Genetic Variants as Predictors of the Success of Colorectal Cancer Treatments
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Recruitment
2.2. Genotyping
2.3. Analyses
3. Results
3.1. Performance of Genetic Variants Previously Associated with CRC Outcomes
3.2. Discovery of Local Genetic Variants Associated with CRC Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cross, A.J.; Ferrucci, L.M.; Risch, A.; Graubard, B.I.; Ward, M.H.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A.; Sinha, R. A Large Prospective Study of Meat Consumption and Colorectal Cancer Risk: An Investigation of Potential Mechanisms Underlying This Association. Cancer Res. 2010, 70, 2406–2414. [Google Scholar] [CrossRef] [PubMed]
- Lasry, A.; Zinger, A.; Ben-Neriah, Y. Inflammatory Networks Underlying Colorectal Cancer. Nat. Immunol. 2016, 17, 230–240. [Google Scholar] [CrossRef]
- Wong, S.H.; Yu, J. Gut Microbiota in Colorectal Cancer: Mechanisms of Action and Clinical Applications. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 690–704. [Google Scholar] [CrossRef]
- Levin, B.; Lieberman, D.A.; McFarland, B.; Smith, R.A.; Brooks, D.; Andrews, K.S.; Dash, C.; Giardiello, F.M.; Glick, S.; Levin, T.R.; et al. Screening and Surveillance for the Early Detection of Colorectal Cancer and Adenomatous Polyps, 2008: A Joint Guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J. Clin. 2008, 58, 130–160. [Google Scholar] [CrossRef] [PubMed]
- Ab Mutalib, N.-S.; Md Yusof, N.F.; Abdul, S.-N.; Jamal, R. Pharmacogenomics DNA Biomarkers in Colorectal Cancer: Current Update. Front. Pharmacol. 2017, 8, 736. [Google Scholar] [CrossRef]
- De Mattia, E.; Polesel, J.; Roncato, R.; Labriet, A.; Bignucolo, A.; Gagno, S.; Buonadonna, A.; D’Andrea, M.; Lévesque, E.; Jonker, D.; et al. IL15RA and SMAD3 Genetic Variants Predict Overall Survival in Metastatic Colorectal Cancer Patients Treated with FOLFIRI Therapy: A New Paradigm. Cancers 2021, 13, 1705. [Google Scholar] [CrossRef]
- Quintanilha, J.C.F.; Wang, J.; Sibley, A.B.; Xu, W.; Espin-Garcia, O.; Jiang, C.; Etheridge, A.S.; Ratain, M.J.; Lenz, H.-J.; Bertagnolli, M.; et al. Genome-Wide Association Studies of Survival in 1520 Cancer Patients Treated with Bevacizumab-Containing Regimens. Int. J. Cancer 2022, 150, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.-M.; Zhang, H.; Jin, X. DPYD*5 Gene Mutation Contributes to the Reduced DPYD Enzyme Activity and Chemotherapeutic Toxicity of 5-FU. Med. Oncol. 2007, 24, 251–258. [Google Scholar] [CrossRef]
- Derwinger, K.; Wettergren, Y.; Odin, E.; Carlsson, G.; Gustavsson, B. A Study of the MTHFR Gene Polymorphism C677T in Colorectal Cancer. Clin. Color. Cancer 2009, 8, 43–48. [Google Scholar] [CrossRef]
- Gonzalez-Haba, E.; García, M.I.; Cortejoso, L.; López-Lillo, C.; Barrueco, N.; García-Alfonso, P.; Alvarez, S.; Jiménez, J.L.; Martín, M.L.; Muñóz-Fernández, M.A.; et al. ABCB1 Gene Polymorphisms Are Associated with Adverse Reactions in Fluoropyrimidine-Treated Colorectal Cancer Patients. Pharmacogenomics 2010, 11, 1715–1723. [Google Scholar] [CrossRef] [PubMed]
- Deenen, M.J.; Tol, J.; Burylo, A.M.; Doodeman, V.D.; de Boer, A.; Vincent, A.; Guchelaar, H.-J.; Smits, P.H.M.; Beijnen, J.H.; Punt, C.J.A.; et al. Relationship between Single Nucleotide Polymorphisms and Haplotypes in DPYD and Toxicity and Efficacy of Capecitabine in Advanced Colorectal Cancer. Clin. Cancer Res. 2011, 17, 3455–3468. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Motsinger-Reif, A.A.; Hoskins, J.M.; Dvorak, A.; Roy, S.; Alyasiri, A.; Myerson, R.J.; Fleshman, J.W.; Tan, B.R.; McLeod, H.L. Methylenetetrahydrofolate Reductase Genetic Polymorphisms and Toxicity to 5-FU-Based Chemoradiation in Rectal Cancer. Br. J. Cancer 2011, 105, 1654–1662. [Google Scholar] [CrossRef]
- Loganayagam, A.; Arenas Hernandez, M.; Corrigan, A.; Fairbanks, L.; Lewis, C.M.; Harper, P.; Maisey, N.; Ross, P.; Sanderson, J.D.; Marinaki, A.M. Pharmacogenetic Variants in the DPYD, TYMS, CDA and MTHFR Genes Are Clinically Significant Predictors of Fluoropyrimidine Toxicity. Br. J. Cancer 2013, 108, 2505–2515. [Google Scholar] [CrossRef]
- Baskin, Y.; Amirfallah, A.; Unal, O.U.; Calibasi, G.; Oztop, I. Dihydropyrimidine Dehydrogenase 85T>C Mutation Is Associated with Ocular Toxicity of 5-Fluorouracil: A Case Report. Am. J. Ther. 2015, 22, e36–e39. [Google Scholar] [CrossRef] [PubMed]
- Falvella, F.S.; Cheli, S.; Martinetti, A.; Mazzali, C.; Iacovelli, R.; Maggi, C.; Gariboldi, M.; Pierotti, M.A.; Di Bartolomeo, M.; Sottotetti, E.; et al. DPD and UGT1A1 Deficiency in Colorectal Cancer Patients Receiving Triplet Chemotherapy with Fluoropyrimidines, Oxaliplatin and Irinotecan. Br. J. Clin. Pharmacol. 2015, 80, 581–588. [Google Scholar] [CrossRef]
- García-González, X.; Cortejoso, L.; García, M.I.; García-Alfonso, P.; Robles, L.; Grávalos, C.; González-Haba, E.; Marta, P.; Sanjurjo, M.; López-Fernández, L.A. Variants in CDA and ABCB1 Are Predictors of Capecitabine-Related Adverse Reactions in Colorectal Cancer. Oncotarget 2015, 6, 6422–6430. [Google Scholar] [CrossRef]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiadèr, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical Relevance of DPYD Variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as Predictors of Severe Fluoropyrimidine-Associated Toxicity: A Systematic Review and Meta-Analysis of Individual Patient Data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef]
- Boige, V.; Vincent, M.; Alexandre, P.; Tejpar, S.; Landolfi, S.; Le Malicot, K.; Greil, R.; Cuyle, P.J.; Yilmaz, M.; Faroux, R.; et al. DPYD Genotyping to Predict Adverse Events Following Treatment with Fluorouracil-Based Adjuvant Chemotherapy in Patients with Stage III Colon Cancer: A Secondary Analysis of the PETACC-8 Randomized Clinical Trial. JAMA Oncol. 2016, 2, 655–662. [Google Scholar] [CrossRef]
- Innocenti, F.; Sibley, A.B.; Patil, S.A.; Etheridge, A.S.; Jiang, C.; Ou, F.-S.; Howell, S.D.; Plummer, S.J.; Casey, G.; Bertagnolli, M.M.; et al. Genomic Analysis of Germline Variation Associated with Survival of Patients with Colorectal Cancer Treated with Chemotherapy Plus Biologics in CALGB/SWOG 80405 (Alliance). Clin. Cancer Res. 2021, 27, 267–275. [Google Scholar] [CrossRef]
- Xu, W.; Xu, J.; Shestopaloff, K.; Dicks, E.; Green, J.; Parfrey, P.; Green, R.; Savas, S. A Genome Wide Association Study on Newfoundland Colorectal Cancer Patients’ Survival Outcomes. Biomark. Res. 2015, 3, 6. [Google Scholar] [CrossRef]
- Pander, J.; van Huis-Tanja, L.; Böhringer, S.; van der Straaten, T.; Gelderblom, H.; Punt, C.; Guchelaar, H.-J. Genome Wide Association Study for Predictors of Progression Free Survival in Patients on Capecitabine, Oxaliplatin, Bevacizumab and Cetuximab in First-Line Therapy of Metastatic Colorectal Cancer. PLoS ONE 2015, 10, e0131091. [Google Scholar] [CrossRef] [PubMed]
- Phipps, A.I.; Passarelli, M.N.; Chan, A.T.; Harrison, T.A.; Jeon, J.; Hutter, C.M.; Berndt, S.I.; Brenner, H.; Caan, B.J.; Campbell, P.T.; et al. Common Genetic Variation and Survival after Colorectal Cancer Diagnosis: A Genome-Wide Analysis. Carcinogenesis 2016, 37, 87–95. [Google Scholar] [CrossRef]
- Liu, S.; Kurzrock, R. Toxicity of Targeted Therapy: Implications for Response and Impact of Genetic Polymorphisms. Cancer Treat. Rev. 2014, 40, 883–891. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Etxart, A.; Barrero, M.; Nafria, B.; Segues Merino, N.M.; Romero-Garmendia, I.; Franke, A.; D’Amato, M.; Bujanda, L. Performance of the Use of Genetic Information to Assess the Risk of Colorectal Cancer in the Basque Population. Cancers 2022, 14, 4193. [Google Scholar] [CrossRef]
- Abraham, G.; Qiu, Y.; Inouye, M. FlashPCA2: Principal Component Analysis of Biobank-Scale Genotype Datasets. Bioinformatics 2017, 33, 2776–2778. [Google Scholar] [CrossRef]
- Loh, P.-R.; Danecek, P.; Palamara, P.F.; Fuchsberger, C.; Reshef, A.Y.; Finucane, K.H.; Schoenherr, S.; Forer, L.; McCarthy, S.; Abecasis, G.R.; et al. Reference-Based Phasing Using the Haplotype Reference Consortium Panel. Nat. Genet. 2016, 48, 1443–1448. [Google Scholar] [CrossRef]
- McCarthy, S.; Das, S.; Kretzschmar, W.; Delaneau, O.; Wood, A.R.; Teumer, A.; Kang, H.M.; Fuchsberger, C.; Danecek, P.; Sharp, K.; et al. A Reference Panel of 64,976 Haplotypes for Genotype Imputation. Nat. Genet. 2016, 48, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Durbin, R. Efficient Haplotype Matching and Storage Using the Positional Burrows–Wheeler Transform (PBWT). Bioinformatics 2014, 30, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Sollis, E.; Mosaku, A.; Abid, A.; Buniello, A.; Cerezo, M.; Gil, L.; Groza, T.; Güneş, O.; Hall, P.; Hayhurst, J.; et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and Deposition Resource. Nucleic Acids Res. 2023, 51, D977–D985. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022.
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. GigaScience 2015, 4, s13742-015-0047-8. [Google Scholar] [CrossRef]
- Garcia-Etxebarria, K.; Merino, O.; Gaite-Reguero, A.; Rodrigues, P.M.; Herrarte, A.; Etxart, A.; Ellinghaus, D.; Alonso-Galan, H.; Franke, A.; Marigorta, U.M.; et al. Local Genetic Variation of Inflammatory Bowel Disease in Basque Population and Its Effect in Risk Prediction. Sci. Rep. 2022, 12, 3386. [Google Scholar] [CrossRef]
- Günther, T.; Valdiosera, C.; Malmström, H.; Ureña, I.; Rodriguez-Varela, R.; Sverrisdóttir, Ó.O.; Daskalaki, E.A.; Skoglund, P.; Naidoo, T.; Svensson, E.M.; et al. Ancient Genomes Link Early Farmers from Atapuerca in Spain to Modern-Day Basques. Proc. Natl. Acad. Sci. USA 2015, 112, 11917–11922. [Google Scholar] [CrossRef] [PubMed]
- Olalde, I.; Mallick, S.; Patterson, N.; Rohland, N.; Villalba-Mouco, V.; Silva, M.; Dulias, K.; Edwards, C.J.; Gandini, F.; Pala, M.; et al. The Genomic History of the Iberian Peninsula over the Past 8000 Years. Science 2019, 363, 1230–1234. [Google Scholar] [CrossRef]
- Xu, W.; Liu, C.; Deng, B.; Lin, P.; Sun, Z.; Liu, A.; Xuan, J.; Li, Y.; Zhou, K.; Zhang, X.; et al. TP53-Inducible Putative Long Noncoding RNAs Encode Functional Polypeptides That Suppress Cell Proliferation. Genome Res. 2022, 32, 1026–1041. [Google Scholar] [CrossRef]
- Sun, L.; Wan, A.; Zhou, Z.; Chen, D.; Liang, H.; Liu, C.; Yan, S.; Niu, Y.; Lin, Z.; Zhan, S.; et al. RNA-Binding Protein RALY Reprogrammes Mitochondrial Metabolism via Mediating MiRNA Processing in Colorectal Cancer. Gut 2021, 70, 1698–1712. [Google Scholar] [CrossRef]
- Li, X.; Song, D.; Su, S.; He, X.; Cao, F.; Yang, C.; Li, K.; Huang, S.; Li, C.; Wang, C.; et al. Critical Role of Guanylate Binding Protein 5 in Tumor Immune Microenvironment and Predictive Value of Immunotherapy Response. Front. Genet. 2022, 13, 984615. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Sun, H.; Lin, R.; Zhang, J.; Yin, H.; Xian, S.; Li, M.; Wang, S.; Li, Z.; Qiao, Y.; et al. The Role of Tetraspanins Pan-Cancer. iScience 2022, 25, 104777. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, C.; Xu, C.; Wang, D.; Shen, Y.; Liu, Y.; Gu, L. Identification and Development of a Novel Invasion-Related Gene Signature for Prognosis Prediction in Colon Adenocarcinoma. Cancer Cell Int. 2021, 21, 101. [Google Scholar] [CrossRef]
- Sudhir, P.-R.; Lin, S.-T.; Chia-Wen, C.; Yang, S.-H.; Li, A.F.-Y.; Lai, R.-H.; Wang, M.-J.; Chen, Y.-T.; Chen, C.-F.; Jou, Y.-S.; et al. Loss of PTPRM Associates with the Pathogenic Development of Colorectal Adenoma-Carcinoma Sequence. Sci. Rep. 2015, 5, 9633. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xu, F.; Li, C.; Liu, T.; Zhao, Q.; Liu, Y.; Zhao, Y.; Li, Y.; Zhang, Z.; Tang, X.; et al. Sulfotransferase 1C2 Promotes Hepatocellular Carcinoma Progression by Enhancing Glycolysis and Fatty Acid Metabolism. Cancer Med. 2023, 12, 10738–10754. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Song, M.; Wang, J.; Zhu, W.; Sun, D.; Liu, H.; Shi, G. Integrative Multiomics Evaluation Reveals the Importance of Pseudouridine Synthases in Hepatocellular Carcinoma. Front. Genet. 2022, 13, 944681. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wu, X.; Li, Y.; Lu, W.; Zheng, F.; Zhang, C.; Long, Q.; Qiu, H.; Li, Y.; Ge, Q.; et al. RBFOX3 Regulates the Chemosensitivity of Cancer Cells to 5-Fluorouracil via the PI3K/AKT, EMT and Cytochrome-C/Caspase Pathways. Cell Physiol. Biochem. 2018, 46, 1365–1380. [Google Scholar] [CrossRef]
- Huyghe, J.R.; Harrison, T.A.; Bien, S.A.; Hampel, H.; Figueiredo, J.C.; Schmit, S.L.; Conti, D.V.; Chen, S.; Qu, C.; Lin, Y.; et al. Genetic Architectures of Proximal and Distal Colorectal Cancer Are Partly Distinct. Gut 2021, 70, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
Outcome | 1-Year Survival | 3-Year Survival | 5-Year Survival | 5-Year Relapse | Chemotherapy | 5-Fluorouracil—5-Year Relapse | Capecitabine—5-Year Relapse | No Chemotherapy—5-Year Relapse | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Yes | No | Yes | No | Yes | Yes | No | Yes | No | Yes | No | Yes | No | Yes | No | |
N | 102 | 731 | 183 | 650 | 241 | 592 | 63 | 509 | 398 | 431 | 91 | 127 | 125 | 201 | 130 | 293 |
Age (±SD) | 78.2 (±11.4) | 72.9 (±11.2) | 76.9 (±11.3) | 72.6 (±11.2) | 77 (±11.1) | 72.1 (±11.2) | 71.5 (±11.5) | 72.3 (±11.2) | 70.9 (10.7) | 75.8 (11.4) | 73.2 (±11.5) | 69.8 (±11) | 76.3 (±10) | 73 (±10.8) | 79.3 (±11.2) | 74.4 (±11.2) |
p | 1.9 × 10−5 | 8.9 × 10−6 | 1.3 × 10−8 | 0.6044 | 3.2 × 10−10 | 0.0280 | 0.0049 | 5.4 × 10−5 | ||||||||
Sex | ||||||||||||||||
Female | 34 | 270 | 67 | 237 | 81 | 223 | 21 | 194 | 140 | 163 | 37 | 44 | 40 | 75 | 45 | 115 |
Male | 68 | 461 | 116 | 413 | 160 | 369 | 42 | 315 | 258 | 268 | 54 | 83 | 85 | 126 | 85 | 178 |
p | 0.479 | 0.9702 | 0.2698 | 0.4599 | 0.4298 | 0.3649 | 0.3290 | 0.3646 | ||||||||
Stage | ||||||||||||||||
I+II | 31 | 449 | 56 | 424 | 88 | 392 | 33 | 356 | 124 | 354 | 33 | 84 | 54 | 133 | 85 | 265 |
III+IV | 67 | 261 | 121 | 207 | 145 | 183 | 28 | 140 | 272 | 55 | 55 | 40 | 64 | 61 | 36 | 17 |
p | 2.3 × 10−9 | 1.7 × 10−17 | 1.6 × 10−15 | 4.5 × 10−3 | 2.7 × 10−57 | 1.3 × 10−5 | 6.8 × 10−5 | 1.1 × 10−10 | ||||||||
Location | ||||||||||||||||
Right | 31 | 139 | 54 | 116 | 64 | 106 | 9 | 94 | 52 | 117 | 16 | 25 | 33 | 35 | 45 | 72 |
Left | 18 | 201 | 35 | 184 | 49 | 170 | 12 | 149 | 86 | 131 | 23 | 37 | 20 | 65 | 28 | 99 |
Rectal | 27 | 208 | 54 | 181 | 77 | 158 | 20 | 136 | 169 | 65 | 30 | 33 | 45 | 55 | 26 | 38 |
p | 0.0103 | 0.0012 | 0.0032 | 0.2524 | 3.3 × 10−18 | 0.5232 | 0.0018 | 0.0061 | ||||||||
Size | ||||||||||||||||
Size (±SD) | 4.5 (±1.9) | 3.8 (±1.9) | 4.3 (±1.9) | 3.8 (±1.9) | 4.2 (±1.9) | 3.8 (±1.9) | 3.9 (±2.1) | 3.8 (±1.9) | 3.8 (±1.9) | 3.9 (±1.9) | 3.9 (±2) | 3.6 (±1.7) | 3.9 (±1.9) | 3.6 (±2.1) | 4.3 (±2.2) | 3.8 (±1.9) |
p | 0.002 | 0.0036 | 0.0141 | 0.4992 | 0.2668 | 0.1442 | 0.2095 | 0.0372 | ||||||||
Grade | ||||||||||||||||
Well | 26 | 274 | 54 | 246 | 75 | 225 | 26 | 193 | 119 | 181 | 40 | 55 | 44 | 73 | 44 | 134 |
Moderate | 74 | 469 | 126 | 417 | 161 | 382 | 42 | 328 | 279 | 261 | 58 | 86 | 86 | 128 | 90 | 166 |
Undifferentiated | 12 | 86 | 26 | 72 | 30 | 68 | 10 | 55 | 56 | 41 | 17 | 25 | 15 | 16 | 11 | 28 |
p | 0.1028 | 0.1087 | 0.3077 | 0.6514 | 0.0006 | 0.9593 | 0.5516 | 0.0639 | ||||||||
Lymph | ||||||||||||||||
No | 33 | 486 | 72 | 447 | 108 | 411 | 34 | 368 | 162 | 354 | 37 | 86 | 65 | 141 | 87 | 263 |
Yes | 69 | 245 | 111 | 203 | 133 | 181 | 29 | 141 | 236 | 77 | 54 | 41 | 60 | 60 | 43 | 30 |
p | 2.7 × 10−11 | 4 × 10−13 | 3 × 10−11 | 0.0027 | 9.8 × 10−35 | 7.1 × 10−5 | 0.0009 | 9.7 × 10−9 | ||||||||
Metastasis | ||||||||||||||||
No | 86 | 708 | 159 | 635 | 214 | 580 | 63 | 509 | 366 | 425 | 82 | 127 | 116 | 201 | 124 | 293 |
Yes | 16 | 23 | 24 | 15 | 27 | 12 | 0 | 0 | 32 | 6 | 9 | 0 | 9 | 0 | 6 | 0 |
p | 1.9 × 10−8 | 9.8 × 10−10 | 1.3 × 10−8 | NA | 4.8 × 10−6 | 0.0003 | 0.0001 | 0.0002 |
SNP | A1 | Outcome | Carriers (%) | Non-Carriers (%) | OR (95% CI) | Direction | p-Value | AUC SNP (95% CI) | AUC Clinical (95% CI) | AUC Full (95% CI) |
---|---|---|---|---|---|---|---|---|---|---|
rs898838 | T | III+IV 5-fluorouracil—5-year relapse | 67.86 | 41.67 | 4.7 (1.4–17) | Same | 0.0136 | 0.61 (0.51–0.72) | 0.68 (0.56–0.8) | 0.77 (0.66–0.88) |
Left 5-fluorouracil—5-year relapse | 47.37 | 9.09 | 33 (2.3–3635) | Same | 0.0414 | 0.64 (0.54–0.74) | 0.81 (0.69–0.93) | 0.93 (0.86–1) | ||
rs11246159 | C | I+II 5-year relapse | 5.33 | 12.14 | 0.4 (0.2–0.9) | Diff | 0.0452 | 0.6 (0.52–0.68) | 0.51 (0.4–0.62) | 0.66 (0.56–0.76) |
Left 5-fluorouracil—5-year relapse | 51.85 | 28.12 | 4.9 (1.3–23) | Same | 0.0284 | 0.62 (0.49–0.75) | 0.75 (0.63–0.88) | 0.82 (0.71–0.92) | ||
Rectal 5-year relapse | 4.69 | 18.89 | 0.2 (0–0.7) | Diff | 0.0199 | 0.65 (0.56–0.74) | 0.7 (0.58–0.83) | 0.8 (0.7–0.89) | ||
rs11644916 | A | Rectal 5-year survival | 43.04 | 25.19 | 2.7 (1.4–5.6) | Same | 0.0049 | 0.6 (0.53–0.67) | 0.78 (0.71–0.84) | 0.81 (0.75–0.87) |
Rectal 3-year survival | 32.91 | 15.56 | 3.1 (1.5–6.9) | Same | 0.0035 | 0.62 (0.54–0.7) | 0.78 (0.7–0.85) | 0.82 (0.75–0.88) | ||
Rectal 1-year survival | 20.25 | 5.93 | 5.3 (2–15) | Same | 0.001 | 0.67 (0.57–0.77) | 0.74 (0.64–0.85) | 0.8 (0.71–0.88) | ||
rs17057166 | T | I+II 1-year survival | 17.65 | 4.27 | 4.3 (1.8–9.9) | Same | 8 × 10−4 | 0.65 (0.55–0.74) | 0.71 (0.62–0.81) | 0.75 (0.64–0.86) |
Right 1-year survival | 33.33 | 14.29 | 3.9 (1.2–13) | Same | 0.0276 | 0.6 (0.5–0.69) | 0.8 (0.73–0.88) | 0.88 (0.82–0.94) | ||
Right No chemotherapy—5-year relapse | 63.64 | 31.46 | 7.3 (2.1–29) | Same | 0.0024 | 0.61 (0.53–0.69) | 0.69 (0.58–0.79) | 0.83 (0.74–0.91) | ||
rs1573948 | C | Rectal 5-fluorouracil—5-year relapse | 21.43 | 51.22 | 0.1 (0–0.7) | Diff | 0.03 | 0.61 (0.51–0.72) | 0.82 (0.71–0.93) | 0.87 (0.77–0.96) |
Rectal Capecitabine—5-year relapse | 11.76 | 54.69 | 0.1 (0–0.3) | Diff | 0.0039 | 0.64 (0.56–0.72) | 0.68 (0.55–0.8) | 0.86 (0.78–0.94) | ||
rs3781663 | G | Right 1-year survival | 11.34 | 27.27 | 0.2 (0.1–0.6) | Diff | 0.0032 | 0.63 (0.53–0.73) | 0.8 (0.73–0.88) | 0.89 (0.83–0.94) |
Left 3-year survival | 10.74 | 23.6 | 0.3 (0.1–0.7) | Diff | 0.0039 | 0.62 (0.53–0.71) | 0.77 (0.68–0.85) | 0.81 (0.74–0.89) | ||
Left 1-year survival | 3.31 | 15.73 | 0.1 (0–0.4) | Diff | 9 × 10−4 | 0.69 (0.59–0.8) | 0.74 (0.62–0.86) | 0.86 (0.8–0.93) | ||
rs1555895 | A | Right 1-year survival | 12.04 | 26.19 | 0.3 (0.1–0.9) | Diff | 0.0321 | 0.61 (0.5–0.71) | 0.79 (0.7–0.88) | 0.86 (0.79–0.93) |
Rectal No chemotherapy—5-year relapse | 25 | 68.42 | 0.1 (0–0.4) | Diff | 0.0034 | 0.7 (0.58–0.83) | 0.76 (0.63–0.9) | 0.9 (0.82–0.98) | ||
rs10152207 | A | Right Capecitabine—5-year relapse | 21.43 | 55.77 | 0.1 (0–0.7) | Diff | 0.0291 | 0.61 (0.52–0.71) | 0.71 (0.59–0.84) | 0.84 (0.74–0.93) |
rs17048372 | T | Right 5-fluorouracil—5-year relapse | 58.33 | 26.09 | 1127 (10–22986991) | Same | 0.0314 | 0.66 (0.49–0.82) | 0.89 (0.78–0.99) | 1 (1–1) |
Rectal No chemotherapy—5-year relapse | 71.43 | 25 | 6 (1.2–38) | Same | 0.0356 | 0.68 (0.56–0.8) | 0.81 (0.7–0.92) | 0.93 (0.86–0.99) | ||
rs13180087 | C | Left 5-year relapse | 20 | 5.3 | 6.5 (1.3–30) | - | 0.0158 | 0.63 (0.47–0.78) | 0.69 (0.55–0.83) | 0.82 (0.7–0.93) |
Left Capecitabine—5-year relapse | 41.18 | 18.75 | 5.7 (1.4–267) | - | 0.0184 | 0.6 (0.48–0.72) | 0.68 (0.54–0.82) | 0.74 (0.63–0.86) | ||
Left No chemotherapy—5-year relapse | 52.63 | 16.16 | 17 (4–86) | - | 2 × 10−4 | 0.64 (0.54–0.74) | 0.71 (0.6–0.81) | 0.78 (0.66–0.89) | ||
rs4377367 | C | Left No chemotherapy—5-year relapse | 31.91 | 15.28 | 3 (1.1–8.4) | Same | 0.029 | 0.62 (0.51–0.72) | 0.71 (0.6–0.81) | 0.77 (0.67–0.87) |
rs2936519 | A | Left 5-year relapse | 15.79 | 4.35 | 4.2 (1.1–16) | Same | 0.0314 | 0.66 (0.5–0.82) | 0.7 (0.55–0.84) | 0.83 (0.73–0.92) |
rs885036 | A | Right No chemotherapy—5-year relapse | 44.87 | 21.21 | 3.6 (1.2–12) | Same | 0.029 | 0.61 (0.52–0.69) | 0.69 (0.58–0.79) | 0.8 (0.72–0.89) |
Left Capecitabine—5-year relapse | 13.21 | 42.86 | 0.2 (0–0.5) | Diff | 0.0028 | 0.69 (0.56–0.81) | 0.68 (0.54–0.82) | 0.8 (0.68–0.92) | ||
Rectal No chemotherapy—5-year relapse | 33.33 | 55 | 0.2 (0–0.7) | Diff | 0.0214 | 0.6 (0.48–0.72) | 0.75 (0.63–0.88) | 0.85 (0.75–0.95) | ||
rs12224794 | A | III+IV 5-fluorouracil—5-year relapse | 49.15 | 74.19 | 0.3 (0.1–0.9) | - | 0.0443 | 0.62 (0.52–0.71) | 0.7 (0.59–0.8) | 0.74 (0.64–0.84) |
Rectal No chemotherapy—5-year relapse | 30.56 | 56.52 | 0.2 (0–0.8) | - | 0.0267 | 0.63 (0.5–0.75) | 0.78 (0.65–0.91) | 0.84 (0.73–0.95) | ||
rs1372474 | G | Left 5-year relapse | 23.08 | 5.76 | 10 (1.7–66) | Same | 0.0094 | 0.6 (0.46–0.74) | 0.69 (0.55–0.83) | 0.83 (0.71–0.94) |
rs1442089 | C | Left 5-year relapse | 23.08 | 5.8 | 10 (1.7–66) | Same | 0.0094 | 0.6 (0.46–0.74) | 0.69 (0.55–0.83) | 0.83 (0.71–0.94) |
rs1054190 | T | Right Capecitabine—5-year relapse | 30 | 56.52 | 0.2 (0–0.9) | Same | 0.0402 | 0.61 (0.5–0.72) | 0.71 (0.59–0.84) | 0.82 (0.72–0.92) |
rs7299460 | T | III+IV No chemotherapy—5-year relapse | 52 | 82.14 | 0.2 (0–0.8) | Same | 0.0413 | 0.67 (0.54–0.81) | 0.71 (0.56–0.85) | 0.81 (0.67–0.94) |
Rectal Capecitabine—5-year relapse | 55.77 | 31.82 | 2.7 (1–7.7) | Diff | 0.0464 | 0.62 (0.52–0.72) | 0.7 (0.59–0.81) | 0.77 (0.68–0.87) | ||
Rectal No chemotherapy—5-year relapse | 56.25 | 23.33 | 4.9 (1.3–22) | Diff | 0.0248 | 0.67 (0.55–0.79) | 0.75 (0.63–0.88) | 0.86 (0.77–0.95) | ||
rs3795897 | A | I+II 5-fluorouracil—5-year relapse | 50 | 26.03 | 3.6 (1.3–10.5) | Same | 0.0173 | 0.6 (0.5–0.7) | 0.64 (0.52–0.76) | 0.72 (0.61–0.83) |
Left Capecitabine—5-year relapse | 47.37 | 16.13 | 6.3 (1.6–27) | Same | 0.01 | 0.66 (0.53–0.78) | 0.68 (0.54–0.82) | 0.78 (0.67–0.9) | ||
rs1801131 | G | Rectal 3-year survival | 13.73 | 30.23 | 0.3 (0.1–0.6) | Diff | 0.0025 | 0.62 (0.54–0.69) | 0.77 (0.7–0.84) | 0.81 (0.75–0.88) |
Rectal Capecitabine—5-year relapse | 53.33 | 30.56 | 3.4 (1.2–9.9) | Same | 0.022 | 0.61 (0.51–0.7) | 0.7 (0.59–0.81) | 0.79 (0.7–0.88) | ||
Rectal No chemotherapy—5-year relapse | 54.05 | 20 | 13.1 (2.5–115) | Same | 0.0065 | 0.67 (0.56–0.78) | 0.75 (0.63–0.88) | 0.9 (0.83–0.98) | ||
rs1801159 | C | III+IV 5-year relapse | 7.69 | 22.33 | 0.3 (0.1–0.9) | - | 0.0479 | 0.62 (0.54–0.71) | 0.71 (0.6–0.82) | 0.76 (0.66–0.87) |
rs1801265 | G | Right 5-fluorouracil—5-year relapse | 15.38 | 48 | 0 (0–0) | - | 0.0423 | 0.66 (0.52–0.8) | 0.86 (0.74–0.99) | 1 (1–1) |
Left No chemotherapy—5-year relapse | 13.33 | 4.63 | 4 (1–16) | - | 0.0443 | 0.64 (0.48–0.79) | 0.7 (0.55–0.84) | 0.81 (0.69–0.94) | ||
Left No chemotherapy—5-year relapse | 34.21 | 16.05 | 3.7 (1.3–11) | - | 0.0174 | 0.62 (0.51–0.72) | 0.71 (0.6–0.81) | 0.77 (0.67–0.87) | ||
rs1045642 | A | III+IV Capecitabine—5-year relapse | 44.05 | 65.85 | 0.3 (0.1–0.9) | Same | 0.0261 | 0.6 (0.52–0.68) | 0.76 (0.67–0.84) | 0.81 (0.73–0.88) |
rs1128503 | A | I+II 5-fluorouracil—5-year relapse | 38.89 | 17.86 | 3.5 (1.1–13) | Diff | 0.0376 | 0.6 (0.51–0.68) | 0.63 (0.52–0.75) | 0.71 (0.6–0.81) |
Leading SNP | Position | Gene | A1 | A2 | Outcome | OR (95%CI) | P | Freq | Freq EUR |
---|---|---|---|---|---|---|---|---|---|
rs11207633 | 1:61007182 | LINC01748 | G | A | I+II 1-year survival | 6.2 (2.8–13.4) | 4.5 × 10−6 | 0.36 | 0.33 |
rs6659829 | 1:89477830 | GBP3 | C | T | No chemotherapy—5-year relapse | 5.3 (2.6–10.4) | 2 × 10−6 | 0.13 | 0.17 |
I+II No chemotherapy—5-year relapse | 5.7 (2.7–11-9) | 4.8 × 10−6 | |||||||
rs12477805 | 2:241016702 | Upstream of NDUFA10 | T | C | 3-year survival | 2.2 (1.6–3.1) | 1.3 × 10−6 | 0.32 | 0.34 |
rs75254405 | 2:43852198 | Upstream of THADA and PLEKHH2 | C | T | I+II 5-year survival | 6.1 (2.8–13.2) | 3.8 × 10−6 | 0.06 | 0.06 |
rs17821546 | 2:108926033 | SULT1C2 | G | A | I+II 3-year survival | 21.9 (6.1–78.6) | 2.2 × 10−6 | 0.03 | 0.04 |
rs6736446 | 2:170967324 | Downstream of UBR3, upstream of MY03B | A | G | Left 3-year survival | 6.1 (2.8–13.1) | 3.2 × 10−6 | 0.21 | 0.24 |
rs62240726 | 3:12930641 | Downstream of IQSEC1 | G | A | 1-year survival | 21.4 (5.9–78) | 3.5 × 10−6 | 0.01 | 0.02 |
rs4688169 | 3:63439414 | SYNPR, SYNPR-AS1 | A | G | 5-year survival | 7.7 (3.2–18.6) | 4.9 × 10−6 | 0.03 | 0.02 |
rs61471537 | 3:78102343 | - | A | G | Rectal chemotherapy | 0.2 (0.1–0.4) | 3.9 × 10−6 | 0.20 | 0.31 |
rs1347485 | 4:30413696 | - | G | A | 3-year survival | 8.3 (3.5–19.7) | 1.6 × 10−6 | 0.02 | 0.04 |
5-year survival | 7.3 (3.1–17.1) | 4.6 × 10−6 | |||||||
I+II 3-year survival | 16.8 (5.3–53.9) | 1.9 × 10−6 | |||||||
rs852602 | 5:10898799 | Downstream of CTNND2 | T | A | Left 5-year survival | 0.2 (0.1–0.4) | 4.9 × 10−6 | 0.44 | 0.45 |
rs268718 | 5:33353086 | Upstream of TARS1 | A | G | I+II Capecitabine—5-year relapse | 7.9 (3.3–18.9) | 2.8 × 10−6 | 0.19 | 0.15 |
rs10941315 | 5:36732788 | Downstream of SLCC1A3 | T | G | Chemotherapy | 2.3 (1.6–3.4) | 3.2 × 10−6 | 0.40 | 0.48 |
rs6889868 | 5:144117510 | - | T | C | 3-year survival | 3.2 (2–5) | 6.4 × 10−7 | 0.13 | 0.14 |
rs10515827 | 5:160754957 | GABRB2 | T | C | I+II chemotherapy | 6.3 (2.9–14) | 4.9 × 10−6 | 0.12 | 0.17 |
rs4712605 | 6:21331584 | Upstream of CDKAL1 | A | G | 1-year survival | 4.9 (2.5–9.7) | 2.9 × 10−6 | 0.05 | 0.06 |
I+II 1-year survival | 11.9 (4.1–34.1) | 4.1 × 10−6 | |||||||
rs1383747 | 6:113250149 | - | A | G | 5-year relapse | 7.4 (3.2–17) | 2.4 × 10−6 | 0.06 | 0.06 |
rs12193849 | 6:115771573 | - | G | A | 5-year relapse | 5.9 (2.8–12.8) | 3.6 × 10−6 | 0.07 | 0.09 |
rs10872669 | 6:151515172 | Downstream of LOC102723831 | A | G | 1-year survival | 4.2 (2.3–7.7) | 2.1 × 10−6 | 0.08 | 0.11 |
rs11766180 | 7:67155516 | - | T | C | 5-year relapse | 9.4 (3.6–24.5) | 4.7 × 10−6 | 0.04 | 0.03 |
rs11761419 | 7:67185423 | - | A | C | I+II 5-year relapse | 41.3 (8.5–199) | 3.6 × 10−6 | 0.05 | 0.03 |
rs75231954 | 7:90917290 | Downstream of CDK14 | A | G | I+II 5-year relapse | 7.3 (3.1–17.1) | 4.2 × 10−6 | 0.15 | 0.13 |
rs17831626 | 8:128080423 | Upstream of PCAT2 | T | G | 5-year survival | 0.5 (0.4–0.7) | 3.6 × 10−6 | 0.45 | 0.42 |
I+II 5-year survival | 0.3 (0.2–0.5) | 4.9 × 10−6 | |||||||
rs11167104 | 8:142984200 | - | T | C | I+II chemotherapy | 0.3 (0.2–0.5) | 4.6 × 10−6 | 0.42 | 0.47 |
rs72689069 | 8:143647614 | Downstream of ADGRB1 | T | C | Rectal 1-year survival | 20.6 (5.7–74.3) | 3.9 × 10−6 | 0.05 | 0.02 |
rs72768282 | 10:4829609 | Upstream AKR1E2 | C | A | Rectal 1-year survival | 14.4 (4.8–43) | 1.7 × 10−6 | 0.07 | 0.07 |
rs7074392 | 10:8518707 | - | A | G | 1-year survival | 2.9 (1.8–4.7) | 3.7 × 10−6 | 0.34 | 0.37 |
rs12267628 | 10:13282397 | Upstream of UCMA | A | T | Rectal 1-year survival | 21.9 (6.1–78.9) | 2.3 × 10−6 | 0.04 | 0.09 |
rs10845123 | 12:10523900 | KLRK1-AS1 | A | G | 5-year survival | 2.9 (2–4.2) | 9.6 × 10−9 | 0.24 | 0.26 |
rs4586220 | 12:22089348 | ABCC9 | G | A | 1-year survival | 6.9 (3.1–15.6) | 3.4 × 10−6 | 0.03 | 0.03 |
rs7980214 | 12:31113401 | TSPAN11 | C | T | 5-year survival | 2.1 (1.5–2.8) | 2.4 × 10−6 | 0.42 | 0.44 |
rs11051189 | 12:31122474 | TSPAN11 | C | T | 1-year survival | 2.9 (1.8–4.5) | 2 × 10−6 | 0.29 | 0.31 |
rs7298118 | 12:111837285 | Upstream of SH2B3 | G | A | III+IV 3-year survival | 3.4 (2.1–5.8) | 2.5 × 10−6 | 0.3 | 0.22 |
rs9788099 | 12:132415557 | PUS1 | A | G | 3-year survival | 3.3 (1.9–5.4) | 3.1 × 10−6 | 0.10 | 0.11 |
Rectal 3-year survival | 9.1 (3.6–22.9) | 2.6 × 10−6 | |||||||
rs61972489 | 13:100085274 | Downstream of UBAC2 | A | G | Rectal 3-year survival | 7.4 (3.3–16.8) | 1.4 × 10−6 | 0.09 | 0.07 |
rs9586086 | 13:103881964 | - | A | G | 3-year survival | 2.2 (1.6–3) | 1.8 × 10−6 | 0.42 | 0.31 |
rs72669827 | 14:33198189 | AKAP6 | A | G | chemotherapy | 9.8 (3.9–25) | 1.6 × 10−6 | 0.02 | 0.02 |
rs74622080 | 14:92762276 | Upstream SLC24A4 | T | G | III+IV 5-year survival | 3.9 (2.2–7.2) | 4.7 × 10−6 | 0.16 | 0.11 |
rs61991339 | 14:93867368 | UNC79 | C | T | 1-year survival | 4.2 (2.4–7.3) | 7.7 × 10−7 | 0.14 | 0.17 |
rs13338718 | 16:26173425 | Downstream of HS3ST4 | T | C | Rectal 1-year survival | 8.5 (3.5–20.3) | 1.8 × 10−6 | 0.11 | 0.05 |
rs117046148 | 17:77264440 | RBFOX3 | A | G | I+II 3-year survival | 17.5 (5.3–57.9) | 2.5 × 10−6 | 0.02 | 0.04 |
rs490065 | 18:8075154 | PTPRM | A | G | III+IV 5-year survival | 0.3 (0.2–0.5) | 3.6 × 10−6 | 0.37 | 0.37 |
rs12455842 | 18:33842286 | MOCOS | C | T | Capecitabine—5-year relapse | 4.5 (2.4–8.6) | 4.3 × 10−6 | 0.14 | 0.8 |
rs34945948 | 19:41340842 | Downstream of CYP2A6 | G | A | I+II 5-year survival | 4.3 (2.3–8.2) | 4.6 × 10−6 | 0.12 | 0.16 |
rs141950185 | 19:51251682 | Upstream of SHANK1, GPR32 | G | T | I+II No chemotherapy—5-year relapse | 9.4 (3.6–24.6) | 4.7 × 10−6 | 0.07 | 0.08 |
rs6132492 | 20:22193192 | - | A | G | 1-year survival | 2.6 (1.8–3.9) | 1.3 × 10−6 | 0.40 | 0.49 |
rs6088387 | 20:32629322 | RALY | T | G | Chemotherapy | 6.5 (3.1–13.7) | 7.9 × 10−7 | 0.06 | 0.07 |
rs371484 | 20:42359483 | Upstream of GTSF1L | G | A | I+II 3-year survival | 11.3 (4.1–31.3) | 3.4 × 10−6 | 0.05 | 0.06 |
rs68035978 | 21:28101359 | - | C | T | No chemotherapy—5-year relapse | 0.2 (0.1–0.4) | 4.3 × 10−6 | 0.22 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Etxebarria, K.; Etxart, A.; Barrero, M.; Nafria, B.; Segues Merino, N.M.; Romero-Garmendia, I.; Goel, A.; Franke, A.; D’Amato, M.; Bujanda, L. Genetic Variants as Predictors of the Success of Colorectal Cancer Treatments. Cancers 2023, 15, 4688. https://doi.org/10.3390/cancers15194688
Garcia-Etxebarria K, Etxart A, Barrero M, Nafria B, Segues Merino NM, Romero-Garmendia I, Goel A, Franke A, D’Amato M, Bujanda L. Genetic Variants as Predictors of the Success of Colorectal Cancer Treatments. Cancers. 2023; 15(19):4688. https://doi.org/10.3390/cancers15194688
Chicago/Turabian StyleGarcia-Etxebarria, Koldo, Ane Etxart, Maialen Barrero, Beatriz Nafria, Nerea Miren Segues Merino, Irati Romero-Garmendia, Ajay Goel, Andre Franke, Mauro D’Amato, and Luis Bujanda. 2023. "Genetic Variants as Predictors of the Success of Colorectal Cancer Treatments" Cancers 15, no. 19: 4688. https://doi.org/10.3390/cancers15194688
APA StyleGarcia-Etxebarria, K., Etxart, A., Barrero, M., Nafria, B., Segues Merino, N. M., Romero-Garmendia, I., Goel, A., Franke, A., D’Amato, M., & Bujanda, L. (2023). Genetic Variants as Predictors of the Success of Colorectal Cancer Treatments. Cancers, 15(19), 4688. https://doi.org/10.3390/cancers15194688