Current Understanding of DDX41 Mutations in Myeloid Neoplasms
Abstract
:Simple Summary
Abstract
1. Introduction
2. DDX41 Mutations and Their Role in MDS/AML Pathogenesis
3. Pathologic Features of Myeloid Neoplasms with DDX41 Mutations
4. Clinical Presentation and Outcomes
5. Treatment—General Approaches
6. Treatment—Special Considerations: SCT
7. Family Screening and Surveillance
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montalban-Bravo, G.; Kanagal-Shamanna, R.; Class, C.A.; Sasaki, K.; Ravandi, F.; Cortes, J.E.; Daver, N.; Takahashi, K.; Short, N.J.; DiNardo, C.D.; et al. Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am. J. Hematol. 2020, 95, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Kanagal-Shamanna, R.; Montalban-Bravo, G.; Assi, R.; Jabbour, E.; Ravandi, F.; Kadia, T.; Pierce, S.; Takahashi, K.; Nogueras Gonzalez, G.; et al. Impact of the variant allele frequency of ASXL1, DNMT3A, JAK2, TET2, TP53, and NPM1 on the outcomes of patients with newly diagnosed acute myeloid leukemia. Cancer 2020, 126, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Kantarjian, H.M.; Wang, F.; Yan, Y.; Bueso-Ramos, C.; Sasaki, K.; Issa, G.C.; Wang, S.; Jorgensen, J.; Song, X.; et al. Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.S.; Class, C.A.; Montalban-Bravo, G.; Wei, Y.; Sasaki, K.; Naqvi, K.; Ganan-Gomez, I.; Yang, H.; Soltysiak, K.A.; Kanagal-Shamanna, R.; et al. LILRB4 expression in chronic myelomonocytic leukemia and myelodysplastic syndrome based on response to hypomethylating agents. Leuk. Lymphoma 2020, 61, 1493–1499. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.E.; Montalban-Bravo, G.; Luthra, R.; Patel, K.P.; Sasaki, K.; Bueso-Ramos, C.E.; Khoury, J.D.; Routbort, M.J.; Bassett, R.; Hidalgo-Lopez, J.E.; et al. Clinico-pathologic characteristics and outcomes of the World Health Organization (WHO) provisional entity de novo acute myeloid leukemia with mutated RUNX1. Mod. Pathol. 2020, 33, 1678–1689. [Google Scholar] [CrossRef]
- Lachowiez, C.A.; Loghavi, S.; Furudate, K.; Montalban-Bravo, G.; Maiti, A.; Kadia, T.; Daver, N.; Borthakur, G.; Pemmaraju, N.; Sasaki, K.; et al. Impact of splicing mutations in acute myeloid leukemia treated with hypomethylating agents combined with venetoclax. Blood Adv. 2021, 5, 2173–2183. [Google Scholar] [CrossRef]
- Venugopal, S.; Shoukier, M.; Konopleva, M.; Dinardo, C.D.; Ravandi, F.; Short, N.J.; Andreeff, M.; Borthakur, G.; Daver, N.; Pemmaraju, N.; et al. Outcomes in patients with newly diagnosed TP53-mutated acute myeloid leukemia with or without venetoclax-based therapy. Cancer 2021, 127, 3541–3551. [Google Scholar] [CrossRef]
- Kim, K.; Maiti, A.; Loghavi, S.; Pourebrahim, R.; Kadia, T.M.; Rausch, C.R.; Furudate, K.; Daver, N.G.; Alvarado, Y.; Ohanian, M.; et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer 2021, 127, 3772–3781. [Google Scholar] [CrossRef]
- Issa, G.C.; Zarka, J.; Sasaki, K.; Qiao, W.; Pak, D.; Ning, J.; Short, N.J.; Haddad, F.; Tang, Z.; Patel, K.P.; et al. Predictors of outcomes in adults with acute myeloid leukemia and KMT2A rearrangements. Blood Cancer J. 2021, 11, 162. [Google Scholar] [CrossRef]
- Sasaki, K.; Kadia, T.; Begna, K.; DiNardo, C.D.; Borthakur, G.; Short, N.J.; Jain, N.; Daver, N.; Jabbour, E.; Garcia-Manero, G.; et al. Prediction of early (4-week) mortality in acute myeloid leukemia with intensive chemotherapy. Am. J. Hematol. 2022, 97, 68–78. [Google Scholar] [CrossRef]
- Fiskus, W.; Boettcher, S.; Daver, N.; Mill, C.P.; Sasaki, K.; Birdwell, C.E.; Davis, J.A.; Takahashi, K.; Kadia, T.M.; DiNardo, C.D.; et al. Effective Menin inhibitor-based combinations against AML with MLL rearrangement or NPM1 mutation (NPM1c). Blood Cancer. J. 2022, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, K.; Ravandi, F.; Kadia, T.; DiNardo, C.; Borthakur, G.; Short, N.; Jain, N.; Daver, N.; Jabbour, E.; Garcia-Manero, G.; et al. Prediction of survival with intensive chemotherapy in acute myeloid leukemia. Am. J. Hematol. 2022, 97, 865–876. [Google Scholar] [CrossRef]
- Jabbour, E.; Faderl, S.; Sasaki, K.; Kadia, T.; Daver, N.; Pemmaraju, N.; Patel, K.; Khoury, J.D.; Bueso-Ramos, C.; Bohannan, Z.; et al. Phase 2 study of low-dose clofarabine plus cytarabine for patients with higher-risk myelodysplastic syndrome who have relapsed or are refractory to hypomethylating agents. Cancer 2017, 123, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbour, E.; Short, N.J.; Montalban-Bravo, G.; Huang, X.; Bueso-Ramos, C.; Qiao, W.; Yang, H.; Zhao, C.; Kadia, T.; Borthakur, G.; et al. Randomized phase 2 study of low-dose decitabine vs low-dose azacitidine in lower-risk MDS and MDS/MPN. Blood 2017, 130, 1514–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, N.J.; Jabbour, E.; Naqvi, K.; Patel, A.; Ning, J.; Sasaki, K.; Nogueras-Gonzalez, G.M.; Bose, P.; Kornblau, S.M.; Takahashi, K.; et al. A phase II study of omacetaxine mepesuccinate for patients with higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia after failure of hypomethylating agents. Am. J. Hematol. 2019, 94, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Montalban-Bravo, G.; Kanagal-Shamanna, R.; Sasaki, K.; Patel, K.; Ganan-Gomez, I.; Jabbour, E.; Kadia, T.; Ravandi, F.; DiNardo, C.; Borthakur, G.; et al. NPM1 mutations define a specific subgroup of MDS and MDS/MPN patients with favorable outcomes with intensive chemotherapy. Blood Adv. 2019, 3, 922–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montalban-Bravo, G.; Class, C.A.; Ganan-Gomez, I.; Kanagal-Shamanna, R.; Sasaki, K.; Richard-Carpentier, G.; Naqvi, K.; Wei, Y.; Yang, H.; Soltysiak, K.A.; et al. Transcriptomic analysis implicates necroptosis in disease progression and prognosis in myelodysplastic syndromes. Leukemia 2020, 34, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Kanagal-Shamanna, R.; Benton, C.B.; Class, C.A.; Chien, K.S.; Sasaki, K.; Naqvi, K.; Alvarado, Y.; Kadia, T.M.; Ravandi, F.; et al. Genomic context and TP53 allele frequency define clinical outcomes in TP53-mutated myelodysplastic syndromes. Blood Adv. 2020, 4, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Ravandi, F.; Kadia, T.M.; DiNardo, C.D.; Short, N.J.; Borthakur, G.; Jabbour, E.; Kantarjian, H.M. De novo acute myeloid leukemia: A population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer 2021, 127, 2049–2061. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Lachowiez, C.A.; Takahashi, K.; Loghavi, S.; Kadia, T.; Daver, N.; Xiao, L.; Adeoti, M.; Short, N.J.; Sasaki, K.; et al. Venetoclax combined with FLAG-IDA induction and consolidation in newly diagnosed acute myeloid leukemia. Am. J. Hematol. 2022, 97, 1035–1043. [Google Scholar] [CrossRef]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef] [PubMed]
- Kadia, T.M.; Reville, P.K.; Wang, X.; Rausch, C.R.; Borthakur, G.; Pemmaraju, N.; Daver, N.G.; DiNardo, C.D.; Sasaki, K.; Issa, G.C.; et al. Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia. J. Clin. Oncol. 2022, 40, 3848–3857. [Google Scholar] [CrossRef] [PubMed]
- Yalniz, F.; Abou Dalle, I.; Kantarjian, H.; Borthakur, G.; Kadia, T.; Patel, K.; Loghavi, S.; Garcia-Manero, G.; Sasaki, K.; Daver, N.; et al. Prognostic significance of baseline FLT3-ITD mutant allele level in acute myeloid leukemia treated with intensive chemotherapy with/without sorafenib. Am. J. Hematol. 2019, 94, 984–991. [Google Scholar] [CrossRef]
- Sasaki, K.; Kantarjian, H.M.; Kadia, T.; Patel, K.; Loghavi, S.; Garcia-Manero, G.; Jabbour, E.J.; DiNardo, C.; Pemmaraju, N.; Daver, N.; et al. Sorafenib plus intensive chemotherapy improves survival in patients with newly diagnosed, FLT3-internal tandem duplication mutation-positive acute myeloid leukemia. Cancer 2019, 125, 3755–3766. [Google Scholar] [CrossRef]
- Maiti, A.; Franquiz, M.J.; Ravandi, F.; Cortes, J.E.; Jabbour, E.J.; Sasaki, K.; Marx, K.; Daver, N.G.; Kadia, T.M.; Konopleva, M.Y.; et al. Venetoclax and BCR-ABL Tyrosine Kinase Inhibitor Combinations: Outcome in Patients with Philadelphia Chromosome-Positive Advanced Myeloid Leukemias. Acta Haematol. 2020, 143, 567–573. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Ghorab, A.; Patel, K.; Wang, X.; Hwang, H.; Cortes, J.; Issa, G.C.; Yalniz, F.; Sasaki, K.; Chihara, D.; et al. Impact of numerical variation, allele burden, mutation length and co-occurring mutations on the efficacy of tyrosine kinase inhibitors in newly diagnosed FLT3- mutant acute myeloid leukemia. Blood Cancer J. 2020, 10, 48. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmaraju, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Ohanian, M.; Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: A single-centre, phase 2 trial. Lancet Haematol. 2020, 7, e724–e736. [Google Scholar] [CrossRef]
- Shoukier, M.; Kadia, T.; Konopleva, M.; Alotaibi, A.S.; Alfayez, M.; Loghavi, S.; Patel, K.P.; Kanagal-Shamanna, R.; Cortes, J.; Samra, B.; et al. Clinical characteristics and outcomes in patients with acute myeloid leukemia with concurrent FLT3-ITD and IDH mutations. Cancer 2021, 127, 381–390. [Google Scholar] [CrossRef]
- Maiti, A.; Qiao, W.; Sasaki, K.; Ravandi, F.; Kadia, T.M.; Jabbour, E.J.; Daver, N.G.; Borthakur, G.; Garcia-Manero, G.; Pierce, S.A.; et al. Venetoclax with decitabine vs. intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am. J. Hematol. 2021, 96, 282–291. [Google Scholar] [CrossRef]
- Yilmaz, M.; Kantarjian, H.; Short, N.J.; Reville, P.; Konopleva, M.; Kadia, T.; DiNardo, C.; Borthakur, G.; Pemmaraju, N.; Maiti, A.; et al. Hypomethylating agent and venetoclax with FLT3 inhibitor “triplet” therapy in older/unfit patients with FLT3 mutated AML. Blood Cancer J. 2022, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 2018, 173, 355–370.e314. [Google Scholar] [CrossRef] [Green Version]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
- Polprasert, C.; Schulze, I.; Sekeres, M.A.; Makishima, H.; Przychodzen, B.; Hosono, N.; Singh, J.; Padgett, R.A.; Gu, X.; Phillips, J.G.; et al. Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms. Cancer Cell 2015, 27, 658–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebert, M.; Passet, M.; Raimbault, A.; Rahme, R.; Raffoux, E.; Sicre de Fontbrune, F.; Cerrano, M.; Quentin, S.; Vasquez, N.; Da Costa, M.; et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood 2019, 134, 1441–1444. [Google Scholar] [CrossRef] [PubMed]
- Quesada, A.E.; Routbort, M.J.; DiNardo, C.D.; Bueso-Ramos, C.E.; Kanagal-Shamanna, R.; Khoury, J.D.; Thakral, B.; Zuo, Z.; Yin, C.C.; Loghavi, S.; et al. DDX41 mutations in myeloid neoplasms are associated with male gender, TP53 mutations and high-risk disease. Am. J. Hematol. 2019, 94, 757–766. [Google Scholar] [CrossRef]
- Makishima, H.; Saiki, R.; Nannya, Y.; Korotev, S.C.; Gurnari, C.; Takeda, J.; Momozawa, Y.; Best, S.; Krishnamurthy, P.; Yoshizato, T.; et al. Germline DDX41 mutations define a unique subtype of myeloid neoplasms. Blood 2022. [Google Scholar] [CrossRef]
- Kadono, M.; Kanai, A.; Nagamachi, A.; Shinriki, S.; Kawata, J.; Iwato, K.; Kyo, T.; Oshima, K.; Yokoyama, A.; Kawamura, T.; et al. Biological implications of somatic DDX41 p.R525H mutation in acute myeloid leukemia. Exp. Hematol. 2016, 44, 745–754.e744. [Google Scholar] [CrossRef] [Green Version]
- Chlon, T.M.; Stepanchick, E.; Hershberger, C.E.; Daniels, N.J.; Hueneman, K.M.; Kuenzi Davis, A.; Choi, K.; Zheng, Y.; Gurnari, C.; Haferlach, T.; et al. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell 2021, 28, 1966–1981.e1966. [Google Scholar] [CrossRef]
- Lee, K.G.; Kim, S.S.; Kui, L.; Voon, D.C.; Mauduit, M.; Bist, P.; Bi, X.; Pereira, N.A.; Liu, C.; Sukumaran, B.; et al. Bruton’s tyrosine kinase phosphorylates DDX41 and activates its binding of dsDNA and STING to initiate type 1 interferon response. Cell Rep. 2015, 10, 1055–1065. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, B.; Bao, M.; Lu, N.; Kim, T.; Liu, Y.J. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 2011, 12, 959–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Mahmud, N.; Bosland, M.C.; Ross, S.R. DDX41 is needed for pre- and postnatal hematopoietic stem cell differentiation in mice. Stem Cell Rep. 2022, 17, 879–893. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhu, Y.; Liu, Z.J.; Ouyang, S. The emerging roles of the DDX41 protein in immunity and diseases. Protein Cell 2017, 8, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosler, T.; Conte, F.; Longo, G.M.C.; Mikicic, I.; Kreim, N.; Mockel, M.M.; Petrosino, G.; Flach, J.; Barau, J.; Luke, B.; et al. R-loop proximity proteomics identifies a role of DDX41 in transcription-associated genomic instability. Nat. Commun. 2021, 12, 7314. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.T.; Ghazale, N.; Pradhan, K.; Gupta, V.; Potts, K.S.; Tricomi, B.; Daniels, N.J.; Padgett, R.A.; De Oliveira, S.; Verma, A.; et al. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Dev. Cell 2021, 56, 627–640.e625. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Cho, Y.U.; Hur, E.H.; Jang, S.; Kim, N.; Park, H.S.; Lee, J.H.; Lee, K.H.; Kim, S.H.; Hwang, S.H.; et al. Unique ethnic features of DDX41 mutations in patients with idiopathic cytopenia of undetermined significance, myelodysplastic syndrome, or acute myeloid leukemia. Haematologica 2022, 107, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Churpek, J.E.; Smith-Simmer, K. DDX41-Associated Familial Myelodysplastic Syndrome and Acute Myeloid Leukemia. Available online: https://www.ncbi.nlm.nih.gov/books/NBK574843/ (accessed on 15 August 2022).
- Wan, Z.; Han, B. Clinical features of DDX41 mutation-related diseases: A systematic review with individual patient data. Ther. Adv. Hematol. 2021, 12, 20406207211032433. [Google Scholar] [CrossRef]
- Lewinsohn, M.; Brown, A.L.; Weinel, L.M.; Phung, C.; Rafidi, G.; Lee, M.K.; Schreiber, A.W.; Feng, J.; Babic, M.; Chong, C.E.; et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood 2016, 127, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Brown, S.; Williams, M.; White, T.; Xie, W.; Cui, W.; Peker, D.; Lei, L.; Kunder, C.A.; Wang, H.Y.; et al. The genetic landscape of germline DDX41 variants predisposing to myeloid neoplasms. Blood 2022, 140, 716–755. [Google Scholar] [CrossRef]
- Bannon, S.A.; Routbort, M.J.; Montalban-Bravo, G.; Mehta, R.S.; Jelloul, F.Z.; Takahashi, K.; Daver, N.; Oran, B.; Pemmaraju, N.; Borthakur, G.; et al. Next-Generation Sequencing of DDX41 in Myeloid Neoplasms Leads to Increased Detection of Germline Alterations. Front. Oncol. 2020, 10, 582213. [Google Scholar] [CrossRef]
- Cheah, J.J.C.; Hahn, C.N.; Hiwase, D.K.; Scott, H.S.; Brown, A.L. Myeloid neoplasms with germline DDX41 mutation. Int. J. Hematol. 2017, 106, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Makishima, H.; Nannya, Y.; Takeda, J.; Momozawa, Y.; Saiki, R.; Yoshizato, T.; Atsuta, Y.; Iijima-Yamashita, Y.; Yoshida, K.; Shiraishi, Y.; et al. Clinical Impacts of Germline DDX41 Mutations on Myeloid Neoplasms. Blood 2020, 136, 38–40. [Google Scholar] [CrossRef]
- Qu, S.; Li, B.; Qin, T.; Xu, Z.; Pan, L.; Hu, N.; Huang, G.; Peter Gale, R.; Xiao, Z. Molecular and clinical features of myeloid neoplasms with somatic DDX41 mutations. Br. J. Haematol. 2021, 192, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.R.; Ryan, G.; Walne, A.J.; Ellison, A.; Lowe, R.; Tummala, H.; Rio-Machin, A.; Collopy, L.; Al Seraihi, A.; Wallis, Y.; et al. Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia 2016, 30, 2083–2086. [Google Scholar] [CrossRef] [PubMed]
- Alkhateeb, H.B.; Nanaa, A.; Viswanatha, D.; Foran, J.M.; Badar, T.; Sproat, L.; He, R.; Nguyen, P.; Jevremovic, D.; Salama, M.E.; et al. Genetic features and clinical outcomes of patients with isolated and comutated DDX41-mutated myeloid neoplasms. Blood Adv. 2022, 6, 528–532. [Google Scholar] [CrossRef]
- Duployez, N.; Largeaud, L.; Duchmann, M.; Kim, R.; Rieunier, J.; Lambert, J.; Bidet, A.; Larcher, L.; Lemoine, J.; Delhommeau, F.; et al. Prognostic impact of DDX41 germline mutations in intensively treated acute myeloid leukemia patients: An ALFA-FILO study. Blood 2022, 140, 756–768. [Google Scholar] [CrossRef]
- Kennedy, A.L.; Shimamura, A. Genetic predisposition to MDS: Clinical features and clonal evolution. Blood 2019, 133, 1071–1085. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; White, T.; Xie, W.; Cui, W.; Peker, D.; Zeng, G.; Wang, H.Y.; Vagher, J.; Brown, S.; Williams, M.; et al. AML with germline DDX41 variants is a clinicopathologically distinct entity with an indolent clinical course and favorable outcome. Leukemia 2022, 36, 664–674. [Google Scholar] [CrossRef]
- List, A.; Dewald, G.; Bennett, J.; Giagounidis, A.; Raza, A.; Feldman, E.; Powell, B.; Greenberg, P.; Thomas, D.; Stone, R.; et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 2006, 355, 1456–1465. [Google Scholar] [CrossRef] [Green Version]
- Negoro, E.; Radivoyevitch, T.; Polprasert, C.; Adema, V.; Hosono, N.; Makishima, H.; Przychodzen, B.; Hirsch, C.; Clemente, M.J.; Nazha, A.; et al. Molecular predictors of response in patients with myeloid neoplasms treated with lenalidomide. Leukemia 2016, 30, 2405–2409. [Google Scholar] [CrossRef]
- Abou Dalle, I.; Kantarjian, H.; Bannon, S.A.; Kanagal-Shamanna, R.; Routbort, M.; Patel, K.P.; Hu, S.; Bhalla, K.; Garcia-Manero, G.; DiNardo, C.D. Successful lenalidomide treatment in high risk myelodysplastic syndrome with germline DDX41 mutation. Am. J. Hematol. 2020, 95, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.; van den Berg, E.; Sikkema-Raddatz, B.; Abbott, K.M.; Sinke, R.J.; Bungener, L.B.; Mulder, A.B.; Vellenga, E. Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation. Leukemia 2017, 31, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Kobayashi, A.; Osawa, Y.; Nagao, S.; Takano, K.; Okada, Y.; Tachi, N.; Teramoto, M.; Kawamura, T.; Horiuchi, T.; et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia 2017, 31, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.J.; Kim, H.T.; Zhao, L.; Murdock, H.M.; Hambley, B.; Ogata, A.; Madero-Marroquin, R.; Wang, S.; Green, L.; Fleharty, M.; et al. Donor Clonal Hematopoiesis and Recipient Outcomes After Transplantation. J. Clin. Oncol. 2022, 40, 189–201. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Routbort, M.J.; Bannon, S.A.; Benton, C.B.; Takahashi, K.; Kornblau, S.M.; Luthra, R.; Kanagal-Shamanna, R.; Medeiros, L.J.; Garcia-Manero, G.; et al. Improving the detection of patients with inherited predispositions to hematologic malignancies using next-generation sequencing-based leukemia prognostication panels. Cancer 2018, 124, 2704–2713. [Google Scholar] [CrossRef]
Study Characteristics (Author, Year, Cohort, Database) | Total Number of Data | Nucleotide Change | Amino Acid Change | Number of Patients or Families (% of Studied Patients or Families) | No. of Patients with Concomitant Somatic DDX41 Mutations | No. of Patients with Hematologic Malignancies |
---|---|---|---|---|---|---|
Polprasert et al., 2015 [34]; a cohort of MDS/secondary AML, multicenter (US/Germany), and TCGA database | 27/1034 patients and 7 index families (19 patients with germline mutation) | c.419insGATG (c.415_418dupGATG) | p.D140fs | 14 (74%) | 5/14 | 8 AML 6 MDS/CMML |
c.T1187C | p.I396T | 2 (10%) | 2/2 | 2 MDS | ||
c.156_157insA | p.Q52fs | 1 (5%) | 1/1 | 1 AML | ||
c.G465A | p.M155I | 1 (5%) | 0/1 | 1 MDS | ||
Not mentioned | p.F183I | 1 (5%) | 1/1 | 1 MDS | ||
Lewinsohn et al., 2016 [49]; a cohort of families with suspected inherited hematologic malignancies, multicenter (Australian/US) familial hematologic malignancies registry | 9/289 families | c.415_418dupGATG | p.D140Gfs | 3 families | Not reported | 3 AMLs |
c.3G>A | p.M1I | 2 families | Not reported | 3 AML (1 with NHL involvement), 1 MDS, 1 CML | ||
c.435-2_435-1delAGinsCA | (predicted to produce p.W146Hfsand p.S145Rfs) | 1 family | Not reported | 1 MDS | ||
c.490C>T | p.R164W | 1 family | Not reported | 3 NHL | ||
c.1574G>A | p.R525H (suspected germline) | 1 family | Not reported | 2 MDS, 1 AML | ||
c.1589G>A | p.G530D | 1 family | Not reported | 3 AML | ||
Cardoso et al., 2016 [55]; a cohort of families with at least two cases of bone marrow failure and at least one of whom having MDS or AML (no detailed description of the study cohort) | 4/78 families | c.3G>A | p.M1I | 1 family | Not reported | 2 MDS |
c.155dupA | p. R53Afs | 1 family | Not reported | 3 MDS, 1 carrier (1 CML family history with unchecked mutation) | ||
c.719delTinsCG | p.I240Tfs | 1 family | Not reported | 1 AML (1 AML family history with unchecked mutation) | ||
c.1586-1587delCA | p.T529Rfs | 1 family | Not reported | 1 MDS, 1 carrier (1 AML family history with unchecked mutation) | ||
Sebert et al., 2019 [35]; a cohort of families with a family history of MDS, AML, AA, single-center (France) data | 43/1385 patients (33 patients with causal germline variants) | c.G517A | p.G173R | 6 (18%) | 6/6 | 3 MDS, 1 AML, 2 AA |
c.G3A | p.M1I | 3 (9%) | 3/3 | 2 AML, 1 MDS | ||
c.992_994del | p.K331del | 3 (9%) | 2/3 | 1 MDS/MPN, 1 MDS, 1 AML | ||
c.C121T | p.Q41* | 2 (6%) | 1/2 | 2 MDS | ||
c.418_419insGATG | p.D140fs | 2 (6%) | 1/2 | 1 AML, 1 MDS/MPN | ||
c.C1015T | p.R339C | 2 (6%) | 1/2 | 1 AA, 1 MDS | ||
c.A1C | p.M1L | 1 (3%) | 1/1 | 1 MDS | ||
c.69delC | p.S23fs | 1 (3%) | 1/1 | 1 MDS | ||
c.A316T | p.K106* | 1 (3%) | 0/1 | 1 CMML | ||
c.342_346del | p.E114fs | 1 (3%) | 1/1 | 1 MDS | ||
c.542+2A>G | - | 1 (3%) | 0/1 | 1 MDS | ||
c.644+1G>A | - | 1 (3%) | 1/1 | 1 MDS | ||
c.T649C | p.S217P | 1 (3%) | 1/1 | 1 MDS | ||
c.A734G | p.E245G | 1 (3%) | 1/1 | 1 MDS | ||
c.799-2T>A | - | 1 (3%) | 1/1 | 1 AML | ||
c.945delC | p.H315fs | 1 (3%) | 1/1 | 1 AML | ||
c.A1031G | p.D344G | 1 (3%) | 1/1 | neutropenia only | ||
c.1088_1090del | p.S363del | 1 (3%) | 1/1 | 1 AML | ||
c.C1108T | p.Q370* | 1 (3%) | 1/1 | 1 AML | ||
c.1298dupC | p.P433fs | 1 (3%) | 0/1 | 1 AML | ||
c.1791_1792del | p.K597fs | 1 (3%) | 1/1 | 1 AML | ||
Quesada et al., 2019 [36]; a cohort of known/suspected myeloid neoplasms, single-center (US) data | 34/1002 patients (32 patients with germline mutations) | c.3G>A | p.M1I | 9 (28%) | 9/9 | 1 AML, 4 MDS->AML, 4 MDS |
c.415_418dupGATG | p.D140Gfs | 4 (13%) | 4/4 | 2 AML, 1 MDS->AML, 1 MDS | ||
c.121C>T | p.Q41* | 2 (6%) | 2/2 | 2 MDS | ||
c.25A>G | p.K9E | 1 (3%) | 0/1 | 1 MDS/CMML->AML | ||
c.38C>T | p.T13I | 1 (3%) | 0/1 | 1 Post PV-MF | ||
c.59G>A | p.G20E | 1 (3%) | 0/1 | 1 MDS | ||
c.62_63del | p.S21Tfs | 1 (3%) | 1/1 | 1 AML | ||
c.142C>T | p.Q48* | 1 (3%) | 1/1 | 1 MDS->AML | ||
c.298+2_298+4delTGG | Splice | 1 (3%) | 1/1 | 1 MDS->AML | ||
c.475C>T | p.R159* | 1 (3%) | 1/1 | 1 MDS->AML | ||
c.476G>A | p.R159Q | 1 (3%) | 0/1 | MPN | ||
c.572-1G>A | Splice | 1 (3%) | 1/1 | 1 AML | ||
c.608A>G | p.H203R | 1 (3%) | 0/1 | 1 MDS->AML | ||
c.649T>C | p.S217P | 1 (3%) | 1/1 | 1 AML | ||
c.821A>G | p.H274R | 1 (3%) | 0/1 | 1 MPN | ||
c.1046T>A | p.M349K | 1 (3%) | 1/1 | 1 suspected MDS | ||
c.1105C>T | p.R369* | 1 (3%) | 1/1 | 1 MDS->AML | ||
c.1105C>G | p.R369G | 1 (3%) | 1/1 | 1 MDS | ||
c.1771C>T | p.R591W | 1 (3%) | 0/1 | 1 MDS->AML | ||
c.1766G>A | p.G589D | 1 (3%) | 0/1 | 1 CMML | ||
Choi et al., 2021 [46]; a cohort of patients with ICUS/MDS/AML, single-center (Korea) data | 39/457 patients (34 patients with germline mutations) | c.455T>G | p.V152G | 10 (29%) | 10/10 | 2 ICUS, 8 MDS |
c.776A>G | p.Y259C | 9 (26%) | 8/9 | 2 ICUS, 7 MDS | ||
c.1496dupC | p.A500fs | 6 (18%) | 6/6 | 1 ICUS, 2 MDS, 3 AML | ||
c.19G>T | p.E7* | 3 (9%) | 2/3 | 2 MDS, 1 AML | ||
p.D139G | 2 (6%) | 0/2 | 1 MDS, 1 AML | |||
p.E3K | 1 (3%) | 0/1 | 1 AML | |||
p.Y33C | 1 (3%) | 0/1 | 1 AML | |||
p.K187R | 1 (3%) | 0/1 | 1 AML | |||
c.983T>G | p.L328R | 1 (3%) | 1/1 | 1 MDS | ||
Bannon et al., 2021 [51]; a cohort of patients who were referred to genetic counseling and testing for hematologic malignancies with DDX41 mutations, single-center (US) data | 33 (38 referred)/90 DDX41 germline mutations (out of 5801 heme malignancies patients) | c.415_418dupGATG | p.D140fs | 10 (30%) | 7/10 | 5 AML, 4 MDS (1 carrier) |
c.3A>G | p.M1I | 8 (24%) | 2/8 | 4 AML, 1 MDS->AML, 2 MDS, 1 CLL | ||
c.121C>T | p.Q41* | 3 (9%) | 2/3 | 2 AML, 1 MDS | ||
c.337del | p.E113fs | 1 (3%) | 1/1 | 1 MDS->AML | ||
c.434+1G>A | - | 1 (3%) | 0/1 | 1 MDS | ||
c.475C>T | p.R159* | 1 (3%) | 0/1 | 1 MDS/MPN | ||
c.547T>G | p.F183V (VUS) | 1 (3%) | 1/1 | 1 MDS | ||
c.572-1G>A | - | 1 (3%) | 1/1 | 1 AML | ||
c.653G>A | p.G218D (VUS) | 1 (3%) | 0/1 | 1 MDS->AML | ||
c.847del | p.L283fs | 1 (3%) | 0/1 | 1 MDS | ||
c.946_947del | p.M316fs | 1 (3%) | 1/1 | 1 MDS | ||
c.1004dupT | p.D336fs | 1 (3%) | 1/1 | 1 MDS | ||
c.1105C>G | p.R369G (VUS) | 1 (3%) | 1/1 | 1 MDS | ||
c.1187T>C | p.I396T | 1 (3%) | 1/1 | 1 MDS | ||
c.1273_1276dupCTCG | p.E426fs | 1 (3%) | 1/1 | 1 AML | ||
Qu et al., 2021 [54]; a cohort of myeloid neoplasms, single-center (China) data | 47/1529 patients (25 patients with germline mutation) | c.1077_1078dupTA | p.T360Ifs | 3 (12%) | 3/3 | 3 MDS |
c.935+4A>T | - | 3 (12%) | 2/3 | 1 AML, 1 MDS, 1 Post-ET MF | ||
c. C1105T | p.R369* | 2 (8%) | 2/2 | 1 AML, 1 MDS | ||
c. T455G | p.V152G | 2 (8%) | 2/2 | 2 MDS | ||
c.647dupT | p.S217Ifs | 2 (8%) | 1/2 | 1 MDS, 1 Post-ET MF | ||
c. C931T | p.R311* | 2 (8%) | 2/2 | 2 MDS | ||
c. G3T | p.M1I | 1 (4%) | 1/1 | 1 MDS | ||
c. G391T | p.E131* | 1 (4%) | 1/1 | 1 MDS | ||
c. G553T | p.E185* | 1 (4%) | 1/1 | 1 AML | ||
c.572-1G>C | - | 1 (4%) | 1/1 | 1 MDS | ||
c. C773T | p.P258L | 1 (4%) | 1/1 | 1 MDS | ||
c.865delT | p.S289Hfs | 1 (4%) | 0/1 | 1 MDS | ||
c.1213_1216del | p.S405Wfs | 1 (4%) | 1/1 | 1 MDS | ||
c.1296_1298dup | p.P434dup | 1 (4%) | 1/1 | 1 MDS | ||
c. G1531T | p.E511* | 1 (4%) | 1/1 | 1 MDS | ||
c. A776G | p.Y259C | 1 (4%) | 1/1 | 1 MDS | ||
c.T983G | p.L328R | 1 (4%) | 1/1 | 1 MDS | ||
Alkhateeb et al., 2022 [56]; a cohort of myeloid neoplasm patients, single-center (US) data | 33/4524 patients (likely 25 germline patients) | c.3G>A | p.M1I | 10 (40%) | 1/10 | 4 AML, 5 MDS (1 carrier) |
c.415_418dup | p.D140Gfs | 5 (20%) | 0/5 | 4 MDS, 1 AML | ||
c.1589G>A | p.G530D | 2 (8%) | 0/2 | 1 MDS, 1 AML | ||
c.121C>T | p.Q41* | 1 (4%) | 0/1 | 1 AML | ||
c.305_306del | p.K102Rfs | 1 (4%) | 1/1 | 1 AML | ||
c.337del | p.E113Kfs | 1 (4%) | 0/1 | 1 MPN | ||
c.434+1G>A | - | 1 (4%) | 0/1 | 1 MDS | ||
c.776A>G | p.Y259C | 1 (4%) | 1/1 | 1 MDS | ||
c.931C>T | p.R311* | 1 (4%) | 1/1 | 1 AML | ||
c.946_947del | p.M316D | 1 (4%) | 0/1 | 1 MDS | ||
c.1102C>T | p.Q368* | 1 (4%) | 0/1 | 1 MDS | ||
Li et al., 2022 [50]; a cohort of patients with hematologic malignancies, multi-center (US) data ** | 176/9821 patients, 116 patients with causal variants | c.3G>A | p.M1I | 42 (36%) | 35/42 | 24 AML, 13 MDS, 5 CCUS |
c.415_418dup | p.D140fs | 23 (20%) | 15/23 | 18 AML, 2 MDS, 1 MPN, 2 CCUS | ||
c.475C>T | p.R159* | 3 (3%) | 3/3 | 1 AML, 1 MDS, 1 CCUS | ||
c.931C>T | p.R311* | 3 (3%) | 3/3 | 1 AML, 2 MDS | ||
c.946_947del | p.M316fs | 3 (3%) | 2/3 | 1 AML, 1 MPN, 1 CCUS | ||
c.992_994del | p.K331del | 3 (3%) | 2/3 | 1 AML, 2 MDS | ||
c.1105C>T | p.R369* | 3 (3%) | 3/3 | 2 AML, 1 CCUS | ||
c.121C>T | p.Q41* | 2 (2%) | 1/2 | 2 AML | ||
c.773C>T | p.P258L | 2 (2%) | 2/2 | 1 AML, 1 CCUS | ||
c.1046T>A | p.M349K | 2 (2%) | 0/2 | 2 AML | ||
c.1105C>G | p.R369G | 2 (2%) | 2/2 | 1 AML, 1 MDS | ||
c.130C>T | p.Q44* | 1 (1%) | 1/1 | 1 MDS | ||
c.323del | p.K108fs | 1 (1%) | 1/1 | 1 AML | ||
c.430del | p.T144fs | 1 (1%) | 1/1 | 1 CCUS | ||
c.566C>T | p.P189L | 1 (1%) | 1/1 | 1 MDS | ||
c.645-1G>T | - | 1 (1%) | 1/1 | 1 AML | ||
c.646C>G | p.L216V | 1 (1%) | 1/1 | 1 AML | ||
c.649T>C | p.S217P | 1 (1%) | 1/1 | 1 CCUS | ||
c.653G>A | p.G218D | 1 (1%) | 1/1 | 1 AML | ||
c.668dup | p.I224fs | 1 (1%) | 1/1 | 1 AML | ||
c.710T>G | p.L237W | 1 (1%) | 1/1 | 1 MDS | ||
c.776A>G | p.Y259C | 1 (1%) | 1/1 | 1 CCUS | ||
c.847del | p.L283fs | 1 (1%) | 1/1 | 1 AML | ||
c.916C>T | p.Q306* | 1 (1%) | 0/1 | 1 MPN | ||
c.967C>T | p.R323C | 1 (1%) | 1/1 | 1 AML | ||
c.1015C>T | p.R339C | 1 (1%) | 1/1 | 1 MDS | ||
c.1016G>A | p.R339H | 1 (1%) | 0/1 | 1 MDS | ||
c.1016G>T | p.R339L | 1 (1%) | 1/1 | 1 CCUS | ||
c.1018T>A | p.Y340N | 1 (1%) | 1/1 | 1 MDS | ||
c.1108C>T | p.Q370* | 1 (1%) | 1/1 | 1 AML | ||
c.1141A>T | p.K381* | 1 (1%) | 1/1 | 1 MPN | ||
c.1354del | p.L452fs | 1 (1%) | 1/1 | 1 CCUS | ||
c.1394del | p.G465fs | 1 (1%) | 1/1 | 1 AML | ||
c.1399G>T | p.D467Y | 1 (1%) | 1/1 | 1 AML | ||
c.1496dup | p.A500fs | 1 (1%) | 1/1 | 1 MDS | ||
c.1504C>T | p.Q502* | 1 (1%) | 1/1 | MDS | ||
c.1574G>A | p.R525H | 1 (1%) | 0/1 | 1 AML | ||
c.1586_ 1587delCA | p.T529fs | 1 (1%) | 0/1 | 1 CCUS | ||
c.1628C>G | p.S543* | 1 (1%) | 1/1 | 1 CCUS | ||
Duployez et al, 2022 [57]; a cohort of 5 prospective trials and additional diagnostic samples, multi-center (France) data | 191 AML patients with germline mutations | c.415_418dup | p.D140fs | 32 (17%) | 27/32 | All AML patients |
c.3G>A | p.M1? | 19 (10%) | 15/19 | |||
c.517G>A | p.G173R | 10 (5%) | 8/10 | |||
c.847del | p.L283fs | 9 (5%) | 7/9 | |||
c.1088_1090del | p.S363del | 9 (%) | 8/9 | |||
c.138+1G>C | 6 | 5/6 | ||||
c.653G>A | p.G218D | 5 | 5/5 | |||
c.992_994del | p.K331del | 5 | 4/5 | |||
c.268C>T | p.Q90* | 4 | 4/4 | |||
c.305_306del | p.K102fs | 4 | 4/4 | |||
c.804del | p.E268fs | 4 | 4/4 | |||
c.55G>T | p.G19* | 3 | 2/3 | |||
c.121C>T | p.Q41* | 3 | 3/3 | |||
c.936-1G>A | - | 3 | 2/3 | |||
c.1212_1226delinsAG | p.S405fs | 3 | 3/3 | |||
c.1334_1336del | p.V445del | 3 | 2/3 | |||
c.1496del | p.P499fs | 3 | 3/3 | |||
c.1A>C | p.M1? | 2 | 2/2 | |||
c.316A>T | p.K106* | 2 | 2/2 | |||
c.571G>A | p.A191T | 2 | 2/2 | |||
c.656G>A | p.R219H | 2 | 0/2 | |||
c.935+2T>C | - | 2 | 1/2 | |||
c.945del | p.H315fs | 2 | 1/2 | |||
c.1031A>G | p.D344G | 2 | 2/2 | |||
c.1098+1G>A | - | 2 | 2/2 | |||
c.1105C>T | p.R369* | 2 | 1/2 | |||
c.1298del | p.P433fs | 2 | 2/2 | |||
c.1504C>T | p.Q502* | 2 | 1/2 | |||
c.1585dup | p.T529fs | 2 | 1/2 | |||
c.2T>C | p.M1? | 1 | 1/1 | |||
c.69del | p.S23fs | 1 | 1/1 | |||
c.130C>T | p.Q44* | 1 | 0/1 | |||
c.142C>T | p.Q48* | 1 | 1/1 | |||
c.156_157delinsTT | p.Q52_R53delinsH | 1 | 1/1 | |||
c.325C>T | p.Q109* | 1 | 1/1 | |||
c.342_346del | p.E114fs | 1 | 1/1 | |||
c.364G>T | p.E122* | 1 | 1/1 | |||
c.373+1G>A | - | 1 | 0/1 | |||
c.434+1G>T | - | 1 | 1/1 | |||
c.436T>C | p.W146R | 1 | 1/1 | |||
c.475C>T | p.R159* | 1 | 1/1 | |||
c.622C>G | p.Q208E | 1 | 1/1 | |||
c.643A>C | p.I215L | 1 | 0/1 | |||
c.644T>C | p.I215T | 1 | 0/1 | |||
c.649T>C | p.S217P | 1 | 1/1 | |||
c.668G>A | p.G223D | 1 | 1/1 | |||
c.758C>G | p.S252* | 1 | 1/1 | |||
c.791G>A | p.C264Y | 1 | 1/1 | |||
c.799-2A>T | - | 1 | 1/1 | |||
c.805dup | p.L269fs | 1 | 0/1 | |||
c.931C>T | p.R311* | 1 | 0/1 | |||
c.958A>T | p.T320S | 1 | 0/1 | |||
c.959C>T | p.T320I | 1 | 1/1 | |||
c.967C>A | p.R323S | 1 | 1/1 | |||
c.967C>T | p.R323C | 1 | 0/1 | |||
c.968G>A | p.R323H | 1 | 1/1 | |||
c.998T>A | p.V333D | 1 | 1/1 | |||
c.1033G>A | p.E345K | 1 | 1/1 | |||
c.1037C>A | p.A346D | 1 | 1/1 | |||
c.1105C>G | p.R369G | 1 | 1/1 | |||
c.1108C>T | p.Q370* | 1 | 1/1 | |||
c.1118_1127del | p.L373fs | 1 | 1/1 | |||
c.1212_1224del | p.L406fs | 1 | 1/1 | |||
c.1252G>T | p.E418* | 1 | 1/1 | |||
c.1298dup | p.P433fs | 1 | 1/1 | |||
c.1463C>A | p.A488D | 1 | 1/1 | |||
c.1514T>A | p.I505N | 1 | 1/1 | |||
c.1615del | p.A539fs | 1 | 1/1 | |||
c.1628C>G | p.S543* | 1 | 1/1 | |||
c.1732+1del | - | 1 | 1/1 | |||
c.1791_1792del | p.K597fs | 1 | 1/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Ong, F.; Sasaki, K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers 2023, 15, 344. https://doi.org/10.3390/cancers15020344
Kim K, Ong F, Sasaki K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers. 2023; 15(2):344. https://doi.org/10.3390/cancers15020344
Chicago/Turabian StyleKim, Kunhwa, Faustine Ong, and Koji Sasaki. 2023. "Current Understanding of DDX41 Mutations in Myeloid Neoplasms" Cancers 15, no. 2: 344. https://doi.org/10.3390/cancers15020344
APA StyleKim, K., Ong, F., & Sasaki, K. (2023). Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers, 15(2), 344. https://doi.org/10.3390/cancers15020344