Personalized Breast Cancer Screening: A Risk Prediction Model Based on Women Attending BreastScreen Norway
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Variables
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bleyer, A.; Welch, H.G. Effect of three decades of screening mammography on breast-cancer incidence. N. Engl. J. Med. 2012, 367, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G.; Passow, H.J. Quantifying the benefits and harms of screening mammography. JAMA Intern. Med. 2014, 174, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Paci, E.; Broeders, M.; Hofvind, S.; Puliti, D.; Duffy, S.W.; Group, E.W. European breast cancer service screening outcomes: A first balance sheet of the benefits and harms. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1159–1163. [Google Scholar] [CrossRef]
- Canelo-Aybar, C.; Ferreira, D.S.; Ballesteros, M.; Posso, M.; Montero, N.; Solà, I.; Saz-Parkinson, Z.; Lerda, D.; Rossi, P.G.; Duffy, S.W.; et al. Benefits and harms of breast cancer mammography screening for women at average risk of breast cancer: A systematic review for the European Commission Initiative on Breast Cancer. J. Med. Screen. 2021, 28, 389–404. [Google Scholar] [CrossRef]
- Vilaprinyo, E.; Forné, C.; Carles, M.; Sala, M.; Pla, R.; Castells, X.; Domingo, L.; Rue, M.; the Interval Cancer (INCA) Study Group. Cost-effectiveness and harm-benefit analyses of risk-based screening strategies for breast cancer. PLoS ONE 2014, 9, e86858. [Google Scholar] [CrossRef] [PubMed]
- Schousboe, J.T.; Kerlikowske, K.; Loh, A.; Cummings, S.R. Personalizing mammography by breast density and other risk factors for breast cancer: Analysis of health benefits and cost-effectiveness. Ann. Intern. Med. 2011, 155, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Trentham-Dietz, A.; Kerlikowske, K.; Stout, N.K.; Miglioretti, D.L.; Schechter, C.B.; Ergun, M.A.; Broek, J.J.v.D.; Alagoz, O.; Sprague, B.L.; van Ravesteyn, N.T.; et al. Tailoring Breast Cancer Screening Intervals by Breast Density and Risk for Women Aged 50 Years or Older: Collaborative Modeling of Screening Outcomes. Ann. Intern. Med. 2016, 165, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Sala, M.; Domingo, L.; Posso, M.; Louro, J.; Castells, X. Personalized breast cancer screening strategies: A systematic review and quality assessment. PLoS ONE 2019, 14, e0226352. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Lerda, D.; Quinn, C.; Follmann, M.; Alonso-Coello, P.; Rossi, P.G.; Lebeau, A.; Nyström, L.; Broeders, M.; Ioannidou-Mouzaka, L.; et al. Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Ann. Intern. Med. 2020, 172, 46–56. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Pharoah, P.P.; Smith, P.; Easton, D.F. The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br. J. Cancer 2004, 91, 1580–1590. [Google Scholar] [CrossRef]
- Tice, J.A.; Miglioretti, D.L.; Li, C.S.; Vachon, C.M.; Gard, C.C.; Kerlikowske, K. Breast Density and Benign Breast Disease: Risk Assessment to Identify Women at High Risk of Breast Cancer. J. Clin. Oncol. 2015, 33, 3137–3143. [Google Scholar] [CrossRef] [PubMed]
- Tyrer, J.; Duffy, S.W.; Cuzick, J. A breast cancer prediction model incorporating familial and personal risk factors. Stat. Med. 2004, 23, 1111–1130. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.H.; Brinton, L.A.; Byar, D.P.; Corle, D.K.; Green, S.B.; Schairer, C.; Mulvihill, J.J. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J. Natl. Cancer Inst. 1989, 81, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Costantino, J.P.; Wickerham, D.L.; Redmond, C.K.; Kavanah, M.; Cronin, W.M.; Vogel, V.; Robidoux, A.; Dimitrov, N.; Atkins, J.; et al. Tamoxifen for prevention of breast cancer: Report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst. 1998, 90, 1371–1388. [Google Scholar] [CrossRef] [PubMed]
- Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R., Jr.; Wade, J.L., III; et al. Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 2006, 295, 2727–2741. [Google Scholar] [CrossRef]
- Tice, J.A.; Cummings, S.R.; Smith-Bindman, R.; Ichikawa, L.; Barlow, W.E.; Kerlikowske, K. Using clinical factors and mammographic breast density to estimate breast cancer risk: Development and validation of a new predictive model. Ann. Intern. Med. 2008, 148, 337–347. [Google Scholar] [CrossRef]
- Louro, J.; Posso, M.; Boon, M.H.; Román, M.; Domingo, L.; Castells, X.; Sala, M. A systematic review and quality assessment of individualised breast cancer risk prediction models. Br. J. Cancer 2019, 121, 76–85. [Google Scholar] [CrossRef]
- Pashayan, N.; Antoniou, A.C.; Ivanus, U.; Esserman, L.J.; Easton, D.F.; French, D.; Sroczynski, G.; Hall, P.; Cuzick, J.; Evans, D.G.; et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat. Rev. Clin. Oncol. 2020, 17, 687–705. [Google Scholar] [CrossRef]
- Lov om behandling av Personopplysninger (Personopplysningsloven) EUROPAPARLAMENTS- OG RÅDSFORORDNING (EU) 2016/679 (Generell Personvernforordning) Kapittel II Artikkel 6 [Act on the Processing of Personal Data (Personal Data Act) EUROPEAN PARLIAMENT AND COUNCIL REGULATION (EU) 2016/679 (General Data Protection Regulation) Chapter II Article 6]. Available online: https://lovdata.no/dokument/NL/lov/2018-06-15-38/KAPITTEL_gdpr-2#KAPITTEL_gdpr-2 (accessed on 8 September 2023).
- Lov om Behandling av Personopplysninger (Personopplysningsloven) EUROPAPARLAMENTS- OG RÅDSFORORDNING (EU) 2016/679 (Generell Personvernforordning) Kapittel II Artikkel 9 [Act on the Processing of Personal Data (Personal Data Act) EUROPEAN PARLIAMENT AND COUNCIL REGULATION (EU) 2016/679 (General Data Protection Regulation) Chapter II Article 9]. Available online: https://lovdata.no/lov/2018-06-15-38 (accessed on 8 September 2023).
- Oslo: Helse- og Omsorgsdepartementet [Oslo: The Department of Health and Care Services]. Forskrift om Innsamling og Behandling av Helseopplysninger i Kreftregisteret (Kreftregisterforskriften). Regulations on the Collection and Treatment of Health Information in the Cancer Registry (Cancer Registry Regulations); The Department of Health and Care Services: Oslo, Norway, 2001. [Google Scholar]
- Lov om Helseregistre og Behandling av Helseopplysninger (Helseregisterloven). The Law on Health Registries and Use of Health Data (Health Registry Law); The Department of Health and Care Services: Oslo, Norway, 2015. [Google Scholar]
- Act of 18 May 2001 No. 24 on Personal Health Data Filing Systems and the Processing of Personal Health Data (Personal Health Data Filing System Act) Section 11. Available online: https://www.datatilsynet.no/globalassets/global/english/personal_health_data_filing_system_act_20100907.pdf (accessed on 8 September 2023).
- Bjørnson, E.W.; Holen, S.A.; Sagstad, S.; Larsen, M.; Thy, J.; Mangerud, G.; Ertzaas, A.K.; Hofvind, S. BreastScreen Norway: 25 Years of Organized Mammographic Screening. Early Performance Measures, Recent Developments and the Future; Cancer Registry of Norway: Oslo, Norway, 2022. [Google Scholar]
- Robsahm, T.E.; Sagstad, S.; Thy, J.E.; Hofvind, S. Sociodemographic factors, health indicators and lifestyle factors among participants in BreastScreen Norway 2006-2016—A cohort profile. Nor. Epidemiol. 2022, 30, 69–75. [Google Scholar] [CrossRef]
- Hofvind, S.; Moshina, N.; Holen, S.; Danielsen, A.S.; Lee, C.I.; Houssami, N.; Aase, H.S.; Akslen, L.A.; Haldorsen, I.S. Interval and Subsequent Round Breast Cancer in a Randomized Controlled Trial Comparing Digital Breast Tomosynthesis and Digital Mammography Screening. Radiology 2021, 300, 66–76. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58,209 women with breast cancer and 101,986 women without the disease. Lancet 2001, 358, 1389–1399. [Google Scholar] [CrossRef] [PubMed]
- Brewer, H.R.; Jones, M.E.; Schoemaker, M.J.; Ashworth, A.; Swerdlow, A.J. Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Res. Treat. 2017, 165, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.X.M.; Kim, S.; Song, H.; Park, B. Mammographic breast density, body mass index and risk of breast cancer in Korean women aged 75 years and older. Int. J. Cancer 2022, 151, 869–877. [Google Scholar] [CrossRef]
- Thune, I.; Brenn, T.; Lund, E.; Gaard, M. Physical activity and the risk of breast cancer. N. Engl. J. Med. 1997, 336, 1269–1275. [Google Scholar] [CrossRef]
- Boraka, O.; Klintman, M.; Rosendahl, A.H. Physical Activity and Long-Term Risk of Breast Cancer, Associations with Time in Life and Body Composition in the Prospective Malmo Diet and Cancer Study. Cancers 2022, 14, 1960. [Google Scholar] [CrossRef]
- Donat-Vargas, C.; Guerrero-Zotano, Á.; Casas, A.; Baena-Cañada, J.M.; Lope, V.; Antolín, S.; Garcia-Saénz, J.; Bermejo, B.; Muñoz, M.; Ramos, M.; et al. Trajectories of alcohol consumption during life and the risk of developing breast cancer. Br. J. Cancer 2021, 125, 1168–1176. [Google Scholar] [CrossRef]
- Jones, M.E.; Schoemaker, M.J.; Wright, L.B.; Ashworth, A.; Swerdlow, A.J. Smoking and risk of breast cancer in the Generations Study cohort. Breast Cancer Res. 2017, 19, 118. [Google Scholar] [CrossRef]
- Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar] [CrossRef]
- Russo, J.; Moral, R.; Balogh, G.A.; Mailo, D.; Russo, I.H. The protective role of pregnancy in breast cancer. Breast Cancer Res. 2005, 7, 131–142. [Google Scholar] [CrossRef]
- Licznerska, B.E.; Baer-Dubowska, W. Controversies over hormone replacement therapy. HRT as a risk factor of breast cancer in postmenopausal women. Acta Pol. Pharm. 2005, 62, 241–247. [Google Scholar]
- Bernstein, L. The risk of breast, endometrial and ovarian cancer in users of hormonal preparations. Basic Clin. Pharmacol. Toxicol. 2006, 98, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Morch, L.S.; Skovlund, C.W.; Hannaford, P.C.; Iversen, L.; Fielding, S.; Lidegaard, O. Contemporary Hormonal Contraception and the Risk of Breast Cancer. N. Engl. J. Med. 2017, 377, 2228–2239. [Google Scholar] [CrossRef] [PubMed]
- Volpara Health: Breast Density Explained. Available online: https://www.volparahealth.com/for-patients/breast-density-explained/ (accessed on 8 September 2023).
- Highnam, R.; Brady, S.M.; Yaffe, M.J.; Karssemeijer, N.; Harvey, J. (Eds.) Robust Breast Composition Measurement–VolparaTM2010; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- van der Waal, D.; Heeten, G.J.D.; Pijnappel, R.M.; Schuur, K.H.; Timmers, J.M.H.; Verbeek, A.L.M.; Broeders, M.J.M. Comparing Visually Assessed BI-RADS Breast Density and Automated Volumetric Breast Density Software: A Cross-Sectional Study in a Breast Cancer Screening Setting. PLoS ONE 2015, 10, e0136667. [Google Scholar] [CrossRef]
- Zheng, Y.; Heagerty, P.J. Partly conditional survival models for longitudinal data. Biometrics 2005, 61, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, D. Partial residuals for the proportional hazards regression model. Biometrika 1982, 69, 239–241. [Google Scholar] [CrossRef]
- Freedman, D.A. On The So-Called “Huber Sandwich Estimator” and “Robust Standard Errors”. Am. Stat. 2006, 60, 299–302. [Google Scholar] [CrossRef]
- Qian, F.; Wang, S.; Mitchell, J.; McGuffog, L.; Barrowdale, D.; Leslie, G.; Oosterwijk, J.C.; Chung, W.K.; Evans, D.G.; Engel, C.; et al. Height and Body Mass Index as Modifiers of Breast Cancer Risk in BRCA1/2 Mutation Carriers: A Mendelian Randomization Study. J. Natl. Cancer Inst. 2019, 111, 350–364. [Google Scholar] [CrossRef]
- Kaplan, E.L.; Meier, P. Nonparametric Estimation from Incomplete Observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr.; Lee, K.L.; Mark, D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996, 15, 361–387. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Improvements on Cross-Validation: The 632+ Bootstrap Method. J. Am. Stat. Assoc. 1997, 92, 548–560. [Google Scholar]
- Boyd, N.F.; Guo, H.; Martin, L.J.; Sun, L.; Stone, J.; Fishell, E.; Jong, R.A.; Hislop, G.; Chiarelli, A.; Minkin, S.; et al. Mammographic density and the risk and detection of breast cancer. N. Engl. J. Med. 2007, 356, 227–236. [Google Scholar] [CrossRef]
- Kerlikowske, K.; Miglioretti, D.L.; Vachon, C.M. Discussions of Dense Breasts, Breast Cancer Risk, and Screening Choices in 2019. JAMA 2019, 322, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Shieh, Y.; Scott, C.G.; Jensen, M.R.; Norman, A.D.; Bertrand, K.A.; Pankratz, V.S.; Brandt, K.R.; Visscher, D.W.; Shepherd, J.A.; Tamimi, R.M.; et al. Body mass index, mammographic density, and breast cancer risk by estrogen receptor subtype. Breast Cancer Res. 2019, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.X.M.; Moon, S.G.; Kim, S.; Park, B. Association of the Interaction Between Mammographic Breast Density, Body Mass Index, and Menopausal Status With Breast Cancer Risk Among Korean Women. JAMA Netw. Open 2021, 4, e2139161. [Google Scholar] [CrossRef]
- Hartmann, L.C.; Sellers, T.A.; Frost, M.H.; Lingle, W.L.; Degnim, A.C.; Ghosh, K.; Vierkant, R.A.; Maloney, S.D.; Pankratz, V.S.; Hillman, D.W.; et al. Benign breast disease and the risk of breast cancer. N. Engl. J. Med. 2005, 353, 229–237. [Google Scholar] [CrossRef]
- Castells, X.; Domingo, L.; Corominas, J.M.; Torá-Rocamora, I.; Quintana, M.J.; Baré, M.; Vidal, C.; Natal, C.; Sánchez, M.; Saladié, F.; et al. Breast cancer risk after diagnosis by screening mammography of nonproliferative or proliferative benign breast disease: A study from a population-based screening program. Breast Cancer Res. Treat. 2015, 149, 237–244. [Google Scholar] [CrossRef]
- Gail, M.H.; Pfeiffer, R.M. Breast Cancer Risk Model Requirements for Counseling, Prevention, and Screening. J. Natl. Cancer Inst. 2018, 110, 994–1002. [Google Scholar] [CrossRef]
- Ozenne, B.; Subtil, F.; Maucort-Boulch, D. The precision--recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J. Clin. Epidemiol. 2015, 68, 855–859. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.; Cholerton, R.; Sicsic, J.; Moumjid, N.; French, D.P.; Giorgi Rossi, P.; Balleyguier, C.; Guindy, M.; Gilbert, F.J.; Burrion, J.B.; et al. Study protocol comparing the ethical, psychological and socio-economic impact of personalised breast cancer screening to that of standard screening in the “My Personal Breast Screening” (MyPeBS) randomised clinical trial. BMC Cancer 2022, 22, 507. [Google Scholar] [CrossRef]
- Esserman, L.; Eklund, M.; Veer, L.V.; Shieh, Y.; Tice, J.; Ziv, E.; Blanco, A.; Kaplan, C.; Hiatt, R.; Fiscalini, A.S.; et al. The WISDOM study: A new approach to screening can and should be tested. Breast Cancer Res. Treat. 2021, 189, 593–598. [Google Scholar] [CrossRef]
- Esserman, L.J.; Study, W.; Athena, I. The WISDOM Study: Breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 2017, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- Rosner, B.; Colditz, G.A. Nurses’ health study: Log-incidence mathematical model of breast cancer incidence. J. Natl. Cancer Inst. 1996, 88, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Van’t Hof, J.R.; Steffen, L.M.; Luepker, R.V. Estimation of Cardiovascular Risk from Self-Reported Knowledge of Risk Factors: Insights from the Minnesota Heart Survey. Clin. Epidemiol. 2020, 12, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rice, M.; Tworoger, S.S.; Rosner, B.A.; Eliassen, A.H.; Tamimi, R.M.; Joshi, A.D.; Lindstrom, S.; Qian, J.; Colditz, G.A.; et al. Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: A nested case-control study. PLoS Med. 2018, 15, e1002644. [Google Scholar] [CrossRef]
- Shieh, Y.; Hu, D.; Ma, L.; Huntsman, S.; Gard, C.C.; Leung, J.W.T.; Tice, J.A.; Vachon, C.M.; Cummings, S.R.; Kerlikowske, K.; et al. Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res. Treat. 2016, 159, 513–525. [Google Scholar] [CrossRef]
- Alajmi, K.; Lophatananon, A.; Muir, K. 136P Development of breast cancer risk prediction models using the UK Biobank dataset. Ann. Oncol. 2022, 33, S184–S185. [Google Scholar] [CrossRef]
- Schmidt, M.; Hogervorst, F.; van Hien, R.; Cornelissen, S.; Broeks, A.; Adank, M.; Meijers, H.; Waisfisz, Q.; Hollestelle, A.; Schutte, M.; et al. Age- and Tumor Subtype–Specific Breast Cancer Risk Estimates for CHEK2*1100delC Carriers. J. Clin. Oncol. 2016, 34, 2750–2760. [Google Scholar] [CrossRef]
No Breast Cancer | Breast Cancer | p-Value | |
---|---|---|---|
n = 56,181 | n = 1230 | ||
Age at baseline, mean [sd] | 58.15 (5.71) | 56.46 (5.03) | <0.001 |
Baseline BMI, mean [sd] | 25.75 (4.10) | 25.89 (3.93) | 0.154 |
Age at menarche, mean [sd] | 13.24 (1.42) | 13.16 (1.42) | 0.037 |
Baseline mammographic density (%) | |||
VDG1 | 17,177 (31.02) | 251 (20.41) | |
VDG2 | 21,193 (38.54) | 458 (37.24) | |
VDG3 | 14,643 (26.79) | 408 (33.17) | |
VDG4 | 3168 (5.84) | 113 (9.19) | <0.001 |
Family history of breast cancer (%) | |||
No | 43,600 (79.17) | 880 (71.54) | |
Yes, 2nd degree | 7252 (13.25) | 192 (15.61) | |
Yes, 1st degree | 5329 (9.77) | 158 (12.85) | <0.001 |
Benign breast disease (%) | |||
No | 46,940 (83.55) | 940 (76.42) | |
Yes | 9241 (16.44) | 290 (23.58) | <0.001 |
Alcohol consumption (%) | |||
No | 8536 (15.52) | 182 (14.80) | |
Yes, 5 or less units/month | 14,429 (26.19) | 284 (23.09) | |
Yes, 6–10 units/month | 14,212 (25.84) | 305 (24.80) | |
Yes, more than 10 units/month | 19,004 (34.64) | 459 (37.32) | 0.052 |
Exercise (%) | |||
Never | 16,259 (29.65) | 396 (32.20) | |
0–1 h/week | 13,227 (24.04) | 280 (22.76) | |
2–3 h/week | 19,812 (36.03) | 430 (34.96) | |
More than 4 h/week | 6883 (12.47) | 124 (10.08) | 0.025 |
Pregnancy (%) | |||
Never | 4712 (8.62) | 129 (10.49) | |
1 or 2 | 29,400 (53.48) | 643 (52.28) | |
3 or more | 22,069 (40.10) | 458 (37.24) | 0.023 |
Ever use of HT (%) | |||
No | 34,393 (62.40) | 666 (54.15) | |
Yes | 21,788 (39.79) | 564 (45.85) | <0.001 |
Women-Years | aHR (95% CI) | |
---|---|---|
Age (years) | 375,078 | 1.01 (1.00–1.03) |
BMI (kg/cm2) | 375,078 | 1.06 (1.04–1.08) |
Age at menarche (years) | 375,078 | 0.95 (0.91–1.00) |
Baseline mammographic density | ||
VDG1 | 126,951 | 0.59 (0.51–0.69) |
VDG2 | 137,639 | Ref. |
VDG3 | 93,305 | 1.37 (1.20–1.56) |
VDG4 | 17,182 | 1.71 (1.34–2.20) |
Family history of breast cancer | ||
No | 289,289 | Ref. |
Yes, 2nd degree | 50,082 | 1.17 (0.98–1.41) |
Yes, 1st degree | 35,707 | 1.34 (1.10–1.63) |
Benign breast disease | ||
No | 319,891 | Ref. |
Yes | 53,430 | 1.53 (1.31–1.78) |
Alcohol consumption | ||
No | 59,153 | 0.94 (0.76–1.16) |
Yes, 5 or less units/month | 94,432 | Ref. |
Yes, 6–10 units/month | 93,789 | 1.06 (0.88–1.29) |
Yes, more than 10 units/month | 127,704 | 1.14 (0.96–1.36) |
Exercise | ||
Never | 104,381 | Ref. |
0–1 h/week | 88,429 | 0.80 (0.67–0.96) |
2–3 h/week | 135,002 | 0.83 (0.70–0.97) |
+4 h/week | 47,266 | 0.65 (0.51–0.83) |
Pregnancy | ||
Never | 31,225 | 1.10 (0.88–1.38) |
1 or 2 | 188,424 | Ref. |
3 or more | 155,429 | 0.91 (0.79–1.04) |
Ever use of HT | ||
No | 226,166 | Ref. |
Yes | 148,912 | 1.30 (1.14–1.49) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Louro, J.; Román, M.; Moshina, N.; Olstad, C.F.; Larsen, M.; Sagstad, S.; Castells, X.; Hofvind, S. Personalized Breast Cancer Screening: A Risk Prediction Model Based on Women Attending BreastScreen Norway. Cancers 2023, 15, 4517. https://doi.org/10.3390/cancers15184517
Louro J, Román M, Moshina N, Olstad CF, Larsen M, Sagstad S, Castells X, Hofvind S. Personalized Breast Cancer Screening: A Risk Prediction Model Based on Women Attending BreastScreen Norway. Cancers. 2023; 15(18):4517. https://doi.org/10.3390/cancers15184517
Chicago/Turabian StyleLouro, Javier, Marta Román, Nataliia Moshina, Camilla F. Olstad, Marthe Larsen, Silje Sagstad, Xavier Castells, and Solveig Hofvind. 2023. "Personalized Breast Cancer Screening: A Risk Prediction Model Based on Women Attending BreastScreen Norway" Cancers 15, no. 18: 4517. https://doi.org/10.3390/cancers15184517
APA StyleLouro, J., Román, M., Moshina, N., Olstad, C. F., Larsen, M., Sagstad, S., Castells, X., & Hofvind, S. (2023). Personalized Breast Cancer Screening: A Risk Prediction Model Based on Women Attending BreastScreen Norway. Cancers, 15(18), 4517. https://doi.org/10.3390/cancers15184517