Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients, Treatment, and a Follow-Up Strategy
2.2. Measurement of the Chronological Changes in Body Composition, Tumor Makers, and Liver Functional Reserve
2.3. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics and Treatment Course of the Enrolled Patients
3.2. Therapeutic Effect and Adverse Events of the Enrolled Patients
3.3. Chronological Changes in Body Composition, Tumor Makers, and Liver Functional Reserve
3.4. Analysis of the Factors Affecting Survival Using Time-Varying Covariates in the Cox Proportional Hazards Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular Carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Bertuccio, P.; Turati, F.; Carioli, G.; Rodriguez, T.; la Vecchia, C.; Malvezzi, M.; Negri, E. Global Trends and Predictions in Hepatocellular Carcinoma Mortality. J. Hepatol. 2017, 67, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Njei, B.; Rotman, Y.; Ditah, I.; Lim, J.K. Emerging Trends in Hepatocellular Carcinoma Incidence and Mortality. Hepatology 2015, 61, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Iritani, S.; Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M.; Moriwaki, H. Skeletal Muscle Depletion Is an Independent Prognostic Factor for Hepatocellular Carcinoma. J. Gastroenterol. 2015, 50, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Hanai, T.; Ideta, T.; Miyazaki, T.; Kochi, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Skeletal Muscle Depletion Predicts the Prognosis of Patients with Hepatocellular Carcinoma Treated with Sorafenib. Int. J. Mol. Sci. 2015, 16, 9612–9624. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for Patients with Hepatocellular Carcinoma Who Progressed on Sorafenib Treatment (RESORCE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after Sorafenib in Patients with Advanced Hepatocellular Carcinoma and Increased α-Fetoprotein Concentrations (REACH-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Cheng, A.L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Kawamura, Y.; Hasegawa, K.; Tateishi, R.; Kariyama, K.; Shiina, S.; Toyoda, H.; Imai, Y.; Hiraoka, A.; Ikeda, M.; et al. Management of Hepatocellular Carcinoma in Japan: JSH Consensus Statements and Recommendations 2021 Update. Liver Cancer 2021, 10, 181–223. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Chan, S.L.; Galle, P.R.; Rimassa, L.; Sangro, B. Systemic Treatment of Hepatocellular Carcinoma: An EASL Position Paper. J. Hepatol. 2021, 75, 960–974. [Google Scholar] [CrossRef] [PubMed]
- Gordan, J.D.; Kennedy, E.B.; Abou-Alfa, G.K.; Beg, M.S.; Brower, S.T.; Gade, T.P.; Goff, L.; Gupta, S.; Guy, J.; Harris, W.P.; et al. Systemic Therapy for Advanced Hepatocellula Carcinoma: ASCO Guideline. J. Clin. Oncol. 2020, 38, 4317–4345. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Miwa, T.; Taguchi, D.; Hanai, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Rapid Depletion of Subcutaneous Adipose Tissue during Sorafenib Treatment Predicts Poor Survival in Patients with Hepatocellular Carcinoma. Cancers 2020, 12, 1795. [Google Scholar] [CrossRef] [PubMed]
- Fisher, L.D.; Lin, D.Y. Time-dependent covariates in the cox proportional-hazards regression model. Annu. Rev. Public Health 2003, 20, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Matsui, O.; Izumi, N.; Iijima, H.; Kadoya, M.; Imai, Y.; Okusaka, T.; Miyayama, S.; Tsuchiya, K.; Ueshima, K.; et al. JSH Consensus-Based Clinical Practice Guidelines for the Management of Hepatocellular Carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer 2014, 3, 458–468. [Google Scholar] [CrossRef]
- Takayasu, K.; Furuse, J.; Nakamura, K.; Tanaka, M.; Kudo, M.; Ikai, I.; Kubo, S.; Sakamoto, M.; Makuuchi, M. Response Evaluation Criteria in Cancer of the Liver (RECICL) Proposed by the Liver Cancer Study Group of Japan (2009 Revised Version). Hepatol. Res. 2010, 40, 686–692. [Google Scholar] [CrossRef]
- Arizumi, T.; Ueshima, K.; Takeda, H.; Osaki, Y.; Takita, M.; Inoue, T.; Kitai, S.; Yada, N.; Hagiwara, S.; Minami, Y.; et al. Comparison of Systems for Assessment of Post-Therapeutic Response to Sorafenib for Hepatocellular Carcinoma. J. Gastroenterol. 2014, 49, 1578–1587. [Google Scholar] [CrossRef]
- Imai, K.; Takai, K.; Maeda, T.; Watanabe, S.; Hanai, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Increased Visceral Fat Volume Raises the Risk for Recurrence of Hepatocellular Carcinoma after Curative Treatment. Oncotarget 2018, 9, 14058–14067. [Google Scholar] [CrossRef]
- Escudier, B.; Baracos, V.E.; Antoun, S.; Birdsell, L.; Sawyer, M.B.; Venner, P.; Escudier, B.; Baracos, V.E. Association of Skeletal Muscle Wasting with Treatment with Sorafenib in Patients with Advanced Renal Cell Carcinoma: Results from a Placebo-Controlled Study. J. Clin. Oncol. 2010, 28, 1054–1060. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology Guidelines for Sarcopenia in Liver Disease (1st Edition): Recommendation from the Working Group for Creation of Sarcopenia Assessment Criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Nishimura, K.; Ohnishi, S.; Imai, K.; Suetsugu, A.; Takai, K.; Shimizu, M.; Moriwaki, H. Sarcopenia Impairs Prognosis of Patients with Liver Cirrhosis. Nutrition 2015, 31, 193–199. [Google Scholar] [CrossRef]
- Hanai, T.; Shiraki, M.; Ohnishi, S.; Miyazaki, T.; Ideta, T.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; et al. Rapid Skeletal Muscle Wasting Predicts Worse Survival in Patients with Liver Cirrhosis. Hepatol. Res. 2016, 46, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Del Prete, V.; Antonino, M.; Crucinio, N.; Neve, V.; Di Leo, A.; Carr, B.I.; Barone, M. Post-Recurrence Survival in Hepatocellular Carcinoma after Percutaneous Radiofrequency Ablation. Dig. Liver Dis. 2014, 46, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, K.; Kodama, K.; Kawaoka, T.; Kosaka, M.; Johira, Y.; Shirane, Y.; Miura, R.; Yano, S.; Murakami, S.; Amioka, K.; et al. The Importance of Body Composition Assessment for Patients with Advanced Hepatocellular Carcinoma by Bioelectrical Impedance Analysis in Lenvatinib Treatment. PLoS ONE 2022, 17, e0262675. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.Y.; Lee, P.C.; Chen, Y.T.; Chao, Y.; Hou, M.C.; Huang, Y.H. Pre-Sarcopenia Determines Post-Progression Outcomes in Advanced Hepatocellular Carcinoma after Sorafenib Failure. Sci. Rep. 2020, 10, 18375. [Google Scholar] [CrossRef]
- Schütte, K.; Schulz, C.; Malfertheiner, P. Nutrition and Hepatocellular Cancer. Gastrointest. Tumors 2015, 2, 188–194. [Google Scholar] [CrossRef]
- Schütte, K.; Tippelt, B.; Schulz, C.; Röhl, F.W.; Feneberg, A.; Seidensticker, R.; Arend, J.; Malfertheiner, P. Malnutrition Is a Prognostic Factor in Patients with Hepatocellular Carcinoma (HCC). Clin. Nutr. 2015, 34, 1122–1127. [Google Scholar] [CrossRef]
- Singh Tejavath, A.; Mathur, A.; Nathiya, D.; Singh, P.; Raj, P.; Suman, S.; Mundada, P.R.; Atif, S.; Rai, R.R.; Tomar, B.S. Impact of Branched Chain Amino Acid on Muscle Mass, Muscle Strength, Physical Performance, Combined Survival, and Maintenance of Liver Function Changes in Laboratory and Prognostic Markers on Sarcopenic Patients with Liver Cirrhosis (BCAAS Study): A Randomized Clinical Trial. Front. Nutr. 2021, 8, 619. [Google Scholar] [CrossRef]
- Hashida, R.; Kawaguchi, T.; Koya, S.; Hirota, K.; Goshima, N.; Yoshiyama, T.; Otsuka, T.; Bekki, M.; Iwanaga, S.; Nakano, D.; et al. Impact of Cancer Rehabilitation on the Prognosis of Patients with Hepatocellular Carcinoma. Oncol. Lett. 2020, 19, 2355–2367. [Google Scholar] [CrossRef] [PubMed]
- Koya, S.; Kawaguchi, T.; Hashida, R.; Goto, E.; Matsuse, H.; Saito, H.; Hirota, K.; Taira, R.; Matsushita, Y.; Imanaga, M.; et al. Effects of In-Hospital Exercise on Liver Function, Physical Ability, and Muscle Mass during Treatment of Hepatoma in Patients with Chronic Liver Disease. Hepatol. Res. 2017, 47, E22–E34. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A. The Influence of Diabetes in the Pathogenesis and the Clinical Course of Hepatocellular Carcinoma: Recent Findings and New Perspectives. Curr. Diabetes Rev. 2013, 9, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Imai, K.; Takai, K.; Hanai, T.; Suetsugu, A.; Shiraki, M.; Shimizu, M. Homeostatic Model Assessment of Insulin Resistance for Predicting the Recurrence of Hepatocellular Carcinoma after Curative Treatment. Int. J. Mol. Sci. 2019, 20, 605. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Kikuchi, Y.; Kusakabe, T.; Takano, H.; Sakurai, K.; Furui, S.; Oba, H. Imaging Spectrum of Abnormal Subcutaneous and Visceral Fat Distribution. Insights Imaging 2020, 11, 24. [Google Scholar] [CrossRef]
Variables | All Patients (n = 77) |
---|---|
Age (years) | 73 (65–78) |
Sex (male/female) | 66/11 |
Etiology (HBV/HCV/others) | 16/33/28 |
Drug (Lenvatinib/Sorafenib) | 28/49 |
BCLC stage (B1/B2/C) | 12/24/41 |
SMI (cm2/m2) | 44.3 (40.7–49.3) |
SATI (cm2/m2) | 38.1 (22.7–48.1) |
VATI (cm2/m2) | 40.7 (21.1–54.2) |
Child Pugh score (5/6/7/8/9) | 59/16/1/0/1 |
ALBI score | −2.62 (−2.91–−2.23) |
ALB (g/dL) | 3.9 (3.6–4.3) |
AST (U/L) | 33 (25–44) |
ALT (U/L) | 23 (17–32) |
T-Bil (mg/dL) | 0.8 (0.7–1.0) |
PT (%) | 93 (84–102) |
AFP (ng/mL) | 48.8 (8.5–431.7) |
PIVKA-II (×103 mAU/mL | 291 (32–1679) |
Best response (CR/PR/SD/PD) | 7/15/20/35 |
All Patients (n = 77) | |||
---|---|---|---|
Pre-Treatment | Combination Treatment | Post-Treatment | |
Any treatments | 71 (92.2%) | 49 (63.6%) | 31 (40.3%) |
Hepatectomy | 35 | 1 | 0 |
RFA | 20 | 4 | 1 |
TACE | 57 | 43 | 19 |
Radiation therapy | 18 | 11 | 7 |
Other chemotherapy | 5 | 0 | 15 |
All Patients (n = 77) | ||||
---|---|---|---|---|
Any Grade | Grade 1 | Grade 2 | Grade ≥ 3 | |
Any symptoms | 75 (97.4%) | 24 (31.2%) | ||
Appetite loss | 45 (58.4%) | 7 (9.1%) | 36 (46.8%) | 2 (2.6%) |
Hand-foot syndrome | 36 (46.8%) | 13 (16.9%) | 22 (28.6%) | 1 (1.3%) |
General fatigue | 31 (40.3%) | 3 (3.9%) | 25 (32.5%) | 3 (3.9%) |
Hypertension | 30 (39.0%) | 2 (2.6%) | 20 (26.0%) | 8 (10.4%) |
Diarrhea | 18 (23.4%) | 14 (18.2%) | 4 (5.2%) | 0 |
Proteinuria | 15 (19.5%) | 3 (3.9%) | 8 (10.4%) | 4 (5.2%) |
Hypothyroidism | 10 (13.0%) | 0 | 10 (13.0%) | 0 |
Hemorrhage | 9 (11.7%) | 1 (1.3%) | 4 (5.2%) | 4 (5.2%) |
Liver dysfunction | 8 (10.4%) | 2 (2.6%) | 3 (3.9%) | 3 (3.9%) |
Variable | Univariate Analysis | Mutivariate Analysis | ||
---|---|---|---|---|
HR (95%CI) | p Value | HR (95%CI) | p Value | |
Age (year) | 0.992 (0.973–1.026) | 0.952 | ||
Sex (male vs. female) | 1.007 (0.452–2.245) | 0.986 | ||
Presence of pre-treatment (yes vs. no) | 2.480 (1.046–5.879) | 0.039 | 2.995 (1.040–8.620) | 0.042 |
AFP (103 × ng/mL) | 1.002 (1.001–1.002) | <0.001 | 1.002 (1.001–1.002) | 0.002 |
PIVKA-II (103 × mAU/mL) | 1.006 (1.004–1.008) | <0.001 | 1.004 (1.002–1.006) | <0.001 |
ALBI score | 3.564 (2.503–5.076) | <0.001 | 3.609 (2.342–5.562) | <0.001 |
SMI (cm2/m2) | 0.904 (0.872–0.937) | <0.001 | 0.941 (0.906–0.977) | 0.001 |
SATI (cm2/m2) | 0.988 (0.976–1.001) | 0.074 | 1.004 (0.990–1.017) | 0.595 |
VATI (cm2/m2) | 0.973 (0.959–0.988) | <0.001 | 0.990 (0.973–1.007) | 0.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imai, K.; Takai, K.; Unome, S.; Miwa, T.; Hanai, T.; Suetsugu, A.; Shimizu, M. Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates. Cancers 2023, 15, 4223. https://doi.org/10.3390/cancers15174223
Imai K, Takai K, Unome S, Miwa T, Hanai T, Suetsugu A, Shimizu M. Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates. Cancers. 2023; 15(17):4223. https://doi.org/10.3390/cancers15174223
Chicago/Turabian StyleImai, Kenji, Koji Takai, Shinji Unome, Takao Miwa, Tatsunori Hanai, Atsushi Suetsugu, and Masahito Shimizu. 2023. "Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates" Cancers 15, no. 17: 4223. https://doi.org/10.3390/cancers15174223
APA StyleImai, K., Takai, K., Unome, S., Miwa, T., Hanai, T., Suetsugu, A., & Shimizu, M. (2023). Lenvatinib or Sorafenib Treatment Causing a Decrease in Skeletal Muscle Mass, an Independent Prognostic Factor in Hepatocellular Carcinoma: A Survival Analysis Using Time-Varying Covariates. Cancers, 15(17), 4223. https://doi.org/10.3390/cancers15174223