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Simple Summary: The DEAD-box RNA helicase 41, DDX41, is one of the most frequently identified
mutations in myeloid neoplasms with germline predispositions, which represents 2% of the entire
MDS/AML population. DDX41 is located at 5q35.3, and its mutation has unique features of male
predominance and long-term cytopenia before the development of myeloid neoplasms. So far,
mechanism studies revealed that DDX41 mutations, affected by both germline and somatic mutations,
can be pathogenic by impairments in the normal function of genes involving RNA splicing and
processing, ribosomal biogenesis, metabolism, cycle progression, and innate immunity. We are
gaining a better understanding of disease from more studies coming out with larger cohorts. The
survival impact of the mutation remains unclear, although recent larger studies suggest a better
treatment response and survival in higher risk MDS/AML. Several studies showed a good response
to lenalidomide in certain patients with MDS with DDX41 mutations. Early identification of stem-
cell transplant donors in the family for patients with DDX41 mutations is crucial to avoid donor-
derived leukemia from germline carriers. In this article, we reviewed the current understanding of
DDX41 mutations in AML/MDS, including its pathogenesis and clinical characteristics, outcome,
and treatment.

Abstract: The DEAD-box RNA helicase 41 gene, DDX41, is frequently mutated in hereditary myeloid
neoplasms, identified in 2% of entire patients with AML/MDS. The pathogenesis of DDX41 mutation
is related to the defect in the gene’s normal functions of RNA and innate immunity. About 80%
of patients with germline DDX41 mutations have somatic mutations in another allele, resulting in
the biallelic DDX41 mutation. Patients with the disease with DDX41 mutations reportedly often
present with the higher-grade disease, but there are conflicting reports about its impact on survival
outcomes. Recent studies using larger cohorts reported a favorable outcome with a better response
to standard therapies in patients with DDX41 mutations to patients without DDX41 mutations. For
stem-cell transplantation, it is important for patients with DDX41 germline mutations to identify
family donors early to improve outcomes. Still, there is a gap in knowledge on whether germline
DDX41 mutations and its pathology features can be targetable for treatment, and what constitutes an
appropriate screening/surveillance strategy for identified carriers. This article reviews our current
understanding of DDX41 mutations in myeloid neoplasms in pathologic and clinical features and
their clinical implications.

Keywords: DDX41 mutations; myelodysplastic syndrome; acute myeloid leukemia; hereditary
myeloid neoplasms

1. Introduction

The assessment of next-generation sequencing in the study of myelodysplastic syn-
dromes (MDS) and acute myeloid leukemia (AML) is now guiding treatment decisions
and predicting survival along with age and comorbidity considerations at the time of
diagnosis [1–19]. The application of targeted therapies with FLT3 inhibitors, IDH inhibitors,
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and venetoclax has further improved outcomes in patients with MDS and AML in newly
diagnosed and relapsed settings [20–31].

In recent years, the accumulation of genetic data in myeloid neoplasms from next-
generation sequencing has resulted in a rapid gain in understanding of hereditary myeloid
neoplasms and identification of their related pathogenic germline mutations [32]. Patients
with myeloid neoplasms with germline predisposition represent approximately 5–15% of
all adult MDS and AML cases. The World Health Organization designated a new category
of myeloid neoplasms with germline predisposition in 2016 [33].

The DEAD-box RNA helicase-1 gene (DDX41) is one of the most frequently identified
mutations in myeloid neoplasms with a genetic predisposition. The DDX41 gene is located
at chromosome 5q35.3, and the gene can be affected by germline and somatic mutations [34].
Large cohort studies have shown that 1.5–3.8% of patients with myeloid neoplasms have
DDX41 mutations [35–37]. First identified in 2015 as predisposing mutations for myeloid
neoplasms by a study of an index family with a strong history of MDS/AML, a significant
proportion of hereditary myeloid neoplasms were associated with the DDX41 mutations
by affecting RNA biology and innate immunity [34]. Many studies have come out in recent
years, which provide a better understanding of pathogenesis and clinical implications of
DDX41 mutations. In particular, as a common mutation in the association of hereditary
myeloid neoplasms, understanding DDX41 mutations can help establish the strategy for
surveillance and management of germline mutation carriers, and screening and early iden-
tification for stem-cell transplant donors for the patients with MDS/AML with germline
DDX41 mutations.

This article reviews our current understanding of DDX41 mutations in MDS/AML,
focusing on pathogenic mechanisms, and pathologic and clinical data.

2. DDX41 Mutations and Their Role in MDS/AML Pathogenesis

The pathology of DDX41 mutations in myeloid neoplasms may be related to a dis-
ruption of the gene’s normal functions involving multiple functions in RNA biology [34].
DDX41 encodes a member of the DEAD-box ATP-dependent RNA helicases, which are
involved in pre-mRNA splicing, RNA processing, ribosome biogenesis, and small nucle-
olar RNA processing [34,38,39]. In addition, DDX41 interacts with intracellular DNA in
dendritic cells and macrophages, and activates innate immunity through the stimulator of
interferon genes (STING)-interferon pathway [40,41]. More studies have come out in past
years describing and identifying the pathomechanism of DDX41 mutations.

Changes in DDX41 expression have demonstrated variable effects in vitro and in vivo.
For example, the knockdown of DDX41 in K562 cells was shown to increase their prolifera-
tion in vitro and accelerate their tumor growth in a xenograft model [34]. Conversely, the
knockout of DDX41 in a mouse model impaired the differentiation and development of
hematopoietic cells, particularly myeloid lineage cells, and decreased their proliferation
capacity both in vivo and ex vivo [42].

A recent mouse model study demonstrated that monoallelic germline mutations of
DDX41 cause age-dependent myelodysplastic changes, whereas biallelic mutations re-
sulting from the acquisition of somatic mutations on the other allele cause hematopoietic
defects at a young age, likely by dysregulating small nucleolar RNA processing and riboso-
mal function [39]. DDX41 mutations may also have an oncogenic effect by dysregulating
the STING-interferon pathway, thereby impairing innate immunity [40,43].

Additionally, Mosler et al. proposed that an increased level of R-loop, RNA-DNA
hybrids and displaced strand of DNA can be caused by dysregulation from loss of DDX41,
as outlined in a recent study using quantitative mass spectrometry-based proteomics
using human cells [44]. The study showed pathogenic variants of DDX41 mutations
resulted in the accumulation of double-strand breaks in human hematopoietic stem cells
causing inflammatory responses. These enhanced inflammatory responses from R-loop
accumulation and the dysregulation of hematopoietic stem cell production were also shown
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in a study using zebra fish by Weinreb et al. [45]. These studies propose the role of DDX41
in genomic stability against R-loop generations.

DDX41 mutations are clinically associated with an increased lifetime risk of myeloid
neoplasms, including the early presentation of idiopathic cytopenia of undetermined sig-
nificance (ICUS) [46]. Diseases reported to be associated with DDX41 mutations include
myeloproliferative neoplasms, chronic lymphocytic leukemia, chronic myeloid leukemia,
multiple myeloma, and Hodgkin and non-Hodgkin lymphomas other than myeloid neo-
plasms [35,47–49]. DDX41 mutations are also associated with blood disorders, including
macrocytosis [47]. Some studies found DDX41 mutations to be associated with an increased
risk of autoimmune disorders or solid cancers, but these findings require further investiga-
tion [35,47]. The specific risk for hematologic malignancies including MDS/AML conveyed
by DDX41 mutations remains unclear.

3. Pathologic Features of Myeloid Neoplasms with DDX41 Mutations

In common practice, next-generation sequencing panels at diagnosis of myeloid neo-
plasms or follow-up can detect DDX41 mutations [47]. Comprehensive genomic testing
with exome or genome sequencing can be used to identify variants that gene-targeted
sequencing might miss [47]. The results of germline pathogenic variant testing can be
confirmed by specimen without blood contamination obtained from skin fibroblasts [47].

In a recently published study using a multi-national cohort, DDX41 germline muta-
tions account for about 80% of patients with myeloid neoplasms with germline predis-
position [37]. The study further showed that pathologic or likely pathologic germline
mutations of DDX41 were identified 10 times more frequently in patients with myeloid
neoplasms than the general population [37]. Germline DDX41 mutations are passed from
parent to child through autosomal dominant inheritance, but the penetrance of DDX41
mutations remains unclear. Only about 30% of patients with germline DDX41 mutations
have a family history of hematologic malignancy, but a familial series study showed high
penetrant patterns in some families [35,49]. Interestingly, the DDX41-mutant MDS/AML
has a male predominance, with a male-to-female ratio of 3:1 [35,50]. The etiology of male
predominance remains unknown.

Up to 80% of carriers of germline DDX41 mutations who develop MDS/AML have
additional somatic mutations on the other DDX41 allele, which has been reported by
multiple studies [34,49,50]. The pattern of biallelic mutations from secondary somatic
mutations in DDX41 mutations also can be seen in somatic mutations in the CCAAT
enhancer binding protein alpha gene, CEBPA, in AML [34]. The role of additional somatic
mutation and biallelic mutation as pathogenesis of DDX41 mutations were described by
Chlon et al. as mentioned above.

Notably, germline and somatic DDX41 mutations tend to have different patterns and
locations of mutations on the gene.

Most patients with germline mutations have pathogenic variants with either nonsense,
frameshift, or splicing site mutations [49,51]. One of the most frequently identified germline
mutations, p.D140fs, causes protein truncation [52]. Other germline mutations are associ-
ated with loss of function and derangements in splicing [49]. A study of 346 patients with
germline DDX41 mutations reported that MDS patients with truncating variants of DDX41
germline mutations were observed to have shorter duration to AML transformation, about
2.5 times faster, compared to patients with non-truncating variants [37]. However, there
was no difference in overall survival between the two groups [37]. The most frequent
somatic mutation is the p.R525H missense mutation [36,51]. The mutation is located at
the C-terminus of the helicase domain at the site of ATP interaction and hydrolyzation,
which can cause deranged interactions with ATP in the helicase domain without directly
changing the main domain [38]. One study showed that cord blood cells and leukemia
cells harboring the p.R525H mutation had deranged pre-mRNA processing and ribosomal
biogenesis from mutation-related change, resulting in impaired E2 factor activity and, thus,
defective cell cycle progression [38].
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In a next-generation sequencing study of patients with DDX41-mutant disease, most
germline mutations (93%) were upstream of the helicase 2 domain or involved loss of the
start codon (30%). In contrast, most somatic mutations (78%) were within the helicase
2 domain [36].

Ethnicity-based differences in the frequencies of DDX41 mutations have been noted.
Several studies from cohorts of Asian patients showed a distinct mutations profile. In a
study of 28 Korean patients, the most common germline mutation was p.V152G, which
was detected in 10 patients, followed by p.Y259C, p.A500fs, and p.E7* [46]. Similarly, in
a Japanese population, p.A500fs and p.E7* were the most frequent germline mutations,
and p.R525H was the most common somatic mutation [53]. In a study of Chinese patients,
the most common mutations were c.935 + 4A>T and p.T360Ifs*33, which were detected in
three patients each [54]. This ethnic difference in mutations was shown in a recent study
by Li et al. with large data including 176 patients with germline mutations [50]. In the
study, p.A500fs was only identified in Asian patients, and 92% of patients with Y295C
(n = 12) were Asian patients. The majority, over 90%, of patients with p.M1I or p.D140fs
were Caucasians. Interestingly, the study also showed a more frequent loss of function in
germline mutations (85% vs. 51%) in Caucasians than in Asians.

Prior reports of mutation-related protein changes are summarized in Table 1. The
study by Makishima et al., was published upon acceptance of our manuscript, and was not
included in the table [37].

Table 1. Summary of DDX41 studies and identified germline mutations.

Study
Characteristics
(Author, Year,

Cohort, Database)

Total Number of
Data Nucleotide Change Amino Acid

Change

Number of
Patients or

Families (% of
Studied Patients

or Families)

No. of Patients
with Concomitant

Somatic DDX41
Mutations

No. of Patients with
Hematologic
Malignancies

Polprasert et al.,
2015 [34]; a cohort
of MDS/secondary
AML, multicenter

(US/Germany), and
TCGA database

27/1034 patients
and 7 index families

(19 patients with
germline mutation)

c.419insGATG
(c.415_418dupGATG) p.D140fs 14 (74%) 5/14 8 AML

6 MDS/CMML

c.T1187C p.I396T 2 (10%) 2/2 2 MDS

c.156_157insA p.Q52fs 1 (5%) 1/1 1 AML

c.G465A p.M155I 1 (5%) 0/1 1 MDS

Not mentioned p.F183I 1 (5%) 1/1 1 MDS

Lewinsohn et al.,
2016 [49]; a cohort

of families with
suspected inherited

hematologic
malignancies,
multicenter

(Australian/US)
familial

hematologic
malignancies

registry

9/289 families

c.415_418dupGATG p.D140Gfs 3 families Not reported 3 AMLs

c.3G>A p.M1I 2 families Not reported
3 AML (1 with NHL

involvement), 1 MDS,
1 CML

c.435-2_435-
1delAGinsCA

(predicted to
produce

p.W146Hfsand
p.S145Rfs)

1 family Not reported 1 MDS

c.490C>T p.R164W 1 family Not reported 3 NHL

c.1574G>A p.R525H (suspected
germline) 1 family Not reported 2 MDS, 1 AML

c.1589G>A p.G530D 1 family Not reported 3 AML

Cardoso et al.,
2016 [55]; a cohort
of families with at
least two cases of

bone marrow
failure and at least

one of whom
having MDS or

AML (no detailed
description of the

study cohort)

4/78 families

c.3G>A p.M1I 1 family Not reported 2 MDS

c.155dupA p. R53Afs 1 family Not reported

3 MDS, 1 carrier
(1 CML family history

with unchecked
mutation)

c.719delTinsCG p.I240Tfs 1 family Not reported
1 AML (1 AML family

history with
unchecked mutation)

c.1586-1587delCA p.T529Rfs 1 family Not reported

1 MDS, 1 carrier
(1 AML family history

with unchecked
mutation)
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Table 1. Cont.

Study
Characteristics
(Author, Year,

Cohort, Database)

Total Number of
Data Nucleotide Change Amino Acid

Change

Number of
Patients or

Families (% of
Studied Patients

or Families)

No. of Patients
with Concomitant

Somatic DDX41
Mutations

No. of Patients with
Hematologic
Malignancies

Sebert et al.,
2019 [35]; a cohort
of families with a
family history of
MDS, AML, AA,

single-center
(France) data

43/1385 patients
(33 patients with
causal germline

variants)

c.G517A p.G173R 6 (18%) 6/6 3 MDS, 1 AML, 2 AA

c.G3A p.M1I 3 (9%) 3/3 2 AML, 1 MDS

c.992_994del p.K331del 3 (9%) 2/3 1 MDS/MPN, 1 MDS,
1 AML

c.C121T p.Q41* 2 (6%) 1/2 2 MDS

c.418_419insGATG p.D140fs 2 (6%) 1/2 1 AML, 1 MDS/MPN

c.C1015T p.R339C 2 (6%) 1/2 1 AA, 1 MDS

c.A1C p.M1L 1 (3%) 1/1 1 MDS

c.69delC p.S23fs 1 (3%) 1/1 1 MDS

c.A316T p.K106* 1 (3%) 0/1 1 CMML

c.342_346del p.E114fs 1 (3%) 1/1 1 MDS

c.542+2A>G - 1 (3%) 0/1 1 MDS

c.644+1G>A - 1 (3%) 1/1 1 MDS

c.T649C p.S217P 1 (3%) 1/1 1 MDS

c.A734G p.E245G 1 (3%) 1/1 1 MDS

c.799-2T>A - 1 (3%) 1/1 1 AML

c.945delC p.H315fs 1 (3%) 1/1 1 AML

c.A1031G p.D344G 1 (3%) 1/1 neutropenia only

c.1088_1090del p.S363del 1 (3%) 1/1 1 AML

c.C1108T p.Q370* 1 (3%) 1/1 1 AML

c.1298dupC p.P433fs 1 (3%) 0/1 1 AML

c.1791_1792del p.K597fs 1 (3%) 1/1 1 AML

Quesada et al.,
2019 [36]; a cohort

of known/
suspected myeloid

neoplasms,
single-center (US)

data

34/1002 patients
(32 patients with

germline mutations)

c.3G>A p.M1I 9 (28%) 9/9 1 AML, 4 MDS->AML,
4 MDS

c.415_418dupGATG p.D140Gfs 4 (13%) 4/4 2 AML, 1 MDS->AML,
1 MDS

c.121C>T p.Q41* 2 (6%) 2/2 2 MDS

c.25A>G p.K9E 1 (3%) 0/1 1 MDS/
CMML->AML

c.38C>T p.T13I 1 (3%) 0/1 1 Post PV-MF

c.59G>A p.G20E 1 (3%) 0/1 1 MDS

c.62_63del p.S21Tfs 1 (3%) 1/1 1 AML

c.142C>T p.Q48* 1 (3%) 1/1 1 MDS->AML

c.298+2_298+4delTGG Splice 1 (3%) 1/1 1 MDS->AML

c.475C>T p.R159* 1 (3%) 1/1 1 MDS->AML

c.476G>A p.R159Q 1 (3%) 0/1 MPN

c.572-1G>A Splice 1 (3%) 1/1 1 AML

c.608A>G p.H203R 1 (3%) 0/1 1 MDS->AML

c.649T>C p.S217P 1 (3%) 1/1 1 AML

c.821A>G p.H274R 1 (3%) 0/1 1 MPN

c.1046T>A p.M349K 1 (3%) 1/1 1 suspected MDS

c.1105C>T p.R369* 1 (3%) 1/1 1 MDS->AML

c.1105C>G p.R369G 1 (3%) 1/1 1 MDS

c.1771C>T p.R591W 1 (3%) 0/1 1 MDS->AML

c.1766G>A p.G589D 1 (3%) 0/1 1 CMML
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Table 1. Cont.

Study
Characteristics
(Author, Year,

Cohort, Database)

Total Number of
Data Nucleotide Change Amino Acid

Change

Number of
Patients or

Families (% of
Studied Patients

or Families)

No. of Patients
with Concomitant

Somatic DDX41
Mutations

No. of Patients with
Hematologic
Malignancies

Choi et al., 2021 [46];
a cohort of patients
with ICUS/MDS/

AML, single-center
(Korea) data

39/457 patients
(34 patients with

germline mutations)

c.455T>G p.V152G 10 (29%) 10/10 2 ICUS, 8 MDS

c.776A>G p.Y259C 9 (26%) 8/9 2 ICUS, 7 MDS

c.1496dupC p.A500fs 6 (18%) 6/6 1 ICUS, 2 MDS,
3 AML

c.19G>T p.E7* 3 (9%) 2/3 2 MDS, 1 AML

p.D139G 2 (6%) 0/2 1 MDS, 1 AML

p.E3K 1 (3%) 0/1 1 AML

p.Y33C 1 (3%) 0/1 1 AML

p.K187R 1 (3%) 0/1 1 AML

c.983T>G p.L328R 1 (3%) 1/1 1 MDS

Bannon et al.,
2021 [51];

a cohort of patients
who were referred

to genetic
counseling and

testing for
hematologic

malignancies with
DDX41 mutations,
single-center (US)

data

33 (38 referred)/
90 DDX41 germline

mutations (out of
5801 heme

malignancies
patients)

c.415_418dupGATG p.D140fs 10 (30%) 7/10 5 AML, 4 MDS
(1 carrier)

c.3A>G p.M1I 8 (24%) 2/8 4 AML, 1 MDS->AML,
2 MDS, 1 CLL

c.121C>T p.Q41* 3 (9%) 2/3 2 AML, 1 MDS

c.337del p.E113fs 1 (3%) 1/1 1 MDS->AML

c.434+1G>A - 1 (3%) 0/1 1 MDS

c.475C>T p.R159* 1 (3%) 0/1 1 MDS/MPN

c.547T>G p.F183V
(VUS) 1 (3%) 1/1 1 MDS

c.572-1G>A - 1 (3%) 1/1 1 AML

c.653G>A p.G218D (VUS) 1 (3%) 0/1 1 MDS->AML

c.847del p.L283fs 1 (3%) 0/1 1 MDS

c.946_947del p.M316fs 1 (3%) 1/1 1 MDS

c.1004dupT p.D336fs 1 (3%) 1/1 1 MDS

c.1105C>G p.R369G (VUS) 1 (3%) 1/1 1 MDS

c.1187T>C p.I396T 1 (3%) 1/1 1 MDS

c.1273_1276dupCTCG p.E426fs 1 (3%) 1/1 1 AML

Qu et al., 2021 [54];
a cohort of myeloid

neoplasms,
single-center
(China) data

47/1529 patients
(25 patients with

germline mutation)

c.1077_1078dupTA p.T360Ifs 3 (12%) 3/3 3 MDS

c.935+4A>T - 3 (12%) 2/3 1 AML, 1 MDS,
1 Post-ET MF

c. C1105T p.R369* 2 (8%) 2/2 1 AML, 1 MDS

c. T455G p.V152G 2 (8%) 2/2 2 MDS

c.647dupT p.S217Ifs 2 (8%) 1/2 1 MDS, 1 Post-ET MF

c. C931T p.R311* 2 (8%) 2/2 2 MDS

c. G3T p.M1I 1 (4%) 1/1 1 MDS

c. G391T p.E131* 1 (4%) 1/1 1 MDS

c. G553T p.E185* 1 (4%) 1/1 1 AML

c.572-1G>C - 1 (4%) 1/1 1 MDS

c. C773T p.P258L 1 (4%) 1/1 1 MDS

c.865delT p.S289Hfs 1 (4%) 0/1 1 MDS

c.1213_1216del p.S405Wfs 1 (4%) 1/1 1 MDS

c.1296_1298dup p.P434dup 1 (4%) 1/1 1 MDS

c. G1531T p.E511* 1 (4%) 1/1 1 MDS

c. A776G p.Y259C 1 (4%) 1/1 1 MDS

c.T983G p.L328R 1 (4%) 1/1 1 MDS
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Table 1. Cont.

Study
Characteristics
(Author, Year,

Cohort, Database)

Total Number of
Data Nucleotide Change Amino Acid

Change

Number of
Patients or

Families (% of
Studied Patients

or Families)

No. of Patients
with Concomitant

Somatic DDX41
Mutations

No. of Patients with
Hematologic
Malignancies

Alkhateeb et al.,
2022 [56]; a cohort

of myeloid
neoplasm patients,
single-center (US)

data

33/4524 patients
(likely 25 germline

patients)

c.3G>A p.M1I 10 (40%) 1/10 4 AML, 5 MDS
(1 carrier)

c.415_418dup p.D140Gfs 5 (20%) 0/5 4 MDS, 1 AML

c.1589G>A p.G530D 2 (8%) 0/2 1 MDS, 1 AML

c.121C>T p.Q41* 1 (4%) 0/1 1 AML

c.305_306del p.K102Rfs 1 (4%) 1/1 1 AML

c.337del p.E113Kfs 1 (4%) 0/1 1 MPN

c.434+1G>A - 1 (4%) 0/1 1 MDS

c.776A>G p.Y259C 1 (4%) 1/1 1 MDS

c.931C>T p.R311* 1 (4%) 1/1 1 AML

c.946_947del p.M316D 1 (4%) 0/1 1 MDS

c.1102C>T p.Q368* 1 (4%) 0/1 1 MDS

Li et al., 2022 [50]; a
cohort of patients
with hematologic

malignancies,
multi-center (US)

data **

176/9821 patients,
116 patients with

causal variants
c.3G>A p.M1I 42 (36%) 35/42 24 AML, 13 MDS,

5 CCUS

c.415_418dup p.D140fs 23 (20%) 15/23 18 AML, 2 MDS,
1 MPN, 2 CCUS

c.475C>T p.R159* 3 (3%) 3/3 1 AML, 1 MDS,
1 CCUS

c.931C>T p.R311* 3 (3%) 3/3 1 AML, 2 MDS

c.946_947del p.M316fs 3 (3%) 2/3 1 AML, 1 MPN,
1 CCUS

c.992_994del p.K331del 3 (3%) 2/3 1 AML, 2 MDS

c.1105C>T p.R369* 3 (3%) 3/3 2 AML, 1 CCUS

c.121C>T p.Q41* 2 (2%) 1/2 2 AML

c.773C>T p.P258L 2 (2%) 2/2 1 AML, 1 CCUS

c.1046T>A p.M349K 2 (2%) 0/2 2 AML

c.1105C>G p.R369G 2 (2%) 2/2 1 AML, 1 MDS

c.130C>T p.Q44* 1 (1%) 1/1 1 MDS

c.323del p.K108fs 1 (1%) 1/1 1 AML

c.430del p.T144fs 1 (1%) 1/1 1 CCUS

c.566C>T p.P189L 1 (1%) 1/1 1 MDS

c.645-1G>T - 1 (1%) 1/1 1 AML

c.646C>G p.L216V 1 (1%) 1/1 1 AML

c.649T>C p.S217P 1 (1%) 1/1 1 CCUS

c.653G>A p.G218D 1 (1%) 1/1 1 AML

c.668dup p.I224fs 1 (1%) 1/1 1 AML

c.710T>G p.L237W 1 (1%) 1/1 1 MDS

c.776A>G p.Y259C 1 (1%) 1/1 1 CCUS

c.847del p.L283fs 1 (1%) 1/1 1 AML

c.916C>T p.Q306* 1 (1%) 0/1 1 MPN

c.967C>T p.R323C 1 (1%) 1/1 1 AML

c.1015C>T p.R339C 1 (1%) 1/1 1 MDS

c.1016G>A p.R339H 1 (1%) 0/1 1 MDS

c.1016G>T p.R339L 1 (1%) 1/1 1 CCUS

c.1018T>A p.Y340N 1 (1%) 1/1 1 MDS

c.1108C>T p.Q370* 1 (1%) 1/1 1 AML

c.1141A>T p.K381* 1 (1%) 1/1 1 MPN
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Table 1. Cont.

Study
Characteristics
(Author, Year,

Cohort, Database)

Total Number of
Data Nucleotide Change Amino Acid

Change

Number of
Patients or

Families (% of
Studied Patients

or Families)

No. of Patients
with Concomitant

Somatic DDX41
Mutations

No. of Patients with
Hematologic
Malignancies

c.1354del p.L452fs 1 (1%) 1/1 1 CCUS

c.1394del p.G465fs 1 (1%) 1/1 1 AML

c.1399G>T p.D467Y 1 (1%) 1/1 1 AML

c.1496dup p.A500fs 1 (1%) 1/1 1 MDS

c.1504C>T p.Q502* 1 (1%) 1/1 MDS

c.1574G>A p.R525H 1 (1%) 0/1 1 AML

c.1586_ 1587delCA p.T529fs 1 (1%) 0/1 1 CCUS

c.1628C>G p.S543* 1 (1%) 1/1 1 CCUS

Duployez et al,
2022 [57]; a cohort
of 5 prospective

trials and additional
diagnostic samples,

multi-center
(France) data

191 AML patients
with germline

mutations
c.415_418dup p.D140fs 32 (17%) 27/32 All AML patients

c.3G>A p.M1? 19 (10%) 15/19

c.517G>A p.G173R 10 (5%) 8/10

c.847del p.L283fs 9 (5%) 7/9

c.1088_1090del p.S363del 9 (%) 8/9

c.138+1G>C 6 5/6

c.653G>A p.G218D 5 5/5

c.992_994del p.K331del 5 4/5

c.268C>T p.Q90* 4 4/4

c.305_306del p.K102fs 4 4/4

c.804del p.E268fs 4 4/4

c.55G>T p.G19* 3 2/3

c.121C>T p.Q41* 3 3/3

c.936-1G>A - 3 2/3

c.1212_1226delinsAG p.S405fs 3 3/3

c.1334_1336del p.V445del 3 2/3

c.1496del p.P499fs 3 3/3

c.1A>C p.M1? 2 2/2

c.316A>T p.K106* 2 2/2

c.571G>A p.A191T 2 2/2

c.656G>A p.R219H 2 0/2

c.935+2T>C - 2 1/2

c.945del p.H315fs 2 1/2

c.1031A>G p.D344G 2 2/2

c.1098+1G>A - 2 2/2

c.1105C>T p.R369* 2 1/2

c.1298del p.P433fs 2 2/2

c.1504C>T p.Q502* 2 1/2

c.1585dup p.T529fs 2 1/2

c.2T>C p.M1? 1 1/1

c.69del p.S23fs 1 1/1

c.130C>T p.Q44* 1 0/1

c.142C>T p.Q48* 1 1/1

c.156_157delinsTT p.Q52_R53delinsH 1 1/1

c.325C>T p.Q109* 1 1/1

c.342_346del p.E114fs 1 1/1
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Table 1. Cont.

Study
Characteristics
(Author, Year,

Cohort, Database)

Total Number of
Data Nucleotide Change Amino Acid

Change

Number of
Patients or

Families (% of
Studied Patients

or Families)

No. of Patients
with Concomitant

Somatic DDX41
Mutations

No. of Patients with
Hematologic
Malignancies

c.364G>T p.E122* 1 1/1

c.373+1G>A - 1 0/1

c.434+1G>T - 1 1/1

c.436T>C p.W146R 1 1/1

c.475C>T p.R159* 1 1/1

c.622C>G p.Q208E 1 1/1

c.643A>C p.I215L 1 0/1

c.644T>C p.I215T 1 0/1

c.649T>C p.S217P 1 1/1

c.668G>A p.G223D 1 1/1

c.758C>G p.S252* 1 1/1

c.791G>A p.C264Y 1 1/1

c.799-2A>T - 1 1/1

c.805dup p.L269fs 1 0/1

c.931C>T p.R311* 1 0/1

c.958A>T p.T320S 1 0/1

c.959C>T p.T320I 1 1/1

c.967C>A p.R323S 1 1/1

c.967C>T p.R323C 1 0/1

c.968G>A p.R323H 1 1/1

c.998T>A p.V333D 1 1/1

c.1033G>A p.E345K 1 1/1

c.1037C>A p.A346D 1 1/1

c.1105C>G p.R369G 1 1/1

c.1108C>T p.Q370* 1 1/1

c.1118_1127del p.L373fs 1 1/1

c.1212_1224del p.L406fs 1 1/1

c.1252G>T p.E418* 1 1/1

c.1298dup p.P433fs 1 1/1

c.1463C>A p.A488D 1 1/1

c.1514T>A p.I505N 1 1/1

c.1615del p.A539fs 1 1/1

c.1628C>G p.S543* 1 1/1

c.1732+1del - 1 1/1

c.1791_1792del p.K597fs 1 1/1

Abbreviation: AML: acute myeloid leukemia, ICUS: idiopathic cytopenia of undetermined significance, CML:
chronic myeloid leukemia, CMML: chronic myelomonocytic leukemia, MDS: myeloid dysplastic syndrome,
MPN: myeloproliferative neoplasm, NHL: non-Hodgkin’s lymphoma, post-PV MF: post-polycythemia vera
myelofibrosis, post-ET MF: post-essential thrombocythemia myelofibrosis, VUS: variant of uncertain significance.
** Only included causal variants in the table (excluded VUS).

Bone marrow examination often shows hypocellularity and erythroid dysplasia [46,52].
70–80% of patients with germline DDX41 mutations have a normal karyotype [34–36]. In
addition, 3–30% of patients have concomitant TP53 mutations [35,36,56]. A systematic
review study of pooled studies of DDX41 mutations showed 47% of patients have con-
comitant other somatic mutations, most frequently ASXL1(26%), TP53 (23%), followed by
TET2, EZH2, SRSF2, and DNMT3A [48]. Interestingly, the recent study by Makishima et al.
including 346 patients with pathogenic or likely pathogenic germline DDX41 mutations
showed that co-mutations, including TP53, did not affect outcomes [37].
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4. Clinical Presentation and Outcomes

The age at diagnosis of MDS/AML patients with germline DDX41 mutations has
been reported within a wide range from 57 to 70 years, but most studies reported that it is
comparable to patients with general MDS/AML [34–36,50,58].

Some studies showed that MDS/AML patients with germline DDX41 mutations often
have a higher-grade disease than those with wildtype DDX41 [34,36,51]. However, the
survival effect of germline DDX41 mutations was reported to vary.

Several studies have assessed outcomes in MDS/AML patients with DDX41 mutations.
Polprasert et al. showed that MDS/AML patients with DDX41 mutations had worse
survival than patients with wildtype DDX41 in a large cohort of MDS and secondary AML
patients of 1034 patients (hazard ratio, 3.5; p < 0.0001) [34]. In a smaller study that included
28 patients with ICUS, MDS, or AML having DDX41 germline mutations, Choi et al. found
no difference in survival by DDX41 mutation status [46].

Sebert et al. showed that the median survival duration of patients with germline
DDX41 mutations (5.2 years) was longer than that of patients with wildtype DDX41
(2.7 years) in a propensity score-matched study with 18 matched patients with DDX41
mutations, but this difference was not statistically significant. They also found that patients
with germline mutations had a good overall response to intensive chemotherapy (response
rate at 100%, n = 9) and hypomethylating agent (response rate at 73%, n = 11), and a median
response duration of 2.5 years [35].

Li et al. showed that 81 patients with DDX41 germline causal variants had superior
overall survival compared to age-matched or general MDS or AML cases with wild-type
DDX41 or a variant of unknown significance (median OS: not reached) [50].

A recent study by Duployez et al. showed prolonged survival in DDX41 germline
mutant AML patients, with a good response to intensive chemotherapy in intermediate
or high-risk patients with AML, in a large cohort study using five prospective clinical
trials of 191 newly diagnosed DDX41 mutant AML patients [57]. The median overall
survival of AML patients with DDX41 germline mutations of all variants was 28.1 months
(Interquartile range, IQR, at 10.7–82.7 months) when censored at stem-cell transplant, and
median relapse-free survival at 18.7 months (IQR 8.3–80.9 months).

These conflicting results are likely due to different study populations, heterogeneity of
MDS/AML clinical course and treatments, and a limited number of study patients from a
low prevalence of mutations. While Sebert et al. studied patients with germline DDX41
mutations and analyzed the survival of only those patients who were treated for high-risk
MDS and AML, Polprasert et al. included all patients with either germline or somatic
mutations in the survival analyses. Choi et al. included patients with either germline or
somatic mutations, but analyzed survival by diagnosis. Li et al. studied patients with
germline pathogenic variants. Duployez et al. studied AML patients only.

As the prevalence of DDX41-associated MDS/AML is relatively low, further accumu-
lation of clinical data may help clarify the prognostic role of DDX41 mutations.

5. Treatment—General Approaches

So far, there are no randomized studies focusing on patients with DDX41 mutations
for specific therapeutic approaches. The treatment approaches of DDX41-mutant myeloid
neoplasms generally follow standard care for general MDS/AML treatments. Two recent
studies reported treatment responses in DDX41 mutant patients. Li et al. reported a
higher response rate at 78%, and superior survival (not reached) in a matched case-control
study including 28 patients with AML having DDX41 germline mutations. In the study,
most (about 80%) patients were treated with hypomethylating agents with or without
venetoclax [59]. Duployez et al., as mentioned above, also reported a better response to
intensive chemotherapy in patients with intermediate or adverse DDX41 germline-mutant
patients in AML.

Interestingly, a few studies showed a good response to lenalidomide in MDS patients
with DDX41 mutations [34]. Lenalidomide is a well-established standard therapy for
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the low-risk MDS with a 5q deletion [60]. Lenalidomide has demonstrated its efficacy in
MDS/AML patients with DDX41 mutations, even in the absence of a full 5q deletion [34].
Only 26% of patients with MDS with 5q deletion have the deletion at 5q35, where DDX41
is located at [34].

In a study of 111 patients treated with lenalidomide, Polprasert et al. reported that the
response rate among patients with DDX41 mutations (100% (8/8 patients)) was significantly
higher than that among patients with wildtype DDX41 (53% (55/103 patients); p = 0.01). In
another prediction model study using 137 patients with MDS or other myeloid neoplasms,
the mutation of any DEAD-box RNA helicase gene, including DDX41, was associated with
higher response to lenalidomide (odds ratio 3.4, p = 0.04). Among seven patients with
heterozygous DDX41 mutations or deletions, the lenalidomide response rate was 57%. For
the three patients who had DDX41 mutations only, the response rate was 100% [61].

In addition, there is a case report about single-agent lenalidomide with the successful
treatment of one patient with high-risk MDS (i.e., MDS with excess blasts type 2) [62]. The
patient, who had a germline mutation (p.D140fs) and a low burden of DDX41 p.R525H
mutation, had a good response and had improved blood counts and rare dysplasia after
4 months of lenalidomide monotherapy. The blast percentage had decreased from 16%
before treatment to 3% [62].

6. Treatment—Special Considerations: SCT

SCT is an essential part of treatment in hereditary myeloid neoplasms, especially in fit,
younger patients. Donor cell leukemia is a particular concern in DDX41 germline mutant
myeloid neoplasms with its severity and fatality.

Berger et al. were the first to report a case of a DDX41 mutation giving rise to donor cell
leukemia. They described a patient who received an allogeneic SCT from an HLA-matched
related donor carrying a germline DDX41 mutation (c.3G>A; p.(MET1?)) and other somatic
mutations [63]. The patient’s family had a strong history of leukemia; the patient’s father
died of leukemia, and one of the patient’s two brothers (not the donor) developed AML.
The donor remained free of disease, but the patient developed high-risk MDS that might
have been associated with stress from post-transplant changes [63].

Kobayashi et al. similarly reported a case of donor cell leukemia in a patient who
received stem cells from a donor with a germline DDX41 mutation (p.F498fs). There was
also a significant increase in the variant allele frequency (7.9% vs 0.4%) of a somatic DDX41
mutation (p.R525H) in a carrier after transplant [64]. Larger studies have since investigated
the effects of donor clonal hematopoiesis in SCT. In a recent study of 1727 patients who
received stem cells from donors with clonal hematopoiesis, only eight cases of donor
cell leukemia were identified; in two of these cases, germline DDX41 mutations were
present [65].

Therefore, the early identification of the related donors’ germline DDX41 mutation car-
rier status is one strategy to avoid SCT delay in MDS/AML patients with germline DDX41
mutations. In a report on the experience of a single tertiary cancer center, Bannon et al.
reported that such identification of optimal related donors was effective [51].

7. Family Screening and Surveillance

There are no specific guidelines for family screening, or the surveillance of germline
carriers identified from family screening. Family screening might be considered only for
patients with germline mutations because somatic DDX41 mutations are not heritable,
and DDX41 mutations are rare among the general population [52]. However, the risk of
malignancy and penetrance of disease in germline carriers remains unclear, and methods
for detecting or preventing myeloid neoplasms and other cancers in these individuals have
not been established [66].

As a first step, surveillance methods and the timing for the family members identi-
fied as germline DDX41 need to be established. Lewinsohn et al. reported that germline
DDX41 mutation carriers had cytopenia and other complete blood count (CBC) abnormal-
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ities at the time of MDS/AML diagnosis, but mostly lacked these abnormalities before
diagnosis [49]. Further studies showed earlier CBC changes in carriers; Polprasert et al.
reported macrocytosis and monocytosis in carriers, and Bannon et al. and Sebert et al.
reported that 50–60% of carriers who were later diagnosed with hematologic malignancies
had antecedent cytopenia [34,35,51]. In a study by Choi et al., five of 28 patients with
germline DDX41 mutations had ICUS [46]. Therefore, CBCs can be helpful in the screening
or surveillance of carriers identified from family screening, but specific recommendations
are not yet available. Makishima et al., reported an increasing risk of developing myeloid
neoplasms by age in germline carriers [37]. The risk for myeloid neoplasms in patients
with three major pathogenic variants under the age of 40 were negligible, but it increases
rapidly after the age of 40 [37]. Age 40 could be a cut-off for a surveillance in germline
carriers based on study results, although further accumulation of data would be helpful.

Several papers have described the experiences of patients with germline DDX41 muta-
tions in genetics clinics. One review, which detailed multiple cases from MD Anderson’s
genetics clinic, described the experience of a patient who had a biallelic DDX41 mutation
with a hotspot germline DDX41 mutation and the screening of the patient’s adult chil-
dren [66]. Bannon et al. described how DDX41 mutation carriers were offered education
and follow-up; all unaffected family members, including potential stem cell transplant
(SCT) donors, were offered genetic testing and counseling [51]. This enabled the prompt
transition to stem-cell donor identification within 15 days after family screening [51].

Other considerations for the screening and surveillance of patients and their families
should include the early detection of secondary hematologic malignancies, both myeloid
and lymphoid malignancies, including follicular lymphoma and Hodgkin’s lymphoma. It
should also include autoimmune diseases in MDS/AML patients who have had disease
remission, and the early detection of primary hematologic malignancies or autoimmune
diseases in germline mutation carriers.

8. Conclusions

We are rapidly gaining knowledge about hereditary MDS/AML through recent clinical
and translational research endeavors, particularly of DDX41-associated hereditary myeloid
neoplasms. MDS/AML with DDX41 mutations has become a study of interest with
its unique features of pathophysiology, genetic and clinical characteristics. There is the
potential therapeutic implication of an expected good treatment response to standard
therapies, and the need for early donor identifications for SCT.

Despite the rapid advancements in this field, there still is a gap in knowledge that
future studies need to address for patients with DDX41-associated myeloid neoplasms.
Further understanding of the clinical impact of the DDX41 mutations, including learning
further prognostic or clinical information of DDX41 mutant AML/MDS patients, and study-
ing whether DDX41 mutations can be targetable for therapeutic or preventive applications
would be essential. Additionally, establishing standardized approaches for cancer and other
medical surveillance/screening in family members (i.e., germline-carriers) is essential.
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