Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melo, J.V.; Barnes, D.J. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat. Rev. Cancer 2007, 7, 441–453. [Google Scholar] [CrossRef]
- Hehlmann, R.; Lauseker, M.; Saußele, S.; Pfirrmann, M.; Krause, S.; Kolb, H.J.; Neubauer, A.; Hossfeld, D.K.; Nerl, C.; Gratwohl, A.; et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia 2017, 31, 2398. [Google Scholar] [CrossRef]
- Chereda, B.; Melo, J.V. Natural course and biology of CML. Ann. Hematol. 2015, 94, 107–121. [Google Scholar] [CrossRef]
- Rossi, A.R.; Breccia, M.; Abruzzese, E.; Castagnetti, F.; Luciano, L.; Gozzini, A.; Annunziata, M.; Martino, B.; Stagno, F.; Cavazzini, F.; et al. Outcome of 82 chronic myeloid leukemia patients treated with nilotinib or dasatinib after failure of two prior tyrosine kinase inhibitors. Haematologica 2013, 98, 399. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, S.; Bonifacio, M.; Iurlo, A.; Zanaglio, C.; Tiribelli, M.; Binotto, G.; Abruzzese, E.; Russo, D. “Variant-specific discrepancy when quantitating BCR-ABL1 e13a2 and e14a2 transcripts using the Europe against Cancer qPCR assay”. Is dPCR the key? Eur. J. Haematol. 2019, 103, 272–273. [Google Scholar] [CrossRef] [Green Version]
- Soverini, S.; Bernardi, S.; Galimberti, S. Molecular Testing in CML between Old and New Methods: Are We at a Turning Point? J. Clin. Med. 2020, 9, 3865. [Google Scholar] [CrossRef]
- Bernardi, S.; Malagola, M.; Zanaglio, C.; Polverelli, N.; Dereli Eke, E.; D’Adda, M.; Farina, M.; Bucelli, C.; Scaffidi, L.; Toffoletti, E.; et al. Digital PCR improves the quantitation of DMR and the selection of CML candidates to TKIs discontinuation. Cancer Med. 2019, 8, 2041–2055. [Google Scholar] [CrossRef]
- Zanaglio, C.; Bernardi, S.; Gandolfi, L.; Farina, M.; Re, F.; Polverelli, N.; Zollner, T.; Turra, A.; Morello, E.; Malagola, M.; et al. RT-qPCR versus Digital PCR: How Do They Impact Differently on Clinical Management of Chronic Myeloid Leukemia Patients? Case Rep. Oncol. 2020, 13, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Baccarani, M.; Abruzzese, E.; Accurso, V.; Albano, F.; Annunziata, M.; Barulli, S.; Beltrami, G.; Bergamaschi, M.; Binotto, G.; Bocchia, M.; et al. Managing chronic myeloid leukemia for treatment-free remission: A proposal from the GIMEMA CML WP. Blood Adv. 2019, 3, 4280–4290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, S.; Vagge, E.; Le Coutre, P.; Abruzzese, E.; Martino, B.; Pungolino, E.; Elena, C.; Pierri, I.; Assouline, S.; D’Emilio, A.; et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: The ISAV study. Am. J. Hematol. 2015, 90, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Colafigli, G.; Scalzulli, E.; Porrazzo, M.; Diverio, D.; Loglisci, M.G.; Latagliata, R.; Guarini, A.; Foà, R.; Breccia, M. Digital droplet PCR at the time of TKI discontinuation in chronic-phase chronic myeloid leukemia patients is predictive of treatment-free remission outcome. Hematol. Oncol. 2019, 37, 652–654. [Google Scholar] [CrossRef]
- Bocchia, M.; Sicuranza, A.; Abruzzese, E.; Iurlo, A.; Sirianni, S.; Gozzini, A.; Galimberti, S.; Aprile, L.; Martino, B.; Pregno, P.; et al. Residual Peripheral Blood CD26+ Leukemic Stem Cells in Chronic Myeloid Leukemia Patients during TKI Therapy and during Treatment-Free Remission. Front. Oncol. 2018, 8, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raspadori, D.; Pacelli, P.; Sicuranza, A.; Abruzzese, E.; Iurlo, A.; Cattaneo, D.; Gozzini, A.; Galimberti, S.; Baratè, C.; Pregno, P.; et al. Flow Cytometry Assessment of CD26+ Leukemic Stem Cells in Peripheral Blood: A Simple and Rapid New Diagnostic Tool for Chronic Myeloid Leukemia. Cytom. B. Clin. Cytom. 2019, 96, 294. [Google Scholar] [CrossRef] [Green Version]
- Cross, N.C.P.; White, H.E.; Colomer, D.; Ehrencrona, H.; Foroni, L.; Gottardi, E.; Lange, T.; Lion, T.; Machova Polakova, K.; Dulucq, S.; et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 2015, 29, 999–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardi, S.; Ruggieri, G.; Malagola, M.; Cancelli, V.; Cattina, F.; Polverelli, N.; Zanaglio, C.; Perucca, S.; Re, F.; Montanelli, A.; et al. Digital PCR (Dpcr) a Step Forward to Detection and Quantification of Minimal Residual Disease (MRD) in Ph+/BCR-ABL1 Chronic Myeloid Leukemia (CML). J. Mol. Biomark. Diagn. 2017, 8, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Fava, C.; Bernardi, S.; Gottardi, E.M.; Lorenzatti, R.; Galeotti, L.; Ceccherini, F.; Cordoni, F.; Daraio, F.; Giugliano, E.; Jovanovski, A.; et al. Alignment of Qx100/Qx200 Droplet Digital (Bio-Rad) and QuantStudio 3D (Thermofisher) Digital PCR for Quantification of BCR-ABL1 in Ph+ Chronic Myeloid Leukemia. Diseases 2021, 9, 35. [Google Scholar] [CrossRef]
- Soverini, S.; De Benedittis, C.; Mancini, M.; Martinelli, G. Best Practices in Chronic Myeloid Leukemia Monitoring and Management. Oncologist 2016, 21, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chomel, J.C.; Bonnet, M.L.; Sorel, N.; Bertrand, A.; Meunier, M.C.; Fichelson, S.; Melkus, M.; Bennaceur-Griscelli, A.; Guilhot, F.; Turhan, A.G. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood 2011, 118, 3657. [Google Scholar] [CrossRef]
- Valent, P.; Bonnet, D.; De Maria, R.; Lapidot, T.; Copland, M.; Melo, J.V.; Chomienne, C.; Ishikawa, F.; Schuringa, J.J.; Stassi, G.; et al. Cancer stem cell definitions and terminology: The devil is in the details. Nat. Rev. Cancer 2012, 12, 767–775. [Google Scholar] [CrossRef]
- Foley, S.B.; Hildenbrand, Z.L.; Soyombo, A.A.; Magee, J.A.; Wu, Y.; Oravecz-Wilson, K.I.; Ross, T.S. Expression of BCR/ABL p210 from a Knockin Allele Enhances Bone Marrow Engraftment without Inducing Neoplasia. Cell Rep. 2013, 5, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Warfvinge, R.; Geironson, L.; Sommarin, M.N.E.; Lang, S.; Karlsson, C.; Roschupkina, T.; Stenke, L.; Stentoft, J.; Olsson-Stromberg, U.; Hjorth-Hansen, H.; et al. Single-cell molecular analysis defines therapy response and immunophenotype of stem cell subpopulations in CML. Blood 2017, 129, 2384. [Google Scholar] [CrossRef]
- Valent, P.; Bonnet, D.; Wöhrer, S.; Andreeff, M.; Copland, M.; Chomienne, C.; Eaves, C. Heterogeneity of neoplastic stem cells: Theoretical, functional, and clinical implications. Cancer Res. 2013, 73, 1037–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sicuranza, A.; Raspadori, D.; Bocchia, M. CD26/DPP-4 in Chronic Myeloid Leukemia. Cancers 2022, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- Inzoli, E.; Aroldi, A.; Piazza, R.; Gambacorti-Passerini, C. Tyrosine Kinase Inhibitor discontinuation in Chronic Myeloid Leukemia: Eligibility criteria and predictors of success. Am. J. Hematol. 2022, 97, 1075. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Dass, J.; Vishwanathan, G.; Dhawan, R.; Agarwal, M.; Kumar, P.; Seth, T.; Tyagi, S.; Mahapatra, M. P693: Diagnostic role of CD26+ leukemic stem cells in chronic myeloid leukemia. HemaSphere 2022, 6, 588–589. [Google Scholar] [CrossRef]
- Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef]
- Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: An evolving concept. Nat. Rev. Cancer 2012, 12, 133–143. [Google Scholar] [CrossRef]
Treatment | TFR | RT-qPCR IS% | dPCR Copies/μL | CD26+ LSC/μL |
---|---|---|---|---|
Nilotinib | NO | 0 (U) | 0.497 | 0 |
Interferon | TFR > 10y | 0 (U) | 0.0764 | 0 |
Nilotinib | NO | 0.00098 | 0.943 | 0.0102 |
Dasatinib | NO | 0 (U) | 0.384 | 0.0054 |
Bosutinib | NO | 0.00047 | 0.164 | 0.0307 |
Imatinib | TFR > 5y | 0 (U) | 0.156 | 0.0413 |
Nilotinb | NO | 0 (U) | 0.088 | 0.0088 |
Imatinib | NO | 0.0068 | 0.0757 | 0.1194 |
Imatinib | TFR > 5y | 0 (U) | 0.0823 | 0 |
Imatinib | NO | 0.0013 | 0.078 | 0 |
Imatinib | TFR > 5y | 0 (U) | 0.162 | 0.0385 |
Nilotinb | NO | 0.0044 | 0.251 | 0.026 |
Nilotinb | TFR > 2y | 0.0019 | 0.477 | 0.0459 |
Dasatinib | NO | 0 (U) | 0.0842 | 0.0845 |
Nilotinb | NO | 0 (U) | 0.833 | 0.052 |
Dasatinib | NO | 0 (U) | 0.220 | 0.0694 |
Dasatinib | TFR > 3y | 0 (U) | 0.078 | 0.0505 |
Imatinib | TFR > 3y | 0.0033 | 0.0731 | 0.0412 |
Dasatinib | NO | 0.00055 | 0.146 | 0 |
Imatinib | TFR > 2y | 0 (U) | 0.166 | 0.0506 |
Imatinib | TFR > 5y | 0.029 | 0.402 | 0.0271 |
Dasatinib | NO | 0 (U) | 0.258 | 0.0215 |
Imatinib | NO | 0 (U) | 0.0852 | 0.0544 |
Imatinib | TFR > 5y | 0 (U) | 0.164 | 0.1565 |
Nilotinib | TFR > 2y | 0 (U) | 0.423 | 0.0513 |
Imatinib | NO | 0.00066 | 0.0742 | 0.0684 |
Imatinib | TFR > 5y | 0 (U) | 0.158 | 0 |
A | B | C | ||
---|---|---|---|---|
RT-qPCR IS% | dPCR Copies/μL | CD26+ LSC/μL | ||
0 | 0.0731 | 0 | ||
0 | 0.0757 | 0 | ||
0 | 0.0764 | 0 | ||
0 | 0.078 | 0 | ||
0 | 0.078 | 0 | ||
0 | 0.0823 | 0.0054 | ||
0 | 0.0842 | 0.0088 | ||
0 | 0.0852 | 0.0102 | ||
0 | 0.088 | 0.0215 | ||
0 | 0.146 | 0.026 | ||
0 | 0.156 | 0.0271 | ||
0 | 0.158 | 0.0307 | ||
0 | 0.162 | 0.0385 | ||
0 | 0,164 | 0.0412 | ||
0 | 0.164 | 0.0413 | ||
0 | 0.166 | 0.0459 | ||
0.00047 | 0.220 | 0.0505 | ||
0.00055 | 0.251 | 0.0506 | ||
0.00066 | 0.258 | 0.0513 | ||
0.00098 | 0.384 | 0.052 | ||
0.0013 | 0.402 | 0.0544 | ||
0.0019 | 0.423 | 0.0684 | ||
0.0033 | 0.477 | 0.0694 | ||
0.0044 | 0.497 | 0.0845 | ||
0.0068 | 0.833 | 0.1194 | ||
0.029 | 0.943 | 0.1565 |
A | ||||
Treatment | TFR | RT-qPCR IS% | dPCR Copies/μL | CD26+ LSC/μL |
Interferon | TFR > 10y | 0 (U) | 0.0764 | 0 |
Bosutinib | NO | 0.00047 | 0.164 | 0.0307 |
Imatinib | TFR > 5y | 0 (U) | 0.0823 | 0 |
B | ||||
Treatment | TFR | RT-qPCR IS% | dPCR Copies/μL | CD26+ LSC/μL |
Nilotinib | NO | 0 (U) | 0.088 | 0.0088 |
Dasatinib | NO | 0 (U) | 0.0842 | 0.0845 |
Dasatinib | TFR > 3y | 0 (U) | 0.078 | 0.0505 |
Dasatinib | NO | 0.00055 | 0.146 | 0 |
Imatinib | NO | 0 (U) | 0.0852 | 0.0544 |
C | ||||
Treatment | TFR | RT-qPCR IS% | dPCR Copies/μL | CD26+ LSC/μL |
Imatinib | NO | 0.0013 | 0.078 | 0 |
Imatinib | TFR > 5y | 0 (U) | 0.162 | 0.0385 |
Imatinib | TFR > 3y | 0.0033 | 0.0731 | 0.0412 |
D | ||||
Treatment | TFR | RT-qPCR IS% | dPCR Copies/μL | CD26+ LSC/μL |
Nilotinib | NO | 0 (U) | 0.497 | 0 |
Nilotinib | NO | 0.00098 | 0.943 | 0.0102 |
Nilotinib | TFR > 2y | 0.0019 | 0.477 | 0.0459 |
Imatinib | TFR > 5y | 0 (U) | 0.158 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abruzzese, E.; Bocchia, M.; Trawinska, M.M.; Raspadori, D.; Bondanini, F.; Sicuranza, A.; Pacelli, P.; Re, F.; Cavalleri, A.; Farina, M.; et al. Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR). Cancers 2023, 15, 4112. https://doi.org/10.3390/cancers15164112
Abruzzese E, Bocchia M, Trawinska MM, Raspadori D, Bondanini F, Sicuranza A, Pacelli P, Re F, Cavalleri A, Farina M, et al. Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR). Cancers. 2023; 15(16):4112. https://doi.org/10.3390/cancers15164112
Chicago/Turabian StyleAbruzzese, Elisabetta, Monica Bocchia, Malgorzata Monika Trawinska, Donatella Raspadori, Francesco Bondanini, Anna Sicuranza, Paola Pacelli, Federica Re, Alessia Cavalleri, Mirko Farina, and et al. 2023. "Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR)" Cancers 15, no. 16: 4112. https://doi.org/10.3390/cancers15164112
APA StyleAbruzzese, E., Bocchia, M., Trawinska, M. M., Raspadori, D., Bondanini, F., Sicuranza, A., Pacelli, P., Re, F., Cavalleri, A., Farina, M., Malagola, M., Russo, D., De Fabritiis, P., & Bernardi, S. (2023). Minimal Residual Disease Detection at RNA and Leukemic Stem Cell (LSC) Levels: Comparison of RT-qPCR, d-PCR and CD26+ Stem Cell Measurements in Chronic Myeloid Leukemia (CML) Patients in Deep Molecular Response (DMR). Cancers, 15(16), 4112. https://doi.org/10.3390/cancers15164112