The Effects of Different Types of Sleep Disorder on Colorectal Cancer: A Nationwide Population-Based Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Potential Confounders
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the SD and Non-SD Groups
3.2. Sex- and Age-Stratified Analyses of the SD and Non-SD Groups
3.3. Sensitivity Analyses
3.4. Cumulative Incidence of CRC among Different Subgroups
4. Discussion
4.1. Mechanisms behind the Association between the Risk of CRC and SDs
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Onyoh, E.F.; Hsu, W.F.; Chang, L.C.; Lee, Y.C.; Wu, M.S.; Chiu, H.M. The Rise of Colorectal Cancer in Asia: Epidemiology, Screening, and Management. Curr. Gastroenterol. Rep. 2019, 21, 36. [Google Scholar] [CrossRef] [PubMed]
- Thanikachalam, K.; Khan, G. Colorectal Cancer and Nutrition. Nutrients 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- Hadjipetrou, A.; Anyfantakis, D.; Galanakis, C.G.; Kastanakis, M.; Kastanakis, S. Colorectal cancer, screening and primary care: A mini literature review. World J. Gastroenterol. 2017, 23, 6049–6058. [Google Scholar] [CrossRef] [PubMed]
- Kanth, P.; Inadomi, J.M. Screening and prevention of colorectal cancer. BMJ 2021, 374, n1855. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Irwin, M.R.; Wang, M.; Ribeiro, D.; Cho, H.J.; Olmstead, R.; Breen, E.C.; Martinez-Maza, O.; Cole, S. Sleep loss activates cellular inflammatory signaling. Biol. Psychiatry 2008, 64, 538–540. [Google Scholar] [CrossRef]
- Tobaldini, E.; Costantino, G.; Solbiati, M.; Cogliati, C.; Kara, T.; Nobili, L.; Montano, N. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci. Biobehav. Rev. 2017, 74 Pt B, 321–329. [Google Scholar] [CrossRef]
- Grandner, M.A.; Jackson, N.J.; Pak, V.M.; Gehrman, P.R. Sleep disturbance is associated with cardiovascular and metabolic disorders. J. Sleep Res. 2012, 21, 427–433. [Google Scholar] [CrossRef]
- Van Ryswyk, E.; Mukherjee, S.; Chai-Coetzer, C.L.; Vakulin, A.; McEvoy, R.D. Sleep Disorders, Including Sleep Apnea and Hypertension. Am. J. Hypertens. 2018, 31, 857–864. [Google Scholar] [CrossRef]
- Shenker, J.I.; Singh, G. Sleep and Dementia. Mol. Med. 2017, 114, 311–315. [Google Scholar]
- Murphy, M.J.; Peterson, M.J. Sleep Disturbances in Depression. Sleep Med. Clin. 2015, 10, 17–23. [Google Scholar] [CrossRef]
- Mogavero, M.P.; DelRosso, L.M.; Fanfulla, F.; Bruni, O.; Ferri, R. Sleep disorders and cancer: State of the art and future perspectives. Sleep Med. Rev. 2021, 56, 101409. [Google Scholar] [CrossRef]
- Lin, C.L.; Liu, T.C.; Wang, Y.N.; Chung, C.H.; Chien, W.C. The Association Between Sleep Disorders and the Risk of Colorectal Cancer in Patients: A Population-based Nested Case-Control Study. In Vivo 2019, 33, 573–579. [Google Scholar] [CrossRef]
- Executive Yuan. National Health Insurance Substantiality Insurance Rate. 2021. Available online: https://www.gender.ey.gov.tw/GECDB/Stat_Statistics_Query.aspx?sn=OU8Vo8ydhvbx1qKbUarVHw%40%40&statsn=u4ceyDJ9iGzBYUGlJC0z7w%40%40&d=&n=163385 (accessed on 20 April 2023).
- Hsieh, C.Y.; Su, C.C.; Shao, S.C.; Sung, S.F.; Lin, S.J.; Kao Yang, Y.H.; Lai, E.C. Taiwan’s National Health Insurance Research Database: Past and future. Clin. Epidemiol. 2019, 11, 349–358. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Koo, M.; Hsu, C.W.; Lu, M.C. Increased Risk of Common Orthopedic Surgeries for Patients with Rheumatic Diseases in Taiwan. Medicina 2022, 58, 1629. [Google Scholar] [CrossRef]
- Liu, P.H.; Wei, J.C.; Wang, Y.H.; Yeh, M.H. Female breast cancer incidence predisposing risk factors identification using nationwide big data: A matched nested case-control study in Taiwan. BMC Cancer 2022, 22, 849. [Google Scholar] [CrossRef]
- Cheng, C.L.; Kao, Y.H.; Lin, S.J.; Lee, C.H.; Lai, M.L. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol. Drug Saf. 2011, 20, 236–242. [Google Scholar] [CrossRef]
- Cheng, C.L.; Lee, C.H.; Chen, P.S.; Li, Y.H.; Lin, S.J.; Yang, Y.H. Validation of acute myocardial infarction cases in the national health insurance research database in Taiwan. J. Epidemiol. 2014, 24, 500–507. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Thompson, C.L.; Larkin, E.K.; Patel, S.; Berger, N.A.; Redline, S.; Li, L. Short duration of sleep increases risk of colorectal adenoma. Cancer 2011, 117, 841–847. [Google Scholar] [CrossRef]
- Cheng, L.; Guo, H.; Zhang, Z.; Yao, Y.; Yao, Q. Obstructive sleep apnea and incidence of malignant tumors: A meta-analysis. Sleep Med. 2021, 84, 195–204. [Google Scholar] [CrossRef]
- Brenner, R.; Kivity, S.; Peker, M.; Reinhorn, D.; Keinan-Boker, L.; Silverman, B.; Liphsitz, I.; Kolitz, T.; Levy, C.; Shlomi, D.; et al. Increased Risk for Cancer in Young Patients with Severe Obstructive Sleep Apnea. Respiration 2019, 97, 15–23. [Google Scholar] [CrossRef]
- Teo, Y.H.; Tan, B.K.J.; Tan, N.K.W.; Yap, D.W.T.; Chai, Y.X.; Teo, Y.N.; Sia, C.H.; Sundar, R.; Tan, E.; See, A.; et al. Obstructive sleep apnea and the incidence and mortality of gastrointestinal cancers: A systematic review and meta-analysis of 5,120,837 participants. J. Gastrointest. Oncol. 2022, 13, 2789–2798. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, X.; Jiang, X. Effects of Obstructive Sleep Apnea-Hypopnea Syndrome on Serum Carcinoembryonic Antigen Levels in Patients with Type 2 Diabetes Mellitus. Med. Sci. Monit. 2019, 25, 3558–3565. [Google Scholar] [CrossRef]
- Xiong, H.; Lao, M.; Zhang, S.; Chen, J.; Shi, Q.; Xu, Y.; Ou, Q. A cross-sectional study of obstructive sleep apnea in patients with colorectal cancer. J. Gastrointest. Oncol. 2022, 13, 683–694. [Google Scholar] [CrossRef]
- Chen, C.Y.; Hu, J.M.; Shen, C.J.; Chou, Y.C.; Tian, Y.F.; Chen, Y.C.; You, S.L.; Hung, C.F.; Lin, T.C.; Hsiao, C.W.; et al. Increased incidence of colorectal cancer with obstructive sleep apnea: A nationwide population-based cohort study. Sleep Med. 2020, 66, 15–20. [Google Scholar] [CrossRef]
- Shi, T.; Min, M.; Sun, C.; Zhang, Y.; Liang, M.; Sun, Y. Does insomnia predict a high risk of cancer? A systematic review and meta-analysis of cohort studies. J. Sleep Res. 2020, 29, e12876. [Google Scholar] [CrossRef]
- Ge, L.; Guyatt, G.; Tian, J.; Pan, B.; Chang, Y.; Chen, Y.; Li, H.; Zhang, J.; Li, Y.; Ling, J.; et al. Insomnia and risk of mortality from all-cause, cardiovascular disease, and cancer: Systematic review and meta-analysis of prospective cohort studies. Sleep Med. Rev. 2019, 48, 101215. [Google Scholar] [CrossRef]
- Chen, J.; Chen, N.; Huang, T.; Huang, N.; Zhuang, Z.; Liang, H. Sleep pattern, healthy lifestyle and colorectal cancer incidence. Sci. Rep. 2022, 12, 18317. [Google Scholar] [CrossRef]
- Yoon, K.; Shin, C.M.; Han, K.; Jung, J.H.; Jin, E.H.; Lim, J.H.; Kang, S.J.; Choi, Y.J.; Lee, D.H. Risk of cancer in patients with insomnia: Nationwide retrospective cohort study (2009–2018). PLoS ONE 2023, 18, e0284494. [Google Scholar] [CrossRef]
- Wong, A.K.; Wang, D.; Marco, D.; Le, B.; Philip, J. Prevalence, Severity, and Predictors of Insomnia in Advanced Colorectal Cancer. J. Pain Symptom Manag. 2023, 66, e335–e342. [Google Scholar] [CrossRef]
- Sweetman, A.; Lack, L.; McEvoy, R.D.; Smith, S.; Eckert, D.J.; Osman, A.; Carberry, J.C.; Wallace, D.; Nguyen, P.D.; Catcheside, P. Bi-directional relationships between co-morbid insomnia and sleep apnea (COMISA). Sleep Med. Rev. 2021, 60, 101519. [Google Scholar] [CrossRef]
- Humer, E.; Pieh, C.; Brandmayr, G. Metabolomics in Sleep, Insomnia and Sleep Apnea. Int. J. Mol. Sci. 2020, 21, 7244. [Google Scholar] [CrossRef]
- Mao, L.; Dauchy, R.T.; Blask, D.E.; Slakey, L.M.; Xiang, S.; Yuan, L.; Dauchy, E.M.; Shan, B.; Brainard, G.C.; Hanifin, J.P.; et al. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3beta. Mol. Endocrinol. 2012, 26, 1808–1820. [Google Scholar] [CrossRef]
- Keith, B.; Simon, M.C. Hypoxia-inducible factors, stem cells, and cancer. Cell 2007, 129, 465–472. [Google Scholar] [CrossRef]
- Jensen, L.D. The circadian clock and hypoxia in tumor cell de-differentiation and metastasis. Biochim. Biophys. Acta 2015, 1850, 1633–1641. [Google Scholar] [CrossRef]
- Maiese, K. Moving to the Rhythm with Clock (Circadian) Genes, Autophagy, mTOR, and SIRT1 in Degenerative Disease and Cancer. Curr. Neurovasc. Res. 2017, 14, 299–304. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, N.; Lu, C.; Bei, Y.; Qian, R.; Hua, L. Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. Int. J. Oncol. 2017, 50, 2191–2199. [Google Scholar] [CrossRef]
- Parkar, S.G.; Kalsbeek, A.; Cheeseman, J.F. Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms 2019, 7, 41. [Google Scholar] [CrossRef]
- Hu, L.; Li, G.; Shu, Y.; Hou, X.; Yang, L.; Jin, Y. Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in Light/Dark phase shift mice. Front. Microbiol. 2022, 13, 935919. [Google Scholar] [CrossRef]
- Rossi, M.; Mirbagheri, S.; Keshavarzian, A.; Bishehsari, F. Nutraceuticals in colorectal cancer: A mechanistic approach. Eur. J. Pharmacol. 2018, 833, 396–402. [Google Scholar] [CrossRef]
- Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021, 21, 62. [Google Scholar] [CrossRef]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Masoud, G.N.; Li, W. HIF-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharm. Sin. B 2015, 5, 378–389. [Google Scholar] [CrossRef]
- Ke, Q.; Costa, M. Hypoxia-inducible factor-1 (HIF-1). Mol. Pharmacol. 2006, 70, 1469–1480. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef]
- van Zeller, M.; Basoglu, O.K.; Verbraecken, J.; Lombardi, C.; McNicholas, W.T.; Pepin, J.L.; Steiropoulos, P.; Sliwinski, P.; Correia, D.; Bonsignore, M.R.; et al. Sleep and cardiometabolic comorbidities in the obstructive sleep apnoea-COPD overlap syndrome: Data from the European Sleep Apnoea Database. ERJ Open Res. 2023, 9, 00676–2022. [Google Scholar] [CrossRef]
Whole Cohort (n = 355,414) | Sleep Disorders (n = 177,707) | Comparison Cohort (n = 177,707) | p | ||||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Age, years (Mean ± SD) | 45.86 (15.99) | 45.86 (15.99) | 45.86 (15.99) | 0.989 | |||
18–44 | 181,687 | 51.12 | 90,835 | 51.12 | 90,852 | 51.12 | 0.954 |
45–64 | 123,451 | 34.73 | 61,703 | 34.72 | 61,748 | 34.75 | |
≥65 | 50,276 | 14.15 | 25,169 | 14.16 | 25,107 | 14.13 | |
Gender | |||||||
Female | 220,030 | 61.91 | 110,015 | 61.91 | 110,015 | 61.91 | 1.000 |
Male | 135,384 | 38.09 | 67,692 | 38.09 | 67,692 | 38.09 | |
CCI | |||||||
0 | 194,006 | 54.59 | 81,055 | 45.61 | 112,951 | 63.56 | <0.001 |
1 | 91,947 | 25.87 | 52,584 | 29.59 | 39,363 | 22.15 | |
2 | 40,627 | 11.43 | 25,544 | 14.37 | 15,083 | 8.49 | |
≥3 | 28,834 | 8.11 | 18,524 | 10.42 | 10,310 | 5.80 | |
Diabetes | |||||||
No | 314,679 | 88.54 | 154,345 | 86.85 | 160,334 | 90.22 | <0.001 |
Yes | 40,735 | 11.46 | 23,362 | 13.15 | 17,373 | 9.78 | |
Hypertension | |||||||
No | 279,238 | 78.57 | 133,280 | 75.00 | 145,958 | 82.13 | <0.001 |
Yes | 76,176 | 21.43 | 44,427 | 25.00 | 31,749 | 17.87 | |
Dyslipidemia | |||||||
No | 297,582 | 83.73 | 142,992 | 80.47 | 154,590 | 86.99 | <0.001 |
Yes | 57,832 | 16.27 | 34,715 | 19.53 | 23,117 | 13.01 | |
Atrial fibrillation | |||||||
No | 347,852 | 97.87 | 173,439 | 97.60 | 174,413 | 98.15 | <0.001 |
Yes | 7562 | 2.13 | 4268 | 2.40 | 3294 | 1.85 | |
Aspirin | |||||||
<28 days | 303,329 | 85.35 | 146,200 | 82.27 | 157,129 | 88.42 | <0.001 |
≥28 days | 52,085 | 14.65 | 31,507 | 17.73 | 20,578 | 11.58 | |
Statin | |||||||
<28 days | 302,219 | 85.03 | 146,471 | 82.42 | 155,748 | 87.64 | <0.001 |
≥28 days | 53,195 | 14.97 | 31,236 | 17.58 | 21,959 | 12.36 | |
RAA | |||||||
<28 days | 279,836 | 78.74 | 133,815 | 75.30 | 146,021 | 82.17 | <0.001 |
≥28 days | 75,578 | 21.26 | 43,892 | 24.70 | 31,686 | 17.83 | |
Metformin | |||||||
<28 days | 320,359 | 90.14 | 158,390 | 89.13 | 161,969 | 91.14 | <0.001 |
≥28 days | 35,055 | 9.86 | 19,317 | 10.87 | 15,738 | 8.86 | |
Level of Urbanization | |||||||
Urban | 287,041 | 80.76 | 144,062 | 81.07 | 142,979 | 80.46 | <0.001 |
Suburban | 50,870 | 14.31 | 25,100 | 14.12 | 25,770 | 14.50 | |
Rural | 17,503 | 4.92 | 8545 | 4.81 | 8958 | 5.04 | |
Monthly income (NT$) | |||||||
0 | 19,481 | 5.48 | 8718 | 4.91 | 10,763 | 6.06 | <0.001 |
1–21,000 | 141,020 | 39.68 | 69,791 | 39.27 | 71,229 | 40.08 | |
21000–33,300 | 97,868 | 27.54 | 50,614 | 28.48 | 47,254 | 26.59 | |
≥33,301 | 97,045 | 27.30 | 48,584 | 27.34 | 48,461 | 27.27 |
Whole Cohort (n = 355,414) | Sleep Disorders (Total Follow-Up 1,202,268.0 Person-Years) | Comparison Cohort (Total Follow-Up 1,218,949.4 Person-Years) | Adjusted HR † (95% CI) | ||
---|---|---|---|---|---|
No. of Patients With Cancer | Incidence Rate (per 105 Person-Years) (95% CI) | No. of Patients with Cancer | Incidence Rate (per 105 Person-Years) (95% CI) | ||
Whole cohort | |||||
Patients | 1949 | 162 (154.9, 169.3) | 1415 | 116 (110.0, 122.1) | 1.32 (1.23, 1.42) *** |
Age, 18–44 a | |||||
Patients | 347 | 56.3 (50.3, 62.2) | 198 | 31.8 (27.4, 36.2) | 1.66 (1.39, 1.98) *** |
Age, 45–64 b | |||||
Patients | 845 | 203.7 (189.9, 217.4) | 617 | 146.0 (134.5, 157.6) | 1.26 (1.13, 1.40) *** |
Age, ≥65 c | |||||
Patients | 757 | 443.6 (412.0, 475.2) | 600 | 344.8 (317.2, 372.4) | 1.27 (1.14, 1.42) *** |
Female d | |||||
Patients | 1071 | 141.4 (133.0, 149.9) | 736 | 96.1 (89.1, 103.0) | 1.38 (1.25, 1.51) *** |
Male e | |||||
Patients | 878 | 197.3 (184.3, 210.4) | 679 | 149.9 (138.7, 161.2) | 1.27 (1.14, 1.40) *** |
Comparison Cohort (n = 177,707) | Patients with Sleep Disorders | ||||
---|---|---|---|---|---|
Sleep Apnea (n = 4018) | Insomnia (n = 66,648) | Sleep Disturbance (n = 99,789) | Others (n = 7252) | ||
Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | |
Main model † | 1.00 | 1.17 (0.82, 1.68) | 1.42 (1.31, 1.55) *** | 1.27 (1.17, 1.38) *** | 1.00 (0.77, 1.29) |
Additional covariates ‡ | |||||
Main model + Aspirin | 1.00 | 1.22 (0.85, 1.75) | 1.48 (1.36, 1.61) *** | 1.31 (1.20, 1.42) *** | 1.03 (0.80, 1.33) |
Main model + Statin | 1.00 | 1.21 (0.85, 1.73) | 1.46 (1.34, 1.59) *** | 1.29 (1.19, 1.41) *** | 1.02 (0.79, 1.31) |
Main model + RAA | 1.00 | 1.25 (0.87, 1.78) | 1.48 (1.36, 1.61) *** | 1.31 (1.20, 1.42) *** | 1.03 (0.80, 1.33) |
Main model + Metformin | 1.00 | 1.18 (0.82, 1.68) | 1.43 (1.31, 1.55) *** | 1.27 (1.17, 1.38) *** | 1.00 (0.78, 1.29) |
Subgroup effects | |||||
Age, years | |||||
18–44 | 1.00 | 1.92 (0.98, 3.77) | 1.93 (1.54, 2.43) *** | 1.57 (1.29, 1.92) *** | 0.91 (0.46, 1.77) |
45–64 | 1.00 | 1.22 (0.76, 1.96) | 1.41 (1.24, 1.60) *** | 1.16 (1.02, 1.32) * | 0.87 (0.56, 1.36) |
≥65 | 1.00 | 0.57 (0.21, 1.52) | 1.30 (1.14, 1.48) *** | 1.28 (1.11, 1.47) *** | 1.13 (0.79, 1.60) |
Sex | |||||
Female | 1.00 | 1.22 (0.61, 2.45) | 1.55 (1.38, 1.73) *** | 1.27 (1.13, 1.42) *** | 0.90 (0.62, 1.32) |
Male | 1.00 | 1.15 (0.76, 1.75) | 1.29 (1.13, 1.46) *** | 1.27 (1.12, 1.44) *** | 1.09 (0.77, 1.53) |
CCI | |||||
0 | 1.00 | 1.53 (0.84, 2.77) | 1.63 (1.42, 1.87) *** | 1.41 (1.23, 1.60) *** | 0.91 (0.60, 1.38) |
1 | 1.00 | 1.05 (0.52, 2.12) | 1.37 (1.17, 1.60) *** | 1.16 (0.99, 1.36) | 1.27 (0.83, 1.93) |
2 | 1.00 | 1.92 (1.04, 3.54) * | 1.33 (1.08, 1.64) ** | 1.10 (0.88, 1.37) | 1.19 (0.66, 2.13) |
≥3 | 1.00 | 0.14 (0.02, 1.02) | 1.11 (0.90, 1.37) | 1.19 (0.96, 1.47) | 0.41 (0.15, 1.10) |
Diabetes | |||||
No | 1.00 | 1.42 (0.98, 2.07) | 1.43 (1.30, 1.57) *** | 1.29 (1.17, 1.41) *** | 0.95 (0.71, 1.28) |
Yes | 1.00 | 0.43 (0.14, 1.34) | 1.34 (1.13, 1.60) *** | 1.17 (0.97, 1.41) | 1.12 (0.68, 1.86) |
Dyslipidemia | |||||
No | 1.00 | 1.05 (0.65, 1.70) | 1.44 (1.31, 1.59) *** | 1.29 (1.17, 1.42) *** | 0.91 (0.67, 1.24) |
Yes | 1.00 | 1.30 (0.76, 2.22) | 1.34 (1.14, 1.58) *** | 1.19 (1.01, 1.42) * | 1.25 (0.80, 1.97) |
Hypertension | |||||
No | 1.00 | 1.37 (0.86, 2.19) | 1.63 (1.46, 1.83) *** | 1.31 (1.18, 1.46) *** | 0.89 (0.63, 1.26) |
Yes | 1.00 | 0.93 (0.54, 1.62) | 1.17 (1.03, 1.33) * | 1.18 (1.03, 1.35) * | 1.13 (0.78, 1.64) |
Atrial fibrillation | |||||
No | 1.00 | 1.22 (0.85, 1.74) | 1.44 (1.32, 1.57) *** | 1.26 (1.16, 1.38) *** | 0.99 (0.76, 1.29) |
Yes | 1.00 | - | |||
Aspirin | |||||
<28 days | 1.00 | 1.51 (1.02, 2.23) * | 1.71(1.55, 1.89) *** | 1.44(1.30, 1.58) *** | 1.24(0.94, 1.65) |
≥28 days | 1.00 | 0.56 (0.23, 1.36) | 0.96(0.81, 1.13) | 0.93(0.78, 1.11) | 0.53(0.29, 0.97) * |
Statin | |||||
<28 days | 1.00 | 1.04 (0.67, 1.62) | 1.53(1.41, 1.71) *** | 1.36(1.24, 1.49) *** | 1.03(0.77, 1.37) |
≥28 days | 1.00 | 1.66 (0.90, 3.05) | 1.11(0.91, 1.35) | 1.01(0.82, 1.24) | 0.95(0.55, 1.67) |
RAA | |||||
<28 days | 1.00 | 1.38 (0.89, 2.16) | 1.71(1.54, 1.90) *** | 1.44(1.30, 1.59) *** | 1.04(0.75, 1.43) |
≥28 days | 1.00 | 0.99 (0.54, 1.80) | 1.11(0.96, 1.28) | 1.03(0.88, 1.20) | 0.98(0.64, 1.49) |
Metformin | |||||
<28 days | 1.00 | 1.14 (0.76, 1.69) | 1.44 (1.31, 1.58) *** | 1.29 (1.18, 1.41) *** | 0.95 (0.72, 1.27) |
≥28 days | 1.00 | 1.39 (0.61, 3.15) | 1.34 (1.08, 1.67) ** | 1.15 (0.91, 1.46) | 1.25 (0.69, 2.23) |
Comparison Cohort (n = 70,666) | Sleep Apnea Only (n = 3256) | Insomnia Only (n = 64,996) | Sleep Apnea+ Insomnia (n = 2414) | |
---|---|---|---|---|
Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | Adjusted HR (95% CI) | |
Main model † | 1.00 | 1.08 (0.69, 1.69) | 1.45 (1.31, 1.61) *** | 1.66 (1.21, 2.29) ** |
Subgroup effects | ||||
Age, years | ||||
18–44 | 1.00 | 1.83 (0.78, 4.27) | 2.19 (1.60, 3.00) *** | 2.57 (1.17, 5.67) * |
45–64 | 1.00 | 1.17 (0.65, 2.09) | 1.39 (1.18, 1.63) *** | 1.57 (1.00, 2.49) |
≥65 | 1.00 | 0.45 (0.11, 1.82) | 1.36 (1.17, 1.58) *** | 1.51 (0.86, 2.63) |
Sex | ||||
Female | 1.00 | 1.06 (0.39, 2.83) | 1.59 (1.38, 1.83) *** | 1.93 (1.20, 3.11) ** |
Male | 1.00 | 1.05 (0.63, 1.75) | 1.31 (1.13, 1.53) *** | 1.46 (0.95, 2.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, P.-L.; Hao, W.-R.; Hong, H.-J.; Chen, C.-C.; Chiu, C.-C.; Fang, Y.-A.; Yang, T.-L.; Lai, Y.-H.; Chen, M.-Y.; Hsu, M.-H.; et al. The Effects of Different Types of Sleep Disorder on Colorectal Cancer: A Nationwide Population-Based Cohort Study. Cancers 2023, 15, 4728. https://doi.org/10.3390/cancers15194728
Chiang P-L, Hao W-R, Hong H-J, Chen C-C, Chiu C-C, Fang Y-A, Yang T-L, Lai Y-H, Chen M-Y, Hsu M-H, et al. The Effects of Different Types of Sleep Disorder on Colorectal Cancer: A Nationwide Population-Based Cohort Study. Cancers. 2023; 15(19):4728. https://doi.org/10.3390/cancers15194728
Chicago/Turabian StyleChiang, Po-Lin, Wen-Rui Hao, Hong-Jye Hong, Chun-Chao Chen, Chun-Chih Chiu, Yu-Ann Fang, Tsung-Lin Yang, Yu-Hsin Lai, Ming-Yao Chen, Min-Huei Hsu, and et al. 2023. "The Effects of Different Types of Sleep Disorder on Colorectal Cancer: A Nationwide Population-Based Cohort Study" Cancers 15, no. 19: 4728. https://doi.org/10.3390/cancers15194728
APA StyleChiang, P. -L., Hao, W. -R., Hong, H. -J., Chen, C. -C., Chiu, C. -C., Fang, Y. -A., Yang, T. -L., Lai, Y. -H., Chen, M. -Y., Hsu, M. -H., Chiou, K. -R., Lin, K. -J., Yang, T. -Y., Hsiu, H., & Liu, J. -C. (2023). The Effects of Different Types of Sleep Disorder on Colorectal Cancer: A Nationwide Population-Based Cohort Study. Cancers, 15(19), 4728. https://doi.org/10.3390/cancers15194728