome, H.E.; Dell’Aquila, M.L.; et al. Myeloid neoplasm with t(3;8)(q26;q24): Report of six cases and review of the literature. Leuk. Lymphoma 2014, 55, 2532–2537. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Hu, S.; Wang, S.A.; Xie, W.; Lin, P.; Xu, J.; Toruner, G.; Zhao, M.; Gu, J.; Doty, M.; et al. t(3;8)(q26.2;q24) Often Leads to MECOM/MYC Rearrangement and Is Commonly Associated with Therapy-Related Myeloid Neoplasms and/or Disease Progression. J. Mol. Diagn. 2019, 21, 343–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ottema, S.; Mulet-Lazaro, R.; Erpelinck-Verschueren, C.; van Herk, S.; Havermans, M.; Arricibita Varea, A.; Vermeulen, M.; Beverloo, H.B.; Gröschel, S.; Haferlach, T.; et al. The leukemic oncogene EVI1 hijacks a MYC super-enhancer by CTCF-facilitated loops. Nat. Commun. 2021, 12, 5679. [Google Scholar] [CrossRef] [PubMed]
- Hinai, A.A.; Valk, P.J. Review: Aberrant EVI1 expression in acute myeloid leukaemia. Br. J. Haematol. 2016, 172, 870–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gröschel, S.; Lugthart, S.; Schlenk, R.F.; Valk, P.J.; Eiwen, K.; Goudswaard, C.; van Putten, W.J.; Kayser, S.; Verdonck, L.F.; Lübbert, M.; et al. High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J. Clin. Oncol. 2010, 28, 2101–2107. [Google Scholar] [CrossRef]
- Ayoub, E.; Wilson, M.P.; McGrath, K.E.; Li, A.J.; Frisch, B.J.; Palis, J.; Calvi, L.M.; Zhang, Y.; Perkins, A.S. EVI1 overexpression reprograms hematopoiesis via upregulation of Spi1 transcription. Nat. Commun. 2018, 9, 4239. [Google Scholar] [CrossRef] [Green Version]
- Meyer, S.; Fergusson, W.D.; Whetton, A.D.; Moreira-Leite, F.; Pepper, S.D.; Miller, C.; Saunders, E.K.; White, D.J.; Will, A.M.; Eden, T.; et al. Amplification and translocation of 3q26 with overexpression of EVI1 in Fanconi anemia-derived childhood acute myeloid leukemia with biallelic FANCD1/BRCA2 disruption. Genes Chromosomes Cancer 2007, 46, 359–372. [Google Scholar] [CrossRef]
- Grygalewicz, B.; Woroniecka, R.; Pastwińska, A.; Rygier, J.; Krawczyk, P.; Borg, K.; Makuch-Łasica, H.; Patkowska, E.; Pieńkowska-Grela, B. Acute panmyelosis with myelofibrosis with EVI1 amplification. Cancer Genet. 2012, 205, 255–260. [Google Scholar] [CrossRef]
- Volkert, S.; Schnittger, S.; Zenger, M.; Kern, W.; Haferlach, T.; Haferlach, C. Amplification of EVI1 on cytogenetically cryptic double minutes as new mechanism for increased expression of EVI1. Cancer Genet. 2014, 207, 103–108. [Google Scholar] [CrossRef]
- Zhao, M.; Medeiros, L.J.; Wang, W.; Tang, G.; Jung, H.S.; Sfamenos, S.M.; Fang, H.; Toruner, G.A.; Hu, S.; Yin, C.C.; et al. Newly designed breakapart FISH probe helps to identify cases with true MECOM rearrangement in myeloid malignancies. Cancer Genet. 2022, 262–263, 23–29. [Google Scholar] [CrossRef]
- Gianelli, U.; Vener, C.; Bossi, A.; Cortinovis, I.; Iurlo, A.; Fracchiolla, N.S.; Savi, F.; Moro, A.; Grifoni, F.; De Philippis, C.; et al. The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mod. Pathol. 2012, 25, 1193–1202. [Google Scholar] [CrossRef] [Green Version]
- Tashakori, M.; Kadia, T.; Loghavi, S.; Daver, N.; Kanagal-Shamanna, R.; Pierce, S.; Sui, D.; Wei, P.; Khodakarami, F.; Tang, Z.; et al. TP53 copy number and protein expression inform mutation status across risk categories in acute myeloid leukemia. Blood 2022, 140, 58–72. [Google Scholar] [CrossRef]
- Grigg, A.P.; Gascoyne, R.D.; Phillips, G.L.; Horsman, D.E. Clinical, haematological and cytogenetic features in 24 patients with structural rearrangements of the Q arm of chromosome 3. Br. J. Haematol. 1993, 83, 158–165. [Google Scholar] [CrossRef]
- Heimann, P.; Vamos, E.; Ferster, A.; Sariban, E. Granulocytic sarcoma showing chromosomal changes other than the t(8;21). Cancer Genet. Cytogenet. 1994, 74, 59–61. [Google Scholar] [CrossRef]
- Shi, G.; Weh, H.J.; Martensen, S.; Seeger, D.; Hossfeld, D.K. 3p21 is a recurrent treatment-related breakpoint in myelodysplastic syndrome and acute myeloid leukemia. Cytogenet. Cell Genet. 1996, 74, 295–299. [Google Scholar] [CrossRef]
- Smith, A.; Heaps, L.S.; Sharma, P.; Jarvis, A.; Forsyth, C. Abnormal dicentric chromosome with co-amplification of sequences from chromosomes 11 and 19: A novel rearrangement in a patient with myelodysplastic syndrome transforming to acute myeloid leukemia. Cancer Genet. Cytogenet. 2001, 130, 29–32. [Google Scholar] [CrossRef]
- Poppe, B.; Dastugue, N.; Vandesompele, J.; Cauwelier, B.; De Smet, B.; Yigit, N.; De Paepe, A.; Cervera, J.; Recher, C.; De Mas, V.; et al. EVI1 is consistently expressed as principal transcript in common and rare recurrent 3q26 rearrangements. Genes Chromosomes Cancer 2006, 45, 349–356. [Google Scholar] [CrossRef]
- Najfeld, V.; Cozza, A.; Berkofsy-Fessler, W.; Prchal, J.; Scalise, A. Numerical gain and structural rearrangements of JAK2, identified by FISH, characterize both JAK2617V>F-positive and -negative patients with Ph-negative MPD, myelodysplasia, and B-lymphoid neoplasms. Exp. Hematol. 2007, 35, 1668–1676. [Google Scholar] [CrossRef]
- Kawashima, N.; Shimada, A.; Taketani, T.; Hayashi, Y.; Yoshida, N.; Matsumoto, K.; Takahashi, Y.; Kojima, S.; Kato, K. Childhood acute myeloid leukemia with bone marrow eosinophilia caused by t(16;21)(q24;q22). Int. J. Hematol. 2012, 95, 577–580. [Google Scholar] [CrossRef]
- Summerer, I.; Haferlach, C.; Meggendorfer, M.; Kern, W.; Haferlach, T.; Stengel, A. Prognosis of MECOM (EVI1)-rearranged MDS and AML patients rather depends on accompanying molecular mutations than on blast count. Leuk. Lymphoma 2020, 61, 1756–1759. [Google Scholar] [CrossRef]
- Dias, A.; Al-Kali, A.; Van Dyke, D.; Niederwieser, D.; Vucinic, V.; Lemke, J.; Muller, C.; Schwind, S.; Teichmann, A.C.; Bakken, R.; et al. Inversion 3 Cytogenetic Abnormality in an Allogeneic Hematopoietic Cell Transplant Recipient Representative of a Donor-Derived Constitutional Abnormality. Biol. Blood Marrow. Transplant. 2017, 23, 1582–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Gurbuxani, S.; Zak, T.; Kocherginsky, M.; Ji, P.; Wehbe, F.; Chen, Q.; Chen, Y.H.; Lu, X.; Jennings, L.; et al. Comparison of myeloid neoplasms with nonclassic 3q26.2/MECOM versus classic inv(3)/t(3;3) rearrangements reveals diverse clinicopathologic features, genetic profiles, and molecular mechanisms of MECOM activation. Genes Chromosomes Cancer 2022, 61, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Fenouille, N.; Bassil, C.F.; Ben-Sahra, I.; Benajiba, L.; Alexe, G.; Ramos, A.; Pikman, Y.; Conway, A.S.; Burgess, M.R.; Li, Q.; et al. The creatine kinase pathway is a metabolic vulnerability in EVI1-positive acute myeloid leukemia. Nat. Med. 2017, 23, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Gbyli, R.; Song, Y.; Liu, W.; Gao, Y.; Biancon, G.; Chandhok, N.S.; Wang, X.; Fu, X.; Patel, A.; Sundaram, R.; et al. In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2. Leukemia 2022, 36, 1313–1323. [Google Scholar] [CrossRef]
- Fritz, C.; Portwood, S.M.; Przespolewski, A.; Wang, E.S. PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Blood Rev. 2021, 45, 100696. [Google Scholar] [CrossRef]
- Yang, H.; Garcia-Manero, G.; Sasaki, K.; Montalban-Bravo, G.; Tang, Z.; Wei, Y.; Kadia, T.; Chien, K.; Rush, D.; Nguyen, H.; et al. High-resolution structural variant profiling of myelodysplastic syndromes by optical genome mapping uncovers cryptic ab-errations of prognostic and therapeutic significance. Leukemia 2022, 36, 2306–2316. [Google Scholar] [CrossRef]
- Gröschel, S.; Sanders, M.A.; Hoogenboezem, R.; Zeilemaker, A.; Havermans, M.; Erpelinck, C.; Bindels, E.M.; Beverloo, H.B.; Döhner, H.; Löwenberg, B.; et al. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways. Blood 2015, 125, 133–139. [Google Scholar] [CrossRef]
- Schwartz, J.R.; Ma, J.; Kamens, J.; Westover, T.; Walsh, M.P.; Brady, S.W.; Robert Michael, J.; Chen, X.; Montefiori, L.; Song, G.; et al. The acquisition of molecular drivers in pediatric therapy-related myeloid neoplasms. Nat. Commun. 2021, 12, 985. [Google Scholar] [CrossRef]
Case | Age (y)/Sex | Diagnosis * | Treatment | Outcome | OS-1 (m) | OS-2 (m) |
---|---|---|---|---|---|---|
1 | 55/M | AML | Multi-lines of chemotherapy, cord blood SCT Ipilimumab, Nivolumab; NK-CAR | D | 41 | 41 |
2 | 80/M | AML | Multi-lines of chemotherapy | D | 35 | 36 |
3 | 72/F | AML-MRC | Multi-lines of chemotherapy | PD | 2 | 62 |
4 | 70/M | AML | Multi-lines of chemotherapy | D | 2 | 7 |
5 | 61/M | AML | Multi-lines of chemotherapy, gemtuzumab | D | 5 | 22 |
6 | 54/M | AML | Multi-lines of chemotherapy; SCT; tegavivint (beta-catenin inhibitor) | D | 11 | 14 |
7 | 70/M | AML | Multi-lines of chemotherapy; PLX51107 (BRD4 inhibitor) | D | 7 | 14 |
8 | 85/F | AML-MRC | Multi-lines of chemotherapy, quizartinib | D | 14 | 17 |
9 | 69/F | AML-MRC | Multi-lines of chemotherapy | D | 4 | 54 |
10 | 81/M | CMML | Multi-lines of chemotherapy; then maintained with transfusion | PR | 6 | 10 |
11 | 67/M | t-AML | Multi-lines of chemotherapy | D | 4 | 19 |
12 | 78/M | t-AML | Multi-lines of chemotherapy | D | 7 | 16 |
13 | 45/F | t-AML | Ara-C | D | 1 | 1 |
14 | 76/M | t-MDS | Not treated for MDS | D | 0 | 8 |
15 | 53/M | AML | Multi-lines of chemotherapy, gilteritinib | D | 2 | 8 |
16 | 66/M | AML | Multi-lines of chemotherapy | D | 4 | 14 |
17 | 42/M | t-AML | Multi-lines of chemotherapy | PD | 1 | 10 |
Case | Peripheral Blood Findings | Bone Marrow Findings | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
WBC (109/L) | Hgb (g/dL) | Plt (109/L) | Blasts (%) | Mono (%) | Cellularity (%) | Blasts (%) | Mono (%) | Meg | Dysplasia | MF | |
1 | 0.7 | 6.6 | 236 | 22 | 16 | 90 | 90 | 0 | Dec | Meg, E | NA |
2 | 3.7 | 7.6 | 104 | 3 | 52 | 55 | 42 | 14 | Inc | Meg, G, E | MF-0 |
3 | 1 | 10 | 40 | 3 | 9 | 50 | 27 | 6 | Inc | Meg, G, E | MF-0 |
4 | 1.3 | 10.9 | 29 | 30 | 12 | 75 | 54 | 2 | Dec | NA * | MF-0 |
5 | 6.65 | 7.9 | 44 | 0 | 43 | 80 | 27 | 9 | Dec | G, E | NA |
6 | 1.4 | 9.5 | 46 | 72 | 0 | 80 | 46 | 11 | Inc | Meg, G | MF-1 |
7 | 7.3 | 9.6 | 21 | 20 | 18 | 90 | 57 | 1 | Dec | Meg, G, E | MF-1 |
8 | 15.4 | 7.7 | 20 | 4 | 22 | 80 | 30 | 9 | Dec | Meg, G, E | MF-1 |
9 | 1.5 | 8.9 | 15 | 8 | 14 | 20 | 26 | 21 | Dec | Meg, G | MF-1 |
10 | 6.7 | 8 | 225 | 0 | 26 | 70 | 4 | 14 | Inc | Meg, G, E | MF-0 |
11 | 46.5 | 6.5 | 11 | 42 | 47 | 95 | 73 | 16 | Dec | NA * | MF-1 |
12 | 3.7 | 10.7 | 44 | 17 | 22 | 80 | 10 | 1 | Dec | G, E | NA |
13 | 96 | 8 | 11 | 3 | 15 | 65 | 33 | 9 | Dec | Meg, G, E | MF-0 |
14 | 20.3 | 9.3 | 121 | 0 | 15 | 50 | 1 | 4 | Inc | Meg, G, E | NA |
15 | 96.5 | 8.6 | 116 | 76 | 4 | 100 | 56 | 8 | Dec | Meg, G, E | MF-1 |
16 | 2.2 | 6.8 | 29 | 10 | 8 | 60 | 31 | 5 | Dec | Meg, E | NA |
17 | 9.1 | 8 | 19 | 17 | 20 | 60 | 21 | 2 | Ade | E | MF-1 |
Case | Final Karyotype | Pericentric Inv(3) | 7q-/−7 | MECOM FISH | Outside Reports | Interval (m) |
---|---|---|---|---|---|---|
1 | 46~47,XY,der(3)inv(3)(p13q26.2)inv(3)(p23q25),add(4)(q21),−6,del(9)(q21),der(10)t(1;10)(q12;p12),−20,+2mar[cp4]//46,XX[16] | inv(3)(p13q26.2) | no | pos | der(3), MECOM-R by FISH | 24 |
2 | 46,XY,inv(3)(p25q26.2)[18]/46,XY[2] | inv(3)(p21q26.2) | no | pos * | inv(3), MECOM-R by FISH | 0 |
3 | 48,XX,del(5)(q22q35),+8, +8[14]/44,XX,+ 1,der(1;14)(q10;q10),inv(3)(p21q26.2),del(5)(q22q35),add(14)(p11.2),−16,−20[6] | inv(3)(p21q26.2) | no | pos | 5q- | 0 |
4 | 45,XY,inv(3)(p23q26.2),-7,add(8)(q24.1),del(20)(q11.2q13.1)[20] | inv(3)(p23q26.2) | yes | pos | t(3;8), −7, del20q | 5 |
5 | 45,XY,inv(3)(p23q26.2),−7,t(17;21)(q11.2;q22)[15]/45,idem,der(22)t(1;22)(q21;p12)[5] | inv(3)(p23q26.2) | yes | pos | −7 | 16 |
6 | 46,XY,inv(3)(p23q26),−7,+21[20] | inv(3)(p23q26.2) | yes | pos | −7 | 2 |
7 | 45,XY,inv(3)(p23q26.2),−7[8]/46,XY[12] | inv(3)(p23q26.2) | yes | pos | −7 | 7 |
8 | 46,XX,inv(3)(p23q26.2)[18]/45,idem,t(4;5)(q21;p15.1),−21[1]/47,XX,add(5)(p15.3),+13[1] | inv(3)(p23q26.2) | no | pos * | +13 | 2 |
9 | 46,XX,+1,der(1;16)(q10;p10),inv(3)(p23q26.2),del(5)(q13q33),add(7)(p13)[cp5]/71,XXX,+1,der(1;16)(q10;p10),inv(3)(p23q26.2)x2,del(5)(q13q33),+19,+21[3]/66~71,XXX,+1,der(1;16)(q10;p10),inv(3)(p23q26.2)x2,del(5)(q13q33),+19,+21,+22[cp12] | inv(3)(p23q26.2) | no | pos | −5, + 8, der(16)t(1;16)(q21;q12) | 50 |
10 | 45,XY,inv(3)(p23q26.2),−7,del(11)(q21)[5]/46,XY[15] | inv(3)(p23q26.2) | yes | pos | −7, del11q | 12 |
11 | 46,XY,inv(3)(p23q26.2),r(7)[20] | inv(3)(p23q26.2) | yes | pos | −7 | 4 |
12 | 45,XY,inv(3)(p23q26.2),−7[19]/46,XY[1] | inv(3)(p23q26.2) | yes | pos | −7, MECOM-R by FISH | 8 |
13 | 44~45,XX,add(1)(p13),add(2)(q31),inv(3)(p23q26.2),del(4)(q28),−5,−7,del(12)(p13),+mar[cp20] | inv(3)(p23q26.2) | yes | pos | n/a | 0 |
14 | 46,XY,inv(3)(p23q26.2),del(7)(q22q34)[10]/46,XY[10] | inv(3)(p23q26.2) | yes | pos * | add7q | 8 |
15 | 45,XY,inv(3)(p25q26.2),−7[19]/40,idem,−4,−6,−10,add(11)(q22),add(17)(p13),−19,−21[1] | inv(3)(p25q26.2) | yes | pos | n/a | 5 |
16 | 45,XY,inv(3)(p25q26.2),−7[2]/47,idem,+8,+21[18] | inv(3)(p25q26.2) | yes | pos * | −7 | 9 |
17 | 45,XX,inv(3)(p25q26.2),−7[20] | inv(3)(p25q26.2) | yes | pos | −7 | 10 |
Year of Publication | Ref# | PMID | Pericentric inv(3)s | # of Cases Reported | # of MECOMre+ by FISH | # of MECOMre− or Unknown |
---|---|---|---|---|---|---|
1993 | [54] | 8435325 | inv(3)(p25q27) | 1 | 0 | 1 |
1994 | [55] | 8194049 | inv(3)(p21q27) | 1 | 0 | 1 |
1996 | [56] | 8976389 | inv(3)(p21q26) | 1 | 0 | 1 |
2001 | [57] | 11672770 | inv(3)(p21q26) | 1 | 0 | 1 |
2006 | [58] | 16342172 | inv(3)(p12q26) | 1 | 1 | 0 |
2007 | [59] | 17976519 | inv(3)(p13q26)(n = 2) | 1 | 0 | 1 |
2010 | [3] | 20660833 | inv(3)(p21q26), inv(3)(p25q26) (n = 2), inv(3)(p13q26), inv(3)(p21q27~29), inv(3)(p21q27) | 6 | 3 | 3 |
2012 | [60] | 22403058 | inv(3)(p23q26) | 1 | 0 | 1 |
2012 * | [16] | 22887804 | inv(3)(p24q26) (n = 10) | 10 * | 10 * | 0 |
2017 | [62] | 28549770 | inv(3)(p21.3q26.2) ** transmitted from donor to recipient | 1 | 0 | 1 |
2020 * | [61] | 32189545 | inv(3)(p24q26) (n = 9) | 9 * | 9 * | 0 |
2022 | [63] | 34668265 | inv(3)(p23q26.2), inv(3)(p24q26.2) | 2 | 2 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Wang, W.; Yang, S.; El Achi, H.; Fang, H.; Nahmod, K.A.; Toruner, G.A.; Xu, J.; Thakral, B.; Ayoub, E.; et al. 3q26.2/MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers 2023, 15, 458. https://doi.org/10.3390/cancers15020458
Tang Z, Wang W, Yang S, El Achi H, Fang H, Nahmod KA, Toruner GA, Xu J, Thakral B, Ayoub E, et al. 3q26.2/MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers. 2023; 15(2):458. https://doi.org/10.3390/cancers15020458
Chicago/Turabian StyleTang, Zhenya, Wei Wang, Su Yang, Hanadi El Achi, Hong Fang, Karen Amelia Nahmod, Gokce A. Toruner, Jie Xu, Beenu Thakral, Edward Ayoub, and et al. 2023. "3q26.2/MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features" Cancers 15, no. 2: 458. https://doi.org/10.3390/cancers15020458
APA StyleTang, Z., Wang, W., Yang, S., El Achi, H., Fang, H., Nahmod, K. A., Toruner, G. A., Xu, J., Thakral, B., Ayoub, E., Issa, G. C., Yin, C. C., You, M. J., Miranda, R. N., Khoury, J. D., Medeiros, L. J., & Tang, G. (2023). 3q26.2/MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers, 15(2), 458. https://doi.org/10.3390/cancers15020458