Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Preparation
2.2. Dose Planning
2.3. Training
2.4. Assessing the Model’s Sensitivity
2.5. Improving the Model–Worst-Case Test Set
2.6. Evaluation
3. Results
3.1. Results for Sensitivity
3.2. Improving the Model–Worst-Case Test Set
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dahiya, N.; Jhanwar, G.; Yezzi, A.; Zarepisheh, M.; Nadeem, S. Deep Learning 3D Dose Prediction for Conventional Lung IMRT Using Consistent/Unbiased Automated Plans. arXiv 2021, arXiv:2106.03705. [Google Scholar]
- Kontaxis, C.; Bol, G.H.; Lagendijk, J.J.W.; Raaymakers, B.W. DeepDose: Towards a fast dose calculation engine for radiation therapy using deep learning. Phys. Med. Biol. 2020, 65, 075013. [Google Scholar] [CrossRef]
- Bakx, N.; Bluemink, H.; Hagelaar, E.; Van Der Sangen, M.; Theuws, J. Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer. Phys. Imaging Radiat. Oncol. 2021, 17, 65–70. [Google Scholar] [CrossRef]
- Ahn, S.H.; Kim, E.; Kim, C.; Cheon, W.; Kim, M.; Lee, S.B.; Lim, Y.K.; Kim, H.; Shin, D.; Kim, D.Y.; et al. Deep learning method for prediction of patient-specific dose distribution in breast cancer. Radiat. Oncol. 2021, 16, 154. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Wang, J.; Wang, X.; Qu, B.; Ma, L.; Zhao, W.; Zhang, G.; Xu, S. Dose Prediction Using a Three-Dimensional Convolutional Neural Network for Nasopharyngeal Carcinoma with Tomotherapy. Front. Oncol. 2021, 11, 752007. [Google Scholar] [CrossRef]
- Yue, M.; Xue, X.; Wang, Z.; Lambo, R.L.; Zhao, W.; Xie, Y.; Cai, J.; Qin, W. Dose prediction via distance-guided deep learning: Initial development for nasopharyngeal carcinoma radiotherapy. Radiother. Oncol. 2022, 170, 198–204. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zhang, F.; Liao, M.; Yang, X. Deep learning architecture with transformer and semantic field alignment for voxel-level dose prediction on brain tumors. Med. Phys. 2022, 50, 1149–1161. [Google Scholar] [CrossRef]
- Appenzoller, L.M.; Michalski, J.M.; Thorstad, W.L.; Mutic, S.; Moore, K.L. Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med. Phys. 2012, 39, 7446–7461. [Google Scholar] [CrossRef]
- Tol, J.P.; Dahele, M.; Delaney, A.R.; Slotman, B.J.; Verbakel, W.F.A.R. Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans? Radiat. Oncol. 2015, 10, 234. [Google Scholar] [CrossRef]
- Gronberg, M.P.; Beadle, B.M.; Garden, A.S.; Skinner, H.; Gay, S.; Netherton, T.; Cao, W.; Cardenas, C.E.; Chung, C.; Fuentes, D.T.; et al. Deep Learning–Based Dose Prediction for Automated, Individualized Quality Assurance of Head and Neck Radiation Therapy Plans. Pract. Radiat. Oncol. 2023, 13, e282–e291. [Google Scholar] [CrossRef]
- McIntosh, C.; Purdie, T.G. Contextual Atlas Regression Forests: Multiple-Atlas-Based Automated Dose Prediction in Radiation Therapy. IEEE Trans. Med. Imaging 2016, 35, 1000–1012. [Google Scholar] [CrossRef]
- Shiraishi, S.; Moore, K.L. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy. Med. Phys. 2016, 43, 378–387. [Google Scholar] [CrossRef]
- Ma, J.; Bai, T.; Nguyen, D.; Folkerts, M.; Jia, X. Individualized 3D Dose Distribution Prediction Using Deep Learning. In Artificial Intelligence in Radiation Therapy; Springer Nature: Cham, Switzerland, 2019; Volume 11850, pp. 110–118. [Google Scholar]
- Willems, S.; Crijns, W.; Sterpin, E.; Haustermans, K.; Maes, F. Feasibility of CT-Only 3D Dose Prediction for VMAT Prostate Plans Using Deep Learning. In Artificial Intelligence in Radiation Therapy; Springer: Cham, Switzerland, 2019; Volume 11850, pp. 10–17. [Google Scholar]
- Chen, X.; Men, K.; Li, Y.; Yi, J.; Dai, J. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med. Phys. 2019, 46, 56–64. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, J.; Yang, B.; Chen, D.; Men, K.; Dai, J. Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning. Front. Oncol. 2023, 13, 1041769. [Google Scholar] [CrossRef]
- McIntosh, C.; Purdie, T.G. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning. Phys. Med. Biol. 2017, 62, 415–431. [Google Scholar] [CrossRef]
- Babier, A.; Zhang, B.; Mahmood, R.; Moore, K.L.; Purdie, T.G.; McNiven, A.L.; Chan, T.C.Y. OpenKBP: The open-access knowledge-based planning grand challenge and dataset. Med. Phys. 2021, 48, 5549–5561. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Qin, G.; Shen, L.; Sun, Y.; Ying, H.; Zhang, Z.; Hu, W. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images. Med. Phys. 2018, 45, 2560–2564. [Google Scholar] [CrossRef]
- Sun, Z.; Xia, X.; Fan, J.; Zhao, J.; Zhang, K.; Wang, J.; Hu, W. A hybrid optimization strategy for deliverable intensity-modulated radiotherapy plan generation using deep learning-based dose prediction. Med. Phys. 2022, 49, 1344–1356. [Google Scholar] [CrossRef]
- Huynh, E.; Hosny, A.; Guthier, C.; Bitterman, D.S.; Petit, S.F.; Haas-Kogan, D.A.; Kann, B.; Aerts, H.J.W.L.; Mak, R.H. Artificial intelligence in radiation oncology. Nat. Rev. Clin. Oncol. 2020, 17, 771–781. [Google Scholar] [CrossRef]
- Poel, R.; Rüfenacht, E.; Ermis, E.; Müller, M.; Fix, M.K.; Aebersold, D.M.; Manser, P.; Reyes, M. Impact of random outliers in auto-segmented targets on radiotherapy treatment plans for glioblastoma. Radiat. Oncol. 2022, 17, 170. [Google Scholar] [CrossRef]
- Altman, M.B.; Wooten, H.O.; Dewees, T.A.; Thorstad, W. A framework for automated contour quality assurance in radiation therapy including adaptive techniques A framework for automated contour quality assurance in radiation therapy including adaptive techniques. Phys. Med. Biol. 2015, 60, 5199–5209. [Google Scholar] [CrossRef]
- Chen, H.-C.; Tan, J.; Dolly, S.; Kavanaugh, J.; Anastasio, M.A.; Low, D.A.; Li, H.H.; Altman, M.; Gay, H.; Thorstad, W.L.; et al. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy. Med. Phys. 2015, 42, 1048–1059. [Google Scholar] [CrossRef]
- Zhang, J.; Ates, O.; Li, A. Implementation of a Machine Learning–Based Automatic Contour Quality Assurance Tool for Online Adaptive Radiation Therapy of Prostate Cancer. Int. J. Radiat. Oncol. 2016, 96, E668. [Google Scholar] [CrossRef]
- Isaksson, L.J.; Summers, P.; Bhalerao, A.; Gandini, S.; Raimondi, S.; Pepa, M.; Zaffaroni, M.; Corrao, G.; Mazzola, G.C.; Rotondi, M.; et al. Quality assurance for automatically generated contours with additional deep learning. Insights Imaging 2022, 13, 137. [Google Scholar] [CrossRef]
- Jungo, A.; Meier, R.; Ermis, E.; Herrmann, E.; Reyes, M. Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity Segmentation. arXiv 2018, arXiv:1806.03106. [Google Scholar]
- Niyazi, M.; Andratschke, N.; Bendszus, M.; Chalmers, A.J.; Erridge, S.C.; Galldiks, N.; Lagerwaard, F.J.; Navarria, P.; Rosenschöld, P.M.A.; Ricardi, U.; et al. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother. Oncol. 2023, 184, 109663. [Google Scholar] [CrossRef]
- Van Esch, A.; Tillikainen, L.; Pyykkonen, J.; Tenhunen, M.; Helminen, H.; Siljamäki, S.; Alakuijala, J.; Paiusco, M.; Iori, M.; Huyskens, D.P. Testing of the analytical anisotropic algorithm for photon dose calculation. Med. Phys. 2006, 33, 4130–4148. [Google Scholar] [CrossRef]
- Rüfenacht, E.; Kamath, A.; Suter, Y.; Poel, R.; Ermiş, E.; Scheib, S.; Reyes, M. PyRaDiSe: A Python package for DICOM-RT-based auto-segmentation pipeline construction and DICOM-RT data conversion. Comput. Methods Programs Biomed. 2023, 231, 107374. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Li, T.; Yan, H.; Liu, J. Technical Note: A cascade 3D U-Net for dose prediction in radiotherapy. Med. Phys. 2021, 48, 5574–5582. [Google Scholar] [CrossRef]
- Nguyen, D.; Long, T.; Jia, X.; Lu, W.; Gu, X.; Iqbal, Z.; Jiang, S. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci. Rep. 2019, 9, 1076. [Google Scholar] [CrossRef]
- Kearney, V.; Chan, J.W.; Haaf, S.; Descovich, M.; Solberg, T.D. DoseNet: A volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys. Med. Biol. 2018, 63, 235022. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Proc. IEEE Int. Conf. Comput. Vis. 2015, 2015, 1026–1034. [Google Scholar]
- Deeley, M.A.; Chen, A.; Datteri, R.; Noble, J.H.; Cmelak, A.J.; Donnelly, E.F.; Malcolm, A.W.; Moretti, L.; Jaboin, J.; Niermann, K.; et al. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: A multi-expert study. Phys. Med. Biol. 2011, 56, 4557–4577. [Google Scholar] [CrossRef] [PubMed]
- Poel, R.; Rüfenacht, E.; Hermann, E.; Scheib, S.; Manser, P.; Aebersold, D.M.; Reyes, M. The predictive value of segmentation metrics on dosimetry in organs at risk of the brain. Med. Image Anal. 2021, 73, 102161. [Google Scholar] [CrossRef]
- Kamath, A.; Poel, R.; Willmann, J.; Ermis, E.; Andratschke, N.; Reyes, M. ASTRA: Atomic Surface Transformations for Radiotherapy Quality Assurance. In Proceedings of the International Conference of the IEEE Engineering in Medicine and Biology Society, Sydney, Australia, 24–27 July 2023. [Google Scholar]
- Rüfenacht, E.; Kamath, A.; Suter, Y.; Poel, R.; Ermiş, E.; Scheib, S.; Reyes, M. Dose Guidance for Radiotherapy-oriented Deep Learning Segmentation. In Proceedings of the MICCAI Proceedings, Vancouver, BC, Canada, 8–12 October 2023. [Google Scholar]
- You, S.; Reyes, M. Influence of contrast and texture based image modifications on the performance and attention shift of U-Net models for brain tissue segmentation. Front. Neuroimaging 2022, 1, 1012639. [Google Scholar] [CrossRef]
OAR | Constraint | Priority |
---|---|---|
Brain-PTV |
| 2 |
Brainstem |
| 1 4 |
Chiasm |
| 1 3 |
Cochlea (Ipsi-lat) |
| 5 9 |
Cochlea (Bi-lat) |
| 7 9 |
Hippocampus |
| 8 14 11 |
Lacrimal Gland |
| 1 |
Lens |
| 12 |
Optic nerves (Ipsi-lat) |
| 1 3 |
Optic nerve (Bi-lat) |
| 1 6 |
Pituitary |
| 10 13 |
Retina |
| 1 |
Target | Objective | Priority |
PTV |
| 1 |
CTV |
| 2 |
PTV |
| 3 |
ONL Contour | Calc. Dose | Pred. Dose | Δ Dose Calc-Pred | DSC | Δ to Calc-Ref | Δ to Pred-Ref |
---|---|---|---|---|---|---|
Reference | 34.7 | 35.5 | −0.8 | n.a. | n.a. | n.a |
Alternative-1 | 32.2 | 35.7 | −3.5 | 0.31 | −2.5 | 0.2 |
Alternative-2 | 30.7 | 32.4 | −1.7 | 0.26 | −4 | −3.1 |
Alternative-3 | 34.2 | 34.5 | −0.3 | 0.63 | −0.5 | −1 |
Alternative-4 | 31.8 | 34.1 | −2.3 | 0.59 | −2.9 | −1.4 |
Alternative-5 | 26.9 | 30.1 | −3.2 | 0.51 | −7.8 | −5.4 |
Alternative-6 | 32.8 | 36 | −3.2 | 0.20 | −1.9 | 0.5 |
Alternative-7 | 41.8 | 41.2 | 0.6 | 0.16 | 7.1 | 5.7 |
Alternative-8 | 35.3 | 33.1 | 2.2 | 0.58 | 0.6 | −2.4 |
Alternative-9 | 34.5 | 36.1 | −1.6 | 0.05 | −0.2 | 0.6 |
Mean | 33.49 | 34.87 | −1.38 | 0.37 | Corr. Coeff.: 0.89 |
Test Set | Initial Model | Concave Updated Model | Multiple Lesion Updated Model | Combined Updated Model |
---|---|---|---|---|
Dose scores’ whole brain volume | ||||
Standard test set | 0.94 | 0.94 | 0.92 | 0.98 |
Concave test set | 0.87 | 0.81 | 0.81 | 0.87 |
Multiple test set | 1.30 | 0.84 | 1.24 | 1.02 |
Combined test set | 0.98 | 0.90 | 0.95 | 0.97 |
DVH scores’ OARs | ||||
Standard test set | 2.01 | 1.73 | 1.85 | 1.89 |
Concave test set | 2.11 | 1.67 | 1.99 | 2.08 |
Multiple test set | 3.05 | 1.86 | 3.05 | 2.67 |
Combined test set | 2.18 | 1.74 | 2.04 | 2.03 |
DVH scores’ targets | ||||
Standard test set | 1.19 | 1.12 | 1.20 | 1.26 |
Concave test set | 1.72 | 1.67 | 1.51 | 1.66 |
Multiple test set | 3.62 | 1.92 | 3.18 | 2.91 |
Combined test set | 1.61 | 1.31 | 1.53 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poel, R.; Kamath, A.J.; Willmann, J.; Andratschke, N.; Ermiş, E.; Aebersold, D.M.; Manser, P.; Reyes, M. Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring. Cancers 2023, 15, 4226. https://doi.org/10.3390/cancers15174226
Poel R, Kamath AJ, Willmann J, Andratschke N, Ermiş E, Aebersold DM, Manser P, Reyes M. Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring. Cancers. 2023; 15(17):4226. https://doi.org/10.3390/cancers15174226
Chicago/Turabian StylePoel, Robert, Amith J. Kamath, Jonas Willmann, Nicolaus Andratschke, Ekin Ermiş, Daniel M. Aebersold, Peter Manser, and Mauricio Reyes. 2023. "Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring" Cancers 15, no. 17: 4226. https://doi.org/10.3390/cancers15174226
APA StylePoel, R., Kamath, A. J., Willmann, J., Andratschke, N., Ermiş, E., Aebersold, D. M., Manser, P., & Reyes, M. (2023). Deep-Learning-Based Dose Predictor for Glioblastoma–Assessing the Sensitivity and Robustness for Dose Awareness in Contouring. Cancers, 15(17), 4226. https://doi.org/10.3390/cancers15174226