Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility
Abstract
:Simple Summary
Abstract
1. Introduction
- Synthesize Current Knowledge: Summarize and consolidate the existing literature on the relationship between CF, the CFTR gene, and cancer susceptibility.
- Examine Specific Cancer Associations: Investigate the associations between CFTR gene mutations and the risk of specific cancer types, including pancreatic, respiratory, colorectal, breast, liver, esophageal, and gastric cancers.
- Explore Underlying Mechanisms: Explore the molecular and cellular mechanisms by which CFTR gene mutations may influence cancer susceptibility, encompassing factors such as chronic inflammation, impaired DNA repair, hormonal imbalances, and other cellular processes.
- Highlight Emerging Research: Highlight recent advancements and emerging research that shed light on the complex interplay between CF, CFTR gene mutations, and cancer development.
- Identify Knowledge Gaps: Identify gaps in the current understanding of the CFTR–cancer relationship, pinpointing areas that require further research and investigation.
- Clinical Implications: Discuss the potential clinical implications of the CFTR–cancer connection, including its impact on cancer surveillance, early detection, and potential therapeutic interventions.
- Inform Future Research Directions: Propose future research directions and methodologies that could elucidate the intricate mechanisms underlying the association between CFTR gene mutations and cancer susceptibility.
2. Methods
3. Role of CFTR in Cancers
4. CF and Gastrointestinal Cancers
4.1. Esophageal Cancer
4.2. Gastric Cancer
4.3. Pancreatic Cancer
4.4. Liver Cancer
4.5. Intestinal Cancers
4.5.1. Colorectal Cancer
4.5.2. Small Bowel Adenocarcinoma
5. Breast Cancer
6. Lung Cancers
7. Other Emerging Cancers
8. Highly Effective CFTR Modulator Therapy (HEMT) and Cancers
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elborn, J.S. Cystic fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Abrami, M.; Maschio, M.; Conese, M.; Confalonieri, M.; Gerin, F.; Dapas, B.; Farra, R.; Adrover, A.; Torelli, L.; Ruaro, B.; et al. Combined use of rheology and portable low-field NMR in cystic fibrosis patients. Respir. Med. 2021, 189, 106623. [Google Scholar] [CrossRef] [PubMed]
- McBennett, K.A.; Davis, P.B.; Konstan, M.W. Increasing life expectancy in cystic fibrosis: Advances and challenges. Pediatr. Pulmonol. 2022, 57 (Suppl. 1), S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Wang, S.; Onyeaghala, G.; Pankratz, N.; Starr, T.; Prizment, A.E. Lower Expression of CFTR Is Associated with Higher Mortality in a Meta-Analysis of Individuals with Colorectal Cancer. Cancers 2023, 15, 989. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, R.; Blankenheim, Z.; Scott, P.M.; Cormier, R.T. CFTR and Gastrointestinal Cancers: An Update. J. Pers. Med. 2022, 12, 868. [Google Scholar] [CrossRef]
- Scott, P.; Anderson, K.; Singhania, M.; Cormier, R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 2891. [Google Scholar] [CrossRef] [PubMed]
- Carlos Dos Reis, D.; Dastoor, P.; Santos, A.K.; Sumigray, K.; Ameen, N.A. CFTR High Expresser Cells in cystic fibrosis and intestinal diseases. Heliyon 2023, 9, e14568. [Google Scholar] [CrossRef]
- Stastna, N.; Brat, K.; Homola, L.; Os, A.; Brancikova, D. Increasing incidence rate of breast cancer in cystic fibrosis—Relationship between pathogenesis, oncogenesis and prediction of the treatment effect in the context of worse clinical outcome and prognosis of cystic fibrosis due to estrogens. Orphanet J. Rare Dis. 2023, 18, 62. [Google Scholar] [CrossRef]
- Parisi, G.F.; Mòllica, F.; Giallongo, A.; Papale, M.; Manti, S.; Leonardi, S. Cystic fibrosis transmembrane conductance regulator (CFTR): Beyond cystic fibrosis. Egypt. J. Med. Hum. Genet 2022, 23, 94. [Google Scholar] [CrossRef]
- Moliteo, E.; Sciacca, M.; Palmeri, A.; Papale, M.; Manti, S.; Parisi, G.F.; Leonardi, S. Cystic Fibrosis and Oxidative Stress: The Role of CFTR. Molecules 2022, 27, 5324. [Google Scholar] [CrossRef] [PubMed]
- Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Kotsimbos, T. Respiratory Infection and Inflammation in Cystic Fibrosis: A Dynamic Interplay among the Host, Microbes, and Environment for the Ages. Int. J. Mol. Sci. 2023, 24, 4052. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.V.; Ribeiro, C.M.P. Cystic Fibrosis Inflammation: Hyperinflammatory, Hypoinflammatory, or Both? Am. J. Respir. Cell Mol. Biol. 2019, 61, 273–274. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Sodji, Q.H.; Oyelere, A.K. Inflammation, Fibrosis and Cancer: Mechanisms, Therapeutic Options and Challenges. Cancers 2022, 14, 552. [Google Scholar] [CrossRef] [PubMed]
- Appelt, D.; Fuchs, T.; Steinkamp, G.; Ellemunter, H. Malignancies in patients with cystic fibrosis: A case series. J. Med. Case Rep. 2022, 16, 27. [Google Scholar] [CrossRef] [PubMed]
- Tam, R.Y.; van Dorst, J.M.; McKay, I.; Coffey, M.; Ooi, C.Y. Intestinal Inflammation and Alterations in the Gut Microbiota in Cystic Fibrosis: A Review of the Current Evidence, Pathophysiology and Future Directions. J. Clin. Med. 2022, 11, 649. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Lowenfels, A.B. Cancer in Cystic Fibrosis: A Narrative Review of Prevalence, Risk Factors, Screening, and Treatment Challenges: Adult Cystic Fibrosis Series. Chest 2022, 161, 356–364. [Google Scholar] [CrossRef]
- Hanssens, L.S.; Duchateau, J.; Casimir, G.J. CFTR Protein: Not Just a Chloride Channel? Cells 2021, 10, 2844. [Google Scholar] [CrossRef]
- Farinha, C.M.; Gentzsch, M. Revisiting CFTR Interactions: Old Partners and New Players. Int. J. Mol. Sci. 2021, 22, 13196. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Chen, H.; Fok, K.L.; Tsang, L.L.; Yu, M.K.; Zhang, X.H.; Chen, J.; Jiang, X.; Chung, Y.W.; Ma, A.C.H.; et al. CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development. Cell Res. 2012, 22, 1453–1466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Jiang, X.; Chan, H.C. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer. Cell Mol. Life Sci. 2018, 75, 1737–1756. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef] [PubMed]
- Ghigo, A.; De Santi, C.; Hart, M.; Mitash, N.; Swiatecka-Urban, A. Cell signaling and regulation of CFTR expression in cystic fibrosis cells in the era of high efficiency modulator therapy. J. Cyst. Fibros. 2023, 22 (Suppl. 1), S12–S16. [Google Scholar] [CrossRef]
- Lukasiak, A.; Zajac, M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. Membranes 2021, 11, 804. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.G. The Clinical Biology of Cystic Fibrosis Transmembrane Regulator Protein: Its Role and Function in Extrapulmonary Disease. Chest 2019, 155, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, H.; Liu, Y.; Jiang, L. Knockdown of CFTR enhances sensitivity of prostate cancer cells to cisplatin via inhibition of autophagy. Neoplasma 2017, 64, 709–717. [Google Scholar] [CrossRef]
- Wong, M.; Ziring, D.; Korin, Y.; Desai, S.; Kim, S.; Lin, J.; Gjertson, D.; Braun, J.; Reed, E.; Singh, R.R. TNFalpha blockade in human diseases: Mechanisms and future directions. Clin. Immunol. 2008, 126, 121–136. [Google Scholar] [CrossRef]
- Yang, L.; Lu, X.; Nossa, C.W.; Francois, F.; Peek, R.M.; Pei, Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology 2009, 137, 588–597. [Google Scholar] [CrossRef]
- Strandvik, B. Nutrition in Cystic Fibrosis-Some Notes on the Fat Recommendations. Nutrients 2022, 14, 853. [Google Scholar] [CrossRef] [PubMed]
- Jouret, F.C.; Bernard, A.; Hermans, C.; Dom, G.; Terryn, S.; Leal, T.; Lebecque, P.; Cassiman, J.-J.; Scholte, B.J.; de Jonge, H.R.; et al. Cystic fibrosis is associated with a defect in apical receptor-mediated endocytosis in mouse and human kidney. J. Am. Soc. Nephrol. 2007, 18, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Shiozaki, A.; Kosuga, T.; Kudou, M.; Shimizu, H.; Arita, T.; Konishi, H.; Komatsu, S.; Kubota, T.; Fujiwara, H.; et al. Expression and Role of CFTR in Human Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2021, 28, 6424–6436. [Google Scholar] [CrossRef]
- Shi, X.; Li, Y.; Pan, S.; Liu, X.; Ke, Y.; Guo, W.; Wang, Y.; Ruan, Q.; Zhang, X.; Ma, H. Identification and validation of an autophagy-related gene signature for predicting prognosis in patients with esophageal squamous cell carcinoma. Sci. Rep. 2022, 12, 1960. [Google Scholar] [CrossRef] [PubMed]
- Knotts, R.M.; Solfisburg, Q.S.; Keating, C.; DiMango, E.; Lightdale, C.J.; Abrams, J.A. Cystic fibrosis is associated with an increased risk of Barrett’s esophagus. J. Cyst. Fibros. 2019, 18, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, W.; Liu, Y.; Zhang, C.; Zhou, Z. Predictive value of cystic fibrosis transmembrane conductance regulator (CFTR) in the diagnosis of gastric cancer. Clin. Investig. Med. 2014, 37, E226–E232. [Google Scholar] [CrossRef] [PubMed]
- Yamada, A.; Komaki, Y.; Komaki, F.; Micic, D.; Zullow, S.; Sakuraba, A. Risk of gastrointestinal cancers in patients with cystic fibrosis: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.C.C.; Jantaree, P.; Naumann, M. The conundrum of Helicobacter pylori-associated apoptosis in gastric cancer. Trends Cancer 2023, 9, 679–690. [Google Scholar] [CrossRef]
- Alzahrani, S.; Lina, T.T.; Gonzalez, J.; Pinchuk, I.V.; Beswick, E.J.; Reyes, V.E. Effect of Helicobacter pylori on gastric epithelial cells. World J. Gastroenterol. 2014, 20, 12767–12780. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Guan, X.; Yang, Z.; Li, C. Emerging role of cystic fibrosis transmembrane conductance regulator—An epithelial chloride channel in gastrointestinal cancers. World J. Gastrointest. Oncol. 2016, 8, 282–288. [Google Scholar] [CrossRef]
- Anderson, K.J.; Cormier, R.T.; Scott, P.M. Role of ion channels in gastrointestinal cancer. World J. Gastroenterol. 2019, 25, 5732–5772. [Google Scholar] [CrossRef] [PubMed]
- Patergnani, S.; Danese, A.; Bouhamida, E.; Aguiari, G.; Previati, M.; Pinton, P.; Giorgi, C. Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int. J. Mol. Sci. 2020, 21, 8323. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; O’Neal, W.K.; Gabriel, S.E.; Randell, S.H.; Harfe, B.D.; Boucher, R.C.; Grubb, B.R. Transmembrane protein 16A (TMEM16A) is a Ca2+-regulated Cl- secretory channel in mouse airways. J. Biol. Chem. 2009, 284, 14875–14880. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, P.; Marshall, B.C.; Lowenfels, A.B. Risk of pancreatic cancer in patients with cystic fibrosis. Gut 2007, 56, 1327–1328. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, R.R.; Petersen, G.M.; Rabe, K.G.; Holtegaard, L.M.; Lynch, P.J.; Bishop, M.D.; Highsmith, W.E. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and risk for pancreatic adenocarcinoma. Cancer 2010, 116, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Guerra, C.; Schuhmacher, A.J.; Cañamero, M.; Grippo, P.J.; Verdaguer, L.; Pérez-Gallego, L.; Dubus, P.; Sandgren, E.P.; Barbacid, M. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007, 11, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Pandol, S.J.; Apte, M.V.; Wilson, J.S.; Gukovskaya, A.S.; Edderkaoui, M. The burning question: Why is smoking a risk factor for pancreatic cancer? Pancreatology 2012, 12, 344–349. [Google Scholar] [CrossRef]
- Cazacu, I.M.; Farkas, N.; Garami, A.; Balaskó, M.; Mosdósi, B.; Alizadeh, H.; Gyöngyi, Z.; Rakonczay, Z.; Vigh, É.; Habon, T.; et al. Pancreatitis-Associated Genes and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis. Pancreas 2018, 47, 1078–1086. [Google Scholar] [CrossRef]
- Witt, H.; Beer, S.; Rosendahl, J.; Chen, J.-M.; Chandak, G.R.; Masamune, A.; Bence, M.; Szmola, R.; Oracz, G.; Macek, M.; et al. Variants in CPA1 are strongly associated with early onset chronic pancreatitis. Nat. Genet. 2013, 45, 1216–1220. [Google Scholar] [CrossRef]
- Earl, J.; Galindo-Pumariño, C.; Encinas, J.; Barreto, E.; Castillo, M.E.; Pachón, V.; Ferreiro, R.; Rodríguez-Garrote, M.; González-Martínez, S.; Ramon, Y.C.T.; et al. A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants. EBioMedicine 2020, 53, 102675. [Google Scholar] [CrossRef]
- Luu, M.; Visekruna, A. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. Eur. J. Immunol. 2019, 49, 842–848. [Google Scholar] [CrossRef]
- Liu, T.; Sun, Z.; Yang, Z.; Qiao, X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: Focused on host defense peptides. Biomed. Pharmacother. 2023, 162, 114586. [Google Scholar] [CrossRef] [PubMed]
- Parisi, G.F.; Di Dio, G.; Franzonello, C.; Gennaro, A.; Rotolo, N.; Lionetti, E.; Leonardi, S. Liver disease in cystic fibrosis: An update. Hepat. Mon. 2013, 13, e11215. [Google Scholar] [CrossRef] [PubMed]
- Debray, D.; Lykavieris, P.; Gauthier, F.; Dousset, B.; Sardet, A.; Munck, A.; Laselve, H.; Bernard, O. Outcome of cystic fibrosis-associated liver cirrhosis: Management of portal hypertension. J. Hepatol. 1999, 31, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Olivier, A.K.; Gibson-Corley, K.N.; Meyerholz, D.K. Animal models of gastrointestinal and liver diseases. Animal models of cystic fibrosis: Gastrointestinal, pancreatic, and hepatobiliary disease and pathophysiology. Am. J. Physiol. Gastrointest. Liver Physiol. 2015, 308, G459–G471. [Google Scholar] [CrossRef]
- Kelleher, T.; Staunton, M.; O’Mahony, S.; McCormick, P.A. Advanced hepatocellular carcinoma associated with cystic fibrosis. Eur. J. Gastroenterol. Hepatol. 2005, 17, 1123–1124. [Google Scholar] [CrossRef]
- McKeon, D.; Day, A.; Parmar, J.; Alexander, G.; Bilton, D. Hepatocellular carcinoma in association with cirrhosis in a patient with cystic fibrosis. J. Cyst. Fibros. 2004, 3, 193–195. [Google Scholar] [CrossRef]
- Kinnman, N.; Lindblad, A.; Housset, C.; Buentke, E.; Scheynius, A.; Strandvik, B.; Hultcrantz, R. Expression of cystic fibrosis transmembrane conductance regulator in liver tissue from patients with cystic fibrosis. Hepatology 2000, 32, 334–340. [Google Scholar] [CrossRef]
- Moribe, T.; Iizuka, N.; Miura, T.; Kimura, N.; Tamatsukuri, S.; Ishitsuka, H.; Hamamoto, Y.; Sakamoto, K.; Tamesa, T.; Oka, M. Methylation of multiple genes as molecular markers for diagnosis of a small, well-differentiated hepatocellular carcinoma. Int. J. Cancer. 2009, 125, 388–397. [Google Scholar] [CrossRef]
- Paranjapye, A.; Ruffin, M.; Harris, A.; Corvol, H. Genetic variation in CFTR and modifier loci may modulate cystic fibrosis disease severity. J. Cyst. Fibros. 2020, 19 (Suppl. 1), S10–S14. [Google Scholar] [CrossRef]
- Namgoong, S.; Cheong, H.S.; Kim, J.O.; Kim, L.H.; Na, H.S.; Koh, I.S.; Chung, M.W.; Shin, H.D. Comparison of genetic variations of the SLCO1B1, SLCO1B3, and SLCO2B1 genes among five ethnic groups. Environ. Toxicol. Pharmacol. 2015, 40, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, P.; Marshall, B.C.; Knapp, E.A.; Lowenfels, A.B. Cancer risk in cystic fibrosis: A 20-year nationwide study from the United States. J. Natl. Cancer Inst. 2013, 105, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Birch, R.J.; Peckham, D.; Wood, H.M.; Quirke, P.; Konstant-Hambling, R.; Brownlee, K.; Cosgriff, R.; Genomics England Research Consortium; Burr, N.; Downing, A. The risk of colorectal cancer in individuals with mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene: An English population-based study. J. Cyst. Fibros. 2023, 22, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.C.; Comellas, A.P.; Hornick, D.B.; Stoltz, D.A.; Cavanaugh, J.E.; Gerke, A.K.; Welsh, M.J.; Zabner, J.; Polgreen, P.M. Cystic fibrosis carriers are at increased risk for a wide range of cystic fibrosis-related conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 1621–1627. [Google Scholar] [CrossRef] [PubMed]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer. 2007, 121, 2381–2386. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer. 2022, 21, 144. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.X.; Gao, D.; Shao, Z.Z.; Chen, L.; Ding, W.J.; Yu, Q.F. Wnt/β-catenin signaling: Causes and treatment targets of drug resistance in colorectal cancer (Review). Mol. Med. Rep. 2021, 23, 105. [Google Scholar] [CrossRef]
- Perše, M. Oxidative stress in the pathogenesis of colorectal cancer: Cause or consequence? Biomed. Res. Int. 2013, 2013, 725710. [Google Scholar] [CrossRef]
- Gilbert, B.; Kaiko, G.; Smith, S.; Wark, P. A systematic review of the colorectal microbiome in adult cystic fibrosis patients. Colorectal Dis. 2023, 25, 843–852. [Google Scholar] [CrossRef]
- Karb, D.B.; Cummings, L.C. The Intestinal Microbiome and Cystic Fibrosis Transmembrane Conductance Regulator Modulators: Emerging Themes in the Management of Gastrointestinal Manifestations of Cystic Fibrosis. Curr. Gastroenterol. Rep. 2021, 23, 17. [Google Scholar] [CrossRef]
- Amaral, M.D.; Quaresma, M.C.; Pankonien, I. What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer? Int. J. Mol. Sci. 2020, 21, 3133. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.K. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front. Immunol. 2022, 12, 807648. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.M.; Taylor, C.J. Cystic Fibrosis & disorders of the large intestine: DIOS, constipation, and colorectal cancer. J. Cyst. Fibros. 2017, 16 (Suppl. 2), S40–S49. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Song, C.; Li, J.; Sun, Q. CFTR Functions as a Tumor Suppressor and Is Regulated by DNA Methylation in Colorectal Cancer. Cancer Manag. Res. 2020, 12, 4261–4270. [Google Scholar] [CrossRef]
- Mandal, R.K.; Khan, M.A.; Hussain, A.; Akhter, N.; Jawed, A.; Dar, S.A.; Wahid, M.; Panda, A.K.; Lohani, M.; Mishra, B.N.; et al. A trial sequential meta-analysis of TNF-α -308G>A (rs800629) gene polymorphism and susceptibility to colorectal cancer. Biosci. Rep. 2019, 39, BSR20181052. [Google Scholar] [CrossRef]
- Smyth, A.R.; Bell, S.C.; Bojcin, S.; Bryon, M.; Duff, A.; Flume, P.; Kashirskaya, N.; Munck, A.; Ratjen, F.; Schwarzenberg, S.J.; et al. European Cystic Fibrosis Society Standards of Care: Best Practice guidelines. J. Cyst. Fibros. 2014, 13 (Suppl. 1), S23–S42. [Google Scholar] [CrossRef] [PubMed]
- Ingravalle, F.; Casella, G.; Ingravalle, A.; Monti, C.; De Salvatore, F.; Stillitano, D.; Villanacci, V. Surveillance of Colorectal Cancer (CRC) in Cystic Fibrosis (CF) Patients. Gastrointest. Disorders. 2021, 3, 84–95. [Google Scholar] [CrossRef]
- Than, B.L.N.; Linnekamp, J.F.; Starr, T.K.; Largaespada, A.D.; Rod, A.; Zhang, Y.; Bruner, V.; Abrahante, J.; Schumann, A.; Luczak, T.; et al. CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 2016, 35, 4179–4187. [Google Scholar] [CrossRef]
- Gelsomino, F.; Balsano, R.; De Lorenzo, S.; Garajová, I. Small Bowel Adenocarcinoma: From Molecular Insights to Clinical Management. Curr. Oncol. 2022, 29, 1223–1236. [Google Scholar] [CrossRef]
- Lam, G.Y.; Goodwin, J.; Wilcox, P.G.; Quon, B.S. Sex disparities in cystic fibrosis: Review on the effect of female sex hormones on lung pathophysiology and outcomes. ERJ Open Res. 2021, 7, 000475–2020. [Google Scholar] [CrossRef]
- Garcia, F.U.; Galindo, L.M.; Holsclaw, D.S. Breast abnormalities in patients with cystic fibrosis: Previously unrecognized changes. Ann. Diagn. Pathol. 1998, 2, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.; Trudel, S.; Brouillard, F.; Bouillaud, F.; Colas, J.; Nguyen-Khoa, T.; Ollero, M.; Edelman, A.; Fritsch, J. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J. Pharmacol. Exp. Ther. 2010, 333, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.G.; Zeng, Q.; Tse, G.M. Estrogen and its receptors in cancer. Med. Res. Rev. 2008, 28, 954–974. [Google Scholar] [CrossRef] [PubMed]
- Chotirmall, S.H.; Greene, C.M.; Oglesby, I.K.; Thomas, W.; O’Neill, S.J.; Harvey, B.J.; McElvaney, N.G. 17Beta-estradiol inhibits IL-8 in cystic fibrosis by up-regulating secretory leucoprotease inhibitor. Am. J. Respir. Crit. Care Med. 2010, 182, 62–72. [Google Scholar] [CrossRef]
- Zhang, J.T.; Jiang, X.H.; Xie, C.; Cheng, H.; Dong, J.D.; Wang, Y.; Fok, K.L.; Zhang, X.H.; Sun, T.T.; Tsang, L.L.; et al. Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 2961–2969. [Google Scholar] [CrossRef] [PubMed]
- Hughan, K.S.; Daley, T.; Rayas, M.S.; Kelly, A.; Roe, A. Female reproductive health in cystic fibrosis. J. Cyst. Fibros. 2019, 18 (Suppl. 2), S95–S104. [Google Scholar] [CrossRef] [PubMed]
- Archangelidi, O.; Cullinan, P.; Simmonds, N.J.; Mentzakis, E.; Peckham, D.; Bilton, D.; Carr, S.B. Incidence and risk factors of cancer in individuals with cystic fibrosis in the UK; a case-control study. J. Cyst. Fibros. 2022, 21, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Iima, M.; Le Bihan, D. The road to breast cancer screening with diffusion MRI. Front. Oncol. 2023, 13, 993540. [Google Scholar] [CrossRef]
- Vekens, K.; Vincken, S.; Hanon, S.; Demuynck, K.; Stylemans, D.; Vanderhelst, E. Lung cancer in a CF patient: Combination of bad luck or is there more to say? Acta Clin. Belg. 2021, 76, 379–380. [Google Scholar] [CrossRef]
- Rousset-Jablonski, C.; Dalon, F.; Reynaud, Q.; Lemonnier, L.; Dehillotte, C.; Jacoud, F.; Berard, M.; Viprey, M.; Van Ganse, E.; Durieu, I.; et al. Cancer incidence and prevalence in cystic fibrosis patients with and without a lung transplant in France. Front. Public Health 2022, 10, 1043691. [Google Scholar] [CrossRef]
- Cabrini, G.; Rimessi, A.; Borgatti, M.; Lampronti, I.; Finotti, A.; Pinton, P.; Gambari, R. Role of Cystic Fibrosis Bronchial Epithelium in Neutrophil Chemotaxis. Front. Immunol. 2020, 11, 1438. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, P.K.; Brain, A.P. Surface morphology of human airway mucosa: Normal, carcinoma or cystic fibrosis. Scanning Microsc. 1988, 2, 553–560. [Google Scholar] [PubMed]
- Patel, V.; Majumdar, T.; Samreen, I.; Grewal, H.; Kaleekal, T. Primary lung carcinoma in cystic fibrosis: A case report and literature review. Respir. Med. Case Rep. 2020, 31, 101242. [Google Scholar] [CrossRef] [PubMed]
- Raju, S.V.; Jackson, P.L.; Courville, C.A.; McNicholas, C.M.; Sloane, P.A.; Sabbatini, G.; Tidwell, S.; Tang, L.P.; Liu, B.; Fortenberry, J.A.; et al. Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am. J. Respir. Crit. Care Med. 2013, 188, 1321–1330. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Clough, D.; McKenna, D.; Dodd, M.; Webb, A.K. Smoking and cystic fibrosis. J. R. Soc. Med. 2001, 94 (Suppl. 40), 29–34. [Google Scholar] [CrossRef]
- Oh, I.-H.; Oh, C.; Yoon, T.-Y.; Choi, J.-M.; Kim, S.K.; Park, H.J.; Eun, Y.G.; Chung, D.H.; Kwon, K.H.; Choe, B.-K. Association of CFTR gene polymorphisms with papillary thyroid cancer. Oncol. Lett. 2012, 3, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.-R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124, Erratum in Lancet Respir. Med. 2019, 7, e40. [Google Scholar] [CrossRef]
- Jia, S.; Taylor-Cousar, J.L. Cystic Fibrosis Modulator Therapies. Annu. Rev. Med. 2023, 74, 413–426. [Google Scholar] [CrossRef]
- Giallongo, A.; Parisi, G.F.; Papale, M.; Manti, S.; Mulé, E.; Aloisio, D.; Terlizzi, V.; Rotolo, N.; Leonardi, S. Effects of Elexacaftor/Tezacaftor/Ivacaftor on Cardiorespiratory Polygraphy Parameters and Respiratory Muscle Strength in Cystic Fibrosis Patients with Severe Lung Disease. Genes 2023, 14, 449. [Google Scholar] [CrossRef]
- Balfour-Lynn, I.M.; King, J.A. CFTR modulator therapies-Effect on life expectancy in people with cystic fibrosis. Paediatr. Respir. Rev. 2022, 42, 3–8. [Google Scholar] [CrossRef]
- Dagenais, R.V.E.; Su, V.C.H.; Quon, B.S. Real-World Safety of CFTR Modulators in the Treatment of Cystic Fibrosis: A Systematic Review. J. Clin. Med. 2020, 10, 23. [Google Scholar] [CrossRef]
- Higgins, M.; Volkova, N.; Moy, K.; Marshall, B.C.; Bilton, D. Real-World Outcomes Among Patients with Cystic Fibrosis Treated with Ivacaftor: 2012-2016 Experience. Pulm. Ther. 2020, 6, 141–149. [Google Scholar] [CrossRef]
- Bai, Y.; Higgins, M.; Volkova, N.; Bengtsson, L.; Tian, S.; Sewall, A.; Nyangoma, S.; Elbert, A.; Bilton, D. Real-world outcomes in patients (PTS) with cystic fibrosis (CF) treated with ivacaftor (IVA): Analysis of 2014 US and UK CF registries. J. Cyst. Fibros. 2016, 15, S41. [Google Scholar] [CrossRef]
- Chilvers, M.A.; Davies, J.C.; Milla, C.; Tian, S.; Han, Z.; Cornell, A.G.; Owen, A.C.; Ratjen, F. Long-term safety and efficacy of lumacaftor-ivacaftor therapy in children aged 6-11 years with cystic fibrosis homozygous for the F508del-CFTR mutation: A phase 3, open-label, extension. Lancet Respir. Med. 2021, 9, 721–732. [Google Scholar] [CrossRef]
Cancer Type | Molecular Mechanisms | Relative Risk |
---|---|---|
Esophageal cancer |
| not well-established |
Gastric cancer |
| not well-established |
Pancreatic cancer |
| 5–10 |
Liver cancer |
| 1.5–2 |
Intestinal cancers |
| 6 |
Breast cancer |
| not well-established |
Lung cancer |
| not well-established |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, G.F.; Papale, M.; Pecora, G.; Rotolo, N.; Manti, S.; Russo, G.; Leonardi, S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers 2023, 15, 4244. https://doi.org/10.3390/cancers15174244
Parisi GF, Papale M, Pecora G, Rotolo N, Manti S, Russo G, Leonardi S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers. 2023; 15(17):4244. https://doi.org/10.3390/cancers15174244
Chicago/Turabian StyleParisi, Giuseppe Fabio, Maria Papale, Giulia Pecora, Novella Rotolo, Sara Manti, Giovanna Russo, and Salvatore Leonardi. 2023. "Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility" Cancers 15, no. 17: 4244. https://doi.org/10.3390/cancers15174244
APA StyleParisi, G. F., Papale, M., Pecora, G., Rotolo, N., Manti, S., Russo, G., & Leonardi, S. (2023). Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers, 15(17), 4244. https://doi.org/10.3390/cancers15174244