Optimized Conformal Total Body Irradiation with VMAT Using a Linear-Accelerator-Based Radiosurgery Treatment System in Comparison to the Golden Standard Helical TomoTherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Treatment Planning
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Gyurkocza, B.; Sandmaier, B.M. Conditioning Regimens for Hematopoietic Cell Transplantation: One Size Does Not Fit All. Blood 2014, 124, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.C.; Filippi, A.R.; Dabaja, B.S.; Yahalom, J.; Specht, L. Total Body Irradiation: Guidelines from the International Lymphoma Radiation Oncology Group (ILROG). Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Hoeben, B.A.W.; Pazos, M.; Albert, M.H.; Seravalli, E.; Bosman, M.E.; Losert, C.; Boterberg, T.; Manapov, F.; Ospovat, I.; Milla, S.M.; et al. Towards Homogenization of Total Body Irradiation Practices in Pediatric Patients across SIOPE Affiliated Centers. A Survey by the SIOPE Radiation Oncology Working Group. Radiother. Oncol. 2021, 155, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Clift, R.A.; Buckner, C.D.; Appelbaum, F.R.; Bryant, E.; Bearman, S.I.; Petersen, F.B.; Fisher, L.D.; Anasetti, C.; Beatty, P.; Bensinger, W.I. Allogeneic Marrow Transplantation in Patients with Chronic Myeloid Leukemia in the Chronic Phase: A Randomized Trial of Two Irradiation Regimens. Blood 1991, 77, 1660–1665. [Google Scholar] [CrossRef]
- Vogel, J.; Hui, S.; Hua, C.-H.; Dusenbery, K.; Rassiah, P.; Kalapurakal, J.; Constine, L.; Esiashvili, N. Pulmonary Toxicity after Total Body Irradiation—Critical Review of the Literature and Recommendations for Toxicity Reporting. Front. Oncol. 2021, 11, 708906. [Google Scholar] [CrossRef] [PubMed]
- Litoborska, J.; Piotrowski, T.; Jodda, A.; Malicki, J. Evolution of treatment planning and dose delivery methods during radiotherapy for patients undergoing bone marrow transplantation: A review. Nukleonika 2020, 65, 19–30. [Google Scholar] [CrossRef]
- Quast, U. Physical Treatment Planning of Total-Body Irradiation: Patient Translation and Beam-Zone Method. Med. Phys. 1985, 12, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.K.; Das, R.K.; Thomadsen, B.; Henderson, D. CT-Based Analysis of Dose Homogeneity in Total Body Irradiation Using Lateral Beam. J. Appl. Clin. Med. Phys. 2004, 5, 71–79. [Google Scholar] [CrossRef]
- Anderson, J.E.; Appelbaum, F.R.; Schoch, G.; Barnett, T.; Chauncey, T.R.; Flowers, M.E.; Storb, R. Relapse after Allogeneic Bone Marrow Transplantation for Refractory Anemia Is Increased by Shielding Lungs and Liver during Total Body Irradiation. Biol. Blood Marrow Transplant. 2001, 7, 163–170. [Google Scholar] [CrossRef]
- Mackie, T.R.; Holmes, T.; Swerdloff, S.; Reckwerdt, P.; Deasy, J.O.; Yang, J.; Paliwal, B.; Kinsella, T. Tomotherapy: A New Concept for the Delivery of Dynamic Conformal Radiotherapy. Med. Phys. 1993, 20, 1709–1719. [Google Scholar] [CrossRef]
- Hui, S.K.; Kapatoes, J.; Fowler, J.; Henderson, D.; Olivera, G.; Manon, R.R.; Gerbi, B.; Mackie, T.R.; Welsh, J.S. Feasibility Study of Helical Tomotherapy for Total Body or Total Marrow Irradiation. Med. Phys. 2005, 32, 3214–3224. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.C.; Liu, A.; Schultheiss, T.; Popplewell, L.; Stein, A.; Rosenthal, J.; Essensten, M.; Forman, S.; Somlo, G. Targeted Total Marrow Irradiation Using Three-Dimensional Image-Guided Tomographic Intensity-Modulated Radiation Therapy: An Alternative to Standard Total Body Irradiation. Biol. Blood Marrow Transplant. 2006, 12, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Köksal, M.; Baumert, J.; Jazmati, D.; Schoroth, F.; Garbe, S.; Scafa, D.; Sarria, G.; Leitzen, C.; Massoth, G.; Delis, A.; et al. Whole Body Irradiation with Intensity-modulated Helical Tomotherapy Prior to Haematopoietic Stem Cell Transplantation: Analysis of Organs at Risk by Dose and Its Effect on Blood Kinetics. J. Cancer Res. Clin. Oncol. 2023, 149, 7007–7015. [Google Scholar] [CrossRef] [PubMed]
- Peñagarícano, J.A.; Chao, M.; Van Rhee, F.; Moros, E.G.; Corry, P.M.; Ratanatharathorn, V. Clinical Feasibility of TBI with Helical Tomotherapy. Bone Marrow Transplant. 2011, 46, 929–935. [Google Scholar] [CrossRef]
- Schultheiss, T.E.; Wong, J.; Liu, A.; Olivera, G.; Somlo, G. Image-Guided Total Marrow and Total Lymphatic Irradiation Using Helical Tomotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1259–1267. [Google Scholar] [CrossRef] [PubMed]
- Köksal, M.; Baumert, J.; Schoroth, F.; Scafa, D.; Koch, D.; Leitzen, C.; Sarria, G.R.; Giordano, F.A.; Chatzikonstantinou, G.; Schmeel, L.C. Lung Sparing and Ribcage Coverage in Total Body Irradiation Delivered by Helical Tomotherapy. Eur. J. Med. Res. 2022, 27, 287. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm-Buchstab, T.; Leitzen, C.; Schmeel, L.C.; Simon, B.; Koch, D.; Schmeel, F.C.; Schoroth, F.; Garbe, S.; Röhner, F.; Wolf, D.; et al. Total body irradiation: Significant dose sparing of lung tissue achievable by helical tomotherapy. Z. Med. Phys. 2020, 30, 17–23. [Google Scholar] [CrossRef]
- Aydogan, B.; Mundt, A.J.; Roeske, J.C. Linac-Based Intensity Modulated Total Marrow Irradiation (IM-TMI). Technol. Cancer Res. Treat. 2006, 5, 513–519. [Google Scholar] [CrossRef]
- Fogliata, A.; Cozzi, L.; Clivio, A.; Ibatici, A.; Mancosu, P.; Navarria, P.; Nicolini, G.; Santoro, A.; Vanetti, E.; Scorsetti, M. Preclinical Assessment of Volumetric Modulated Arc Therapy for Total Marrow Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 628–636. [Google Scholar] [CrossRef]
- Köksal, M.; Baumert, J.; Schoroth, F.; Müdder, T.; Scafa, D.; Koch, D.; Leitzen, C.; Sarria, G.R.; Schmeel, L.C.; Giordano, F.A. Helical versus Static Approaches to Delivering Tomotherapy to the Junctional Target for Patients Taller than 135 Cm Undergoing Total Body Irradiation. Eur. J. Med. Res. 2022, 27, 265. [Google Scholar] [CrossRef]
- Hoeben, B.A.W.; Pazos, M.; Seravalli, E.; Bosman, M.E.; Losert, C.; Albert, M.H.; Boterberg, T.; Ospovat, I.; Mico Milla, S.; Demiroz Abakay, C.; et al. ESTRO ACROP and SIOPE Recommendations for Myeloablative Total Body Irradiation in Children. Radiother. Oncol. 2022, 173, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Della Volpe, A.; Ferreri, A.J.M.; Annaloro, C.; Mangili, P.; Rosso, A.; Calandrino, R.; Villa, E.; Lambertenghi-Deliliers, G.; Fiorino, C. Lethal Pulmonary Complications Significantly Correlate with Individually Assessed Mean Lung Dose in Patients with Hematologic Malignancies Treated with Total Body Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 483–488. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, J.A.; Wheldon, T.E.; Gregor, A. The Implications of In-Vitro Radiation-Survival Curves for the Optimal Scheduling of Total-Body Irradiation with Bone Marrow Rescue in the Treatment of Leukaemia. Br. J. Radiol. 1987, 60, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Hodapp, N. The ICRU Report 83: Prescribing, recording and reporting photon-beam intensity-modulated radiation therapy (IMRT). Strahlenther. Onkol. 2012, 188, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Kobyzeva, D.; Shelikhova, L.; Loginova, A.; Kanestri, F.; Tovmasyan, D.; Maschan, M.; Khismatullina, R.; Ilushina, M.; Baidildina, D.; Myakova, N.; et al. Optimized Conformal Total Body Irradiation Among Recipients of TCRαβ/CD19-Depleted Grafts in Pediatric Patients with Hematologic Malignancies: Single-Center Experience. Front. Oncol. 2021, 11, 785916. [Google Scholar] [CrossRef] [PubMed]
- Nalichowski, A.; Eagle, D.G.; Burmeister, J. Dosimetric Evaluation of Total Marrow Irradiation Using 2 Different Planning Systems. Med. Dosim. 2016, 41, 230–235. [Google Scholar] [CrossRef]
- Losert, C.; Shpani, R.; Kießling, R.; Freislederer, P.; Li, M.; Walter, F.; Niyazi, M.; Reiner, M.; Belka, C.; Corradini, S. Novel Rotatable Tabletop for Total-Body Irradiation Using a Linac-Based VMAT Technique. Radiat. Oncol. 2019, 14, 244. [Google Scholar] [CrossRef]
- Ouyang, L.; Folkerts, M.; Zhang, Y.; Hrycushko, B.; Lamphier, R.; Lee, P.; Chambers, E.; Ramirez, E.; Reynolds, R.; Yan, Y.; et al. Volumetric Modulated Arc Therapy Based Total Body Irradiation: Workflow and Clinical Experience with an Indexed Rotational Immobilization System. Phys. Imaging Radiat. Oncol. 2017, 4, 22–25. [Google Scholar] [CrossRef]
- Tas, B.; Durmus, I.F.; Okumus, A.; Uzel, O.E. Dosimetric Evaluation of Total Body Irradiation (TBI) Treatment by Volumetric Modulated Arc Therapy (VMAT) on the Coach. J. Biochem. Biophys. 2017, 1, 103. [Google Scholar] [CrossRef]
- Springer, A.; Hammer, J.; Winkler, E.; Track, C.; Huppert, R.; Böhm, A.; Kasparu, H.; Weltermann, A.; Aschauer, G.; Petzer, A.L.; et al. Total Body Irradiation with Volumetric Modulated Arc Therapy: Dosimetric Data and First Clinical Experience. Radiat. Oncol. 2016, 11, 46. [Google Scholar] [CrossRef]
- Molloy, J.A. Statistical Analysis of Dose Heterogeneity in Circulating Blood: Implications for Sequential Methods of Total Body Irradiation. Med. Phys. 2010, 37, 5568–5578. [Google Scholar] [CrossRef] [PubMed]
- Fog, L.S.; Wirth, A.; MacManus, M.; Downes, S.; Grace, M.; Moggré, A.; Mugabe, K.; Neveri, G.; Nourbehesht, L.; Panettieri, V.; et al. Total Body Irradiation in Australia and New Zealand: Results of a Practice Survey. Phys. Eng. Sci. Med. 2020, 43, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Giebel, S.; Miszczyk, L.; Slosarek, K.; Moukhtari, L.; Ciceri, F.; Esteve, J.; Gorin, N.-C.; Labopin, M.; Nagler, A.; Schmid, C.; et al. Extreme Heterogeneity of Myeloablative Total Body Irradiation Techniques in Clinical Practice: A Survey of the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation: TBI Techniques in Current Clinical Practice. Cancer 2014, 120, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, N.; Soejima, T.; Kawaguchi, H.; Akiba, T.; Hasegawa, M.; Isobe, K.; Ito, H.; Imai, M.; Ejima, Y.; Hata, M.; et al. National Survey of Myeloablative Total Body Irradiation Prior to Hematopoietic Stem Cell Transplantation in Japan: Survey of the Japanese Radiation Oncology Study Group (JROSG). J. Radiat. Res. 2018, 59, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Koken, P.W.; Murrer, L.H.P. Total Body Irradiation and Total Skin Irradiation Techniques in Belgium and the Netherlands: Current Clinical Practice. Adv. Radiat. Oncol. 2021, 6, 100664. [Google Scholar] [CrossRef] [PubMed]
- Studinski, R.C.N.; Fraser, D.J.; Samant, R.S.; MacPherson, M.S. Current Practice in Total-Body Irradiation: Results of a Canada-Wide Survey. Curr. Oncol. 2017, 24, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Rassiah, P.; Esiashvili, N.; Olch, A.J.; Hua, C.-H.; Ulin, K.; Molineu, A.; Marcus, K.; Gopalakrishnan, M.; Pillai, S.; Kovalchuk, N.; et al. Practice Patterns of Pediatric Total Body Irradiation Techniques: A Children’s Oncology Group Survey. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Kerbauy, M.N.; Arcuri, L.J.; Favareto, S.L.; de Rezende, A.C.P.; Hamerschlak, N. Total Marrow Irradiation in Hematopoietic Stem Cell Transplantation for Hematologic Malignancies. Front. Med. 2023, 10, 1155954. [Google Scholar] [CrossRef]
- Wong, J.Y.C.; Filippi, A.R.; Scorsetti, M.; Hui, S.; Muren, L.P.; Mancosu, P. Total Marrow and Total Lymphoid Irradiation in Bone Marrow Transplantation for Acute Leukaemia. Lancet Oncol. 2020, 21, e477–e487. [Google Scholar] [CrossRef]
Optimal | Acceptable | |
---|---|---|
D98% | >90% | >87.5% |
D95% | =100% | =95.0% |
D50% | <104% | <D106% |
D2% | <115% | <D120% |
8 Gy | 12 Gy | |||||
---|---|---|---|---|---|---|
VMAT [Gy] | HT [Gy] | p | VMAT [Gy] | HT [Gy] | p | |
D95% | 7.61 ± 0.33 | 7.90 ± 0.26 | 0.63 | 11.82 ± 0.23 | 11.96 ± 0.06 | 0.66 |
D98% | 6.96 ± 0.52 | 7.54 ± 0.38 | 0.47 | 11.05 ± 0.26 | 11.22 ± 0.35 | 0.77 |
D50% | 8.34 ± 0.10 | 8.29 ± 0.04 | 0.90 | 12.64 ± 0.14 | 12.48 ± 0.08 | 0.37 |
D2% | 8.92 ± 0.25 | 8.66 ± 0.11 | 0.43 | 13.43 ± 0.24 | 13.03 ± 0.10 | 0.072 |
HI | 0.23 ± 0.08 | 0.14 ± 0.05 | 0.20 ± 0.03 | 0.14 ± 0.03 |
8 Gy | 12 Gy | |||||
---|---|---|---|---|---|---|
VMAT [Gy] | HT [Gy] | p | VMAT [Gy] | HT [Gy] | p | |
Lung left | 6.58 ± 0.37 | 6.44 ± 0.63 | 0.91 | 8.47 ± 0.55 | 7.99 ± 0.51 | 0.66 |
Lung right | 6.52 ± 0.40 | 6.42 ± 0.70 | 0.91 | 8.59 ± 0.41 | 7.99 ± 0.54 | 0.43 |
Kidney left | 6.51 ± 0.40 | 6.35 ± 0.40 | 0.91 | 8.85 ± 0.67 | 8.35 ± 0.95 | 0.82 |
Kidney right | 6.53 ± 0.37 | 6.31 ± 0.42 | 0.90 | 8.27 ± 0.45 | 8.27 ± 1.05 | 1.0 |
Lens left | 3.02 ± 0.56 | 2.40 ± 0.41 | 0.47 | 4.14 ± 0.62 | 2.59 ± 0.36 | 0.01 |
Lens right | 3.00 ± 0.56 | 2.13 ± 0.30 | 0.29 | 4.01 ± 0.70 | 2.58 ± 0.27 | 0.02 |
VMAT | HT | |||
---|---|---|---|---|
Morning Fraction [min] | Evening Fraction [min] | Morning Fraction [min] | Evening Fraction [min] | |
Beam-on time | 51.00 | 49.78 | 30.88 | 30.88 |
Image guidance | 64.80 | 84.83 | 43.87 | 48.40 |
Couch adjustment | 20.85 | 28.27 | 0 | 0 |
Patient rotation | 10.15 | 20.50 | 3.02 | 3.70 |
Total treatment time | 146.8 | 183.38 | 77.76 | 82.98 |
Beam-on Time | VMAT [min] | HT [min] |
---|---|---|
8 Gy-group | 24.3 ± 6.4 | 16.7 ± 1.7 |
12 Gy-group | 27.4 ± 6.2 | 16.7 ± 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köksal, M.; Özkan, O.; Holderried, T.; Heine, A.; Brossart, P.; Gawish, A.; Scafa, D.; Sarria, G.R.; Leitzen, C.; Schmeel, L.C.; et al. Optimized Conformal Total Body Irradiation with VMAT Using a Linear-Accelerator-Based Radiosurgery Treatment System in Comparison to the Golden Standard Helical TomoTherapy. Cancers 2023, 15, 4220. https://doi.org/10.3390/cancers15174220
Köksal M, Özkan O, Holderried T, Heine A, Brossart P, Gawish A, Scafa D, Sarria GR, Leitzen C, Schmeel LC, et al. Optimized Conformal Total Body Irradiation with VMAT Using a Linear-Accelerator-Based Radiosurgery Treatment System in Comparison to the Golden Standard Helical TomoTherapy. Cancers. 2023; 15(17):4220. https://doi.org/10.3390/cancers15174220
Chicago/Turabian StyleKöksal, Mümtaz, Oğuzhan Özkan, Tobias Holderried, Annkristin Heine, Peter Brossart, Ahmed Gawish, Davide Scafa, Gustavo R. Sarria, Christina Leitzen, Leonard C. Schmeel, and et al. 2023. "Optimized Conformal Total Body Irradiation with VMAT Using a Linear-Accelerator-Based Radiosurgery Treatment System in Comparison to the Golden Standard Helical TomoTherapy" Cancers 15, no. 17: 4220. https://doi.org/10.3390/cancers15174220
APA StyleKöksal, M., Özkan, O., Holderried, T., Heine, A., Brossart, P., Gawish, A., Scafa, D., Sarria, G. R., Leitzen, C., Schmeel, L. C., & Müdder, T. (2023). Optimized Conformal Total Body Irradiation with VMAT Using a Linear-Accelerator-Based Radiosurgery Treatment System in Comparison to the Golden Standard Helical TomoTherapy. Cancers, 15(17), 4220. https://doi.org/10.3390/cancers15174220