Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia in the Era of All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Transplantation in Newly Diagnosed APL
3. Relapsed APL
3.1. Pre-Transplant Salvage Therapy
3.2. Type of Transplant
3.3. Stem Cell Source in Auto-HSCT: Stem Cell Harvesting
3.4. Donor Type
3.5. Conditioning Treatment
3.6. The Influence of MRD Status
3.7. Prognostic Factors
3.8. Consolidation Therapies as Alternative Possibilities to HSCT
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yamamoto, J.F.; Goodman, M.T. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997–2002. Cancer Causes Control 2008, 19, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.; Kantarjian, H.; Ravandi, F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Sant, M.; Allemani, C.; Tereanu, C.; DeAngelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadie, M.; Simonetti, A.; Lutz, J.M.; et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, X. Acute promyelocytic leukemia: A history over 60 years—From the most malignant to the most curable form of acute leukemia. Oncol. Ther. 2019, 7, 33–65. [Google Scholar] [CrossRef] [Green Version]
- Cicconi, L.; Testi, A.M.; Montesinos, P.; Rego, E.; Zhu, H.H.; Takahashi, H.; Dworzak, M.; Estey, E.; Schwarer, A.; Esteve, J.; et al. Characteristics and outcome of acute myeloid leukemia with uncommon retinoic acid receptor-alpha (RARA) fusion variants. Blood Cancer J. 2021, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Lo Coco, F. Acute promyelocytic leukemia: A model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia 2002, 16, 1959–1973. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.; Stewart, D.; Koeffler, H.P. Differentiation therapy of leukemia: 3 decades of development. Blood 2009, 113, 3655–3665. [Google Scholar] [CrossRef] [PubMed]
- Sirulnik, A.; Melnick, A.; Zelent, A.; Licht, J.D. Molecular pathogenesis of acute promyelocytic leukaemia and APL variants. Best Pract. Res. Clin. Haematol. 2003, 16, 387–408. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.G.; Elias, L.; Stanchina, M.; Watts, J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front. Oncol. 2023, 12, 1062524. [Google Scholar] [CrossRef]
- Hashmi, H.; Nishihori, T. Role of hematopoietic cell transplantation in relapsed acute promyelocytic leukemia. Clin. Transplant. 2020, 34, e14009. [Google Scholar] [CrossRef]
- Marçais, A.; Cook, L.; Witkover, A.; Asnafi, A.; Avettand-Fenoel, V.; Delarue, R.; Cheminant, M.; Sibon, D.; Frenzel, L.; de The, H.; et al. Arsenic trioxide (As2O3) as a maintenance therapy for adult T cell leukemia/lymphoma. Retrovirology 2020, 17, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshaiesh, T.O.; Armat, M.; Shanehbandi, D.; Sharifi, S.; Baradaran, B.; Hejazi, M.S.; Samadi, N. Arsenic Trioxide Promotes Paclitaxel Cytotoxicity in Resistant Breast Cancer Cells. Asian Pac. J. Cancer Prev. 2015, 16, 5191–5197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, G.J.; Cho, B.S.; Park, S.S.; Park, S.; Jeon, Y.W.; Yahng, S.A.; Shin, S.H.; Yoon, J.H.; Lee, S.E.; Eom, K.S.; et al. Treatment for relapsed acute promyelocytic leukemia: What is the best post-remission treatment? Blood Res. 2022, 57, 197–206. [Google Scholar] [CrossRef]
- Park, J.H.; Qiao, B.; Panageas, K.S.; Schymura, M.J.; Jurcic, J.G.; Rosenblat, T.L.; Altman, J.K.; Douer, D.; Rowe, M.J.; Tallman, M.S. Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood 2011, 118, 1248–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lengfelder, E.; Lo-Coco, F.; Ades, L.; Montesinos, P.; Grimwade, D.; Kishore, B.; Ramadan, S.M.; Pagoni, M.; Breccia, M.; Huerta, A.J.; et al. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia: Registry results from the European LeukemiaNet. Leukemia 2015, 29, 1084–1091. [Google Scholar] [CrossRef]
- Sanz, M.A.; Fenaux, P.; Tallman, M.S.; Estey, E.H.; Lowenberg, B.; Naoe, T.; Lengfelder, E.; Döhner, H.; Burnett, A.K.; Chen, S.J.; et al. Management of acute promyelocytic leukemia: Updated recommendations from an expert panel of the European LeukemiaNet. Blood 2019, 133, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Platzbecker, U.; Avvisati, G.; Cicconi, L.; Thiede, C.; Paoloni, F.; Vignetti, M.; Ferrara, F.; Divona, M.; Albano, F.; Efficace, F.; et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia: Final results of the randomized Italian-German APL0406 trial. J. Clin. Oncol. 2017, 35, 605–612. [Google Scholar] [CrossRef] [Green Version]
- Cicconi, L.; Platzbecker, U.; Avvisati, G.; Paoloni, F.; Thiede, C.; Vignetti, M.; Fazi, P.; Ferrara, F.; Divona, M.; Albano, F.; et al. Longterm results of all-trans retinoic acid and arsenic trioxide in non-high-risk acute promyelocytic leukemia: Update of the APL0406 Italian-German randomized trial. Leukemia 2020, 34, 914–918. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Sanz, J.; Montesinos, P.; Sanz, M.A. Role of Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia. Front. Oncol. 2021, 11, 614215. [Google Scholar] [CrossRef]
- Mandelli, F.; Labopin, M.; Granena, A.; Iriondo, A.; Prentice, G.; Bacigalupo, A.; Sierra, J.; Meloni, G.; Frassoni, F.; Goldman, J.; et al. European survey of bone marrow transplantation in acute promyelocytic leukemia (M3). Working Party on Acute Leukemia of the European Cooperative Group for Bone Marrow Transplantation (EMBT). Bone Marrow Transplant. 1994, 14, 293–298. [Google Scholar] [PubMed]
- A Sanz, M.; Labopin, M.; Gorin, N.-C.; de la Rubia, J.; Arcese, W.; Meloni, G.; Bacigalupo, A.; Alessandrino, P.; Carreras, E.; Iriondo, A.; et al. Hematopoietic stem cell transplantation for adults with acute promyelocytic leukemia in the ATRA era: A survey of the European Cooperative Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2007, 39, 461–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanada, M.; Takami, A.; Mizuno, S.; Mori, J.; Chou, T.; Usuki, K.; Uchiyama, H.; Amano, I.; Fujii, S.; Miyamoto, T.; et al. Autologous hematopoietic cell transplantation for acute myeloid leukemia in adults: 25 years of experience in Japan. Int. J. Hematol. 2020, 111, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Snowden, J.A.; Sánchez-Ortega, I.; Corbacioglu, S.; Basak, G.W.; Chabannon, C.; de la Camara, R.; Dolstra, H.; Duarte, R.F.; Glass, B.; Greco, R.; et al. Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2022. Bone Marrow Transplant. 2022, 57, 1217–1239. [Google Scholar] [CrossRef]
- NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®), Version 3.2023; National Comprehensive Cancer Network, Inc.: Plymouth Meeting, PA, USA, 2023.
- Chen, Z.; Brand, N.J.; Chen, A.; Chen, S.J.; Tong, J.H.; Wang, Z.Y.; Waxman, S.; Zelent, A. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. EMBO J. 1993, 12, 1161–1167. [Google Scholar] [CrossRef]
- Arnould, C.; Philippe, C.; Bourdon, V.; Gregoire, M.J.; Berger, R.; Jonveaux, P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum. Mol. Genet. 1999, 8, 1741–1749. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Tsuzuki, S.; Tsuzuki, M.; Handa, K.; Inaguma, Y.; Emi, N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17) (p11;q12) variant of acute promyelocytic leukemia. Blood 2010, 116, 4274–4283. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, S.; Zhou, C.; Li, C.; Ru, K.; Rao, Q.; Xing, H.; Tian, Z.; Tang, K.; Mi, Y.; et al. TBLR1 fuses to retinoid acid receptor a in a variant t(3;17) (q26;q21) translocation of acute promyelocytic leukemia. Blood 2014, 124, 936–945. [Google Scholar] [CrossRef] [Green Version]
- Grimwade, D.; Biondi, A.; Mozziconacci, M.J.; Hagemeijer, A.; Berger, R.; Neat, M.; Howe, K.; Dastugue, N.; Jansen, J.; Radford-Weiss, I.; et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): Results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Group Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOMED 1 European Community-Concerted Action “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood 2000, 96, 1297–1308. [Google Scholar]
- Strehl, S.; König, M.; Boztug, H.; Cooper, B.W.; Suzukawa, K.; Zhang, S.J.; Chen, H.Y.; Attarbaschi, A.; Dworzak, M.N. All-trans retinoic acid and arsenic trioxide resistance of acute promyelocytic leukemia with the variant STAT5B-RARA fusion gene. Leukemia 2013, 27, 1606–1610. [Google Scholar] [CrossRef] [Green Version]
- Douer, D.; Zickl, L.; Schiffer, C.A.; Appelbaum, F.R.; Feusner, J.H.; Shepherd, L.E.; Willman, C.L.; Bloomfield, C.D.; Rowe, J.M.; Wiernik, P.H. Late relapses following all-trans retinoic acid for acute promyelocytic leukemia are uncommon, respond well to salvage therapy and occur independently of prognostic factors at diagnosis: Long-term follow-up of North American Intergroup Study I0129. Blood 2011, 118, 83. [Google Scholar] [CrossRef]
- Lo Coco, F.; Diverio, D.; Avvisati, G.; Petti, M.C.; Meloni, G.; Pogliani, E.M.; Biondi, A.; Rossi, G.; Carlo-Stella, C.; Selleri, C.; et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood 1999, 94, 2225–2229. [Google Scholar] [CrossRef]
- Esteve, J.; Escoda, L.; Martin, G.; Rubio, V.; Díaz-Mediavilla, J.; González, M.; Rivas, C.; Alvarez, C.; González San Miguel, J.D.; Brunet, S.; et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): Benefit of an early intervention. Leukemia 2007, 21, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Grimwade, D.; Tallman, M.S.; Lowenberg, B.; Fenaux, P.; Estey, E.H.; Naoe, T.; Lengfelder, E.; Büchner, T.; Döhner, H.; et al. Management of acute promyelocytic leukemia: Recommendations from an expert panel on behalf of the European Leukemia Net. Blood 2009, 113, 1875–1891. [Google Scholar] [CrossRef]
- Gallagher, R.E.; Moser, B.K.; Racevskis, J.; Poiré, X.; Bloomfield, C.D.; Carroll, A.J.; Ketterling, R.P.; Roulston, D.; Schachter-Tokarz, E.; Zhou, D.C.; et al. Treatment-influenced associations of PML-RARαmutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia. Blood 2012, 120, 2098. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J. Mutation associations in RA-defiant APL. Blood 2012, 120, 1969–1970. [Google Scholar] [CrossRef] [PubMed]
- Gurrieri, C.; Nafa, K.; Merghoub, T.; Bernardi, R.; Capodieci, P.; Biondi, A.; Nimer, S.; Douer, D.; Cordon-Cardo, C.; Gallagher, R.; et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood 2004, 103, 2358–2362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.H.; Qin, Y.Z.; Huang, X.J. Resistance to arsenic therapy in acute promyelocytic leukemia. N. Engl. J. Med. 2014, 370, 1864–1866. [Google Scholar] [CrossRef] [PubMed]
- Cicconi, L.; Breccia, M.; Franceschini, L.; Latagliata, R.; Molica, M.; Divona, M.; Diverio, D.; Rizzo, M.; Ottone, T.; Iaccarino, L.; et al. Prolonged treatment with arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA) for relapsed acute promyelocytic leukemia previously treated with ATRA and chemotherapy. Ann. Hematol. 2018, 97, 1797–1802. [Google Scholar] [CrossRef]
- Fouzia, N.A.; Sharma, V.; Ganesan, S.; Palani, H.K.; Balasundaram, N.; David, S.; Kulkarni, U.P.; Korula, A.; Devasia, A.J.; Nair, S.C.; et al. Management of relapse in acute promyelocytic leukaemia treated with up-front arsenic trioxide-based regimens. Br. J. Haematol. 2021, 192, 292–299. [Google Scholar] [CrossRef]
- de Botton, S.; Fawaz, A.; Chevret, S.; Dombret, H.; Thomas, X.; Sanz, M.; Guerci, A.; Miguel, J.S.; de la Serna, J.; Stoppa, A.; et al. Autologous and Allogeneic Stem-Cell Transplantation As Salvage Treatment of Acute Promyelocytic Leukemia Initially Treated With All-Trans-Retinoic Acid: A Retrospective Analysis of the European Acute Promyelocytic Leukemia Group. J. Clin. Oncol. 2005, 23, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Asou, N.; Iwanaga, M.; Hyo, R.; Nomura, S.; Kiyoi, H.; Okada, M.; Inaguma, Y.; Matsuda, M.; Yamauchi, T.; et al. Role of hematopoietic stem cell transplantation for relapsed acute promyelocytic leukemia: A retrospective analysis of JALSG-APL97. Cancer Sci. 2013, 104, 1339–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirugnanam, R.; George, B.; Chendamarai, E.; Lakshmi, K.M.; Balasubramanian, P.; Viswabandya, A.; Srivastava, A.; Chandy, M.; Mathews, V. Comparison of clinical outcomes of patients with relapsed acute promyelocytic leukemia induced with arsenic trioxide and consolidated with either an autologous stem cell transplant or an arsenic trioxide-based regimen. Biol. Blood Marrow Transplant. 2009, 15, 1479–1484. [Google Scholar] [CrossRef] [Green Version]
- Pemmaraju, N.; Tanaka, M.F.; Ravandi, F.; Lin, H.; Baladandayuthapani, V.; Rondon, G.; Giralt, S.A.; Chen, J.; Pierce, S.; Cortes, J.; et al. Outcomes in patients with relapsed or refractory acute promyelocytic leukemia treated with or without autologous or allogeneic hematopoietic stem cell transplantation. Clin. Lymphoma Myeloma Leuk. 2013, 13, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganzel, C.; Mathews, V.; Alimoghaddam, K.; Ghavamzadeh, A.; Kuk, D.; Devlin, S.; Wang, H.; Zhang, M.-J.; Weisdorf, D.; Douer, D.; et al. Autologous transplant remains the preferred therapy for relapsed APL in CR2. Bone Marrow Transplant. 2016, 51, 1180–1183. [Google Scholar] [CrossRef] [PubMed]
- Douer, D.; Hu, W.; Giralt, S.; Lill, M.; DiPersio, J. Arsenic trioxide (trisenox) therapy for acute promyelocytic leukemia in the setting of hematopoietic stem cell transplantation. Oncologist 2003, 8, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Mannis, G.N.; Logan, A.C.; Leavitt, A.D.; Yanada, M.; Hwang, J.; Olin, R.L.; E Damon, L.; Andreadis, C.; Ai, W.Z.; Gaensler, K.M.; et al. Delayed hematopoietic recovery after auto-SCT in patients receiving arsenic trioxide-based therapy for acute promyelocytic leukemia: A multi-center analysis. Bone Marrow Transplant. 2014, 50, 40–44. [Google Scholar] [CrossRef] [Green Version]
- Holter Chakrabarty, J.L.; Rubinger, M.; Le-Rademacher, J.; Wang, H.L.; Grigg, A.; Selby, G.B.; Szer, J.; Rowe, J.M.; Weisdorf, D.J.; Tallman, M.S. Autologous is superior to allogeneic hematopoietic cell transplantation for acute promyelocytic leukemia in second complete remission. Biol. Blood Marrow Transplant. 2014, 20, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Yanada, M.; Yano, S.; Kanamori, H.; Gotoh, M.; Emi, N.; Watakabe, K.; Kurokawa, M.; Nishikawa, A.; Mori, T.; Tomita, N.; et al. Autologous hematopoietic cell transplantation for acute promyelocytic leukemia in second complete remission: Outcomes before and after the introduction of arsenic trioxide. Leuk Lymphoma 2017, 58, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Yanada, M. Treatment for relapsed acute promyelocytic leukemia. Ann. Hematol. 2022, 101, 2575–2582. [Google Scholar] [CrossRef]
- Yanada, M. The evolving concept of indications for allogeneic hematopoietic cell transplantation during first complete remission of acute myeloid leukemia. Bone Marrow Transplant. 2021, 56, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Kohno, A.; Morishita, Y.; Iida, H.; Yanada, M.; Uchida, T.; Hamaguchi, M.; Sawa, M.; Sugiura, I.; Yamamoto, K.; Mizuta, S.; et al. Hematopoietic stem cell transplantation for acute promyelocytic leukemia in second or third complete remission: A retrospective analysis in the Nagoya Blood and Marrow Transplantation Group. Int. J. Hematol. 2008, 87, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Alimoghaddam, K.; Ghavamzadeh, A.; Jahani, M.; Jalali, A.; Jorjani, H.; Iravani, M.; Hamidieh, A.A.; Mousavi, A.; Bahar, B.; Behfar, M.; et al. Hematopoietic stem cell transplantation in acute promyelocytic leukemia, experience in Iran. Arch. Iran. Med. 2011, 14, 332–334. [Google Scholar] [PubMed]
- Sanz, J.; Labopin, M.; Sanz, M.A.; Aljurf, M.; Sousa, A.B.; Craddock, C.; Zuckerman, T.; Labussière-Wallet, H.; Campos, A.; Grillo, G.; et al. Hematopoietic stem cell transplantation for adults with relapsed acute promyelocytic leukemia in second complete remission. Bone Marrow Transplant. 2021, 56, 1272–1280. [Google Scholar] [CrossRef]
- Yanada, M.; Tsuzuki, M.; Fujita, H.; Fujimaki, K.; Fujisawa, S.; Sunami, K.; Taniwaki, M.; Ohwada, A.; Tsuboi, K.; Maeda, A.; et al. Phase 2 study of arsenic trioxide followed by autologous hematopoietic cell transplantation for relapsed acute promyelocytic leukemia. Blood 2013, 121, 3095–3102. [Google Scholar] [CrossRef] [Green Version]
- DiPersio, J.F.; Stadtmauer, E.A.; Nademanee, A.; Micallef, I.N.; Stiff, P.J.; Kaufman, J.L.; Maziarz, R.T.; Hosing, C.; Früehauf, S.; Horwitz, M.; et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009, 113, 5720–5726. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, L.; Cui, Z.; Jiang, X.; Wang, G.; Krissansen, G.W.; Sun, X. Interaction of SDF-1alpha and CXCR4 plays an important role in pulmonary cellular infiltration in differentiation syndrome. Int. J. Hematol. 2010, 91, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Savlı, H.; Sırma, S.; Aktan, M.; Dınçol, G.; Özbek, U. Quantification of All-Trans-Retinoic Acid (ATRA) Dependent Expression of CXCR4 Gene in Acute Promyelocytic Leukaemia. Turk. J. Haematol. 2003, 20, 153–159. [Google Scholar]
- Nervi, B.; Ramirez, P.; Rettig, M.P.; Uy, G.L.; Holt, M.S.; Ritchey, J.K.; Prior, J.L.; Piwnica-Worms, D.; Bridger, G.; Ley, T.J.; et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 2009, 113, 6206–6214. [Google Scholar] [CrossRef] [Green Version]
- Jaimovich, G.; Castro, M.; Rosales Ostriz, B.; Fernandez, M.; Silveyra, D.; Campestri, R. Plerixafor, cyclophosphamide and G-CSF and Blood cell mobilization in a patient with acute promyelocytic leukemia. J. Clin. Apher. 2017, 32, 592–593. [Google Scholar] [CrossRef]
- Stolzel, F.; Wermke, M.; Rollig, C.; Thiede, C.; Platzbecker, U.; Bornhauser, M. Mobilization of PML/RARa negative peripheral blood stem cells with a combination of G-CSF and CXCR4 blockade in relapsed acute promyelocytic leukemia pre-treated with arsenic trioxide. Haematologica 2010, 95, 169–171. [Google Scholar] [CrossRef]
- Meloni, G.; Diverio, D.; Vignetti, M.; Avvisati, G.; Capria, S.; Petti, M.C.; Mandelli, F.; Lo Coco, F. Autologous bone marrow transplantation for acute promyelocytic leukemia in second emission: Prognostic relevance of pretransplant minimal residual disease assessment by reverse-transcription polymerase chain reaction of the PML/RAR alpha fusion gene. Blood 1997, 90, 1321–1325. [Google Scholar] [CrossRef]
- Yanada, M.; Ota, S.; Mukae, J.; Nara, M.; Kako, S.; Nishikawa, A.; Uchida, N.; Sawa, M.; Nakano, N.; Onizuka, M.; et al. Autologous hematopoietic cell transplantation during second or subsequent complete remission of acute promyelocytic leukemia: A prognostic factor analysis. Bone Marrow Transplant. 2022, 57, 78–82. [Google Scholar] [CrossRef]
- Wang, J.C.; Dick, J.E. Cancer stem cells: Lessons from leukemia. Trends Cell Biol. 2005, 15, 494–501. [Google Scholar] [CrossRef]
- Yanada, M.; Matsuda, K.; Ishii, H.; Fukuda, T.; Ozeki, K.; Ota, S.; Tashiro, H.; Uchida, N.; Kako, S.; Doki, N.; et al. Allogeneic Hematopoietic Cell Transplantation for Patients with Relapsed Acute Promyelocytic Leukemia. Transplant. Cell. Ther. 2022, 28, 847.e1–847.e8. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, S.M.; Di Veroli, A.; Camboni, A.; Breccia, M.; Iori, A.P.; Aversa, F.; Cupelli, L.; Papayannidis, C.; Bacigalupo, A.; Arcese, W.; et al. Allogeneic stem cell transplantation for advanced acute promyelocytic leukemia in the ATRA and ATO era. Haematologica 2012, 97, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.; Burnett, A.; Hills, R.; Betteridge, S.; Dennis, M.; Jovanovic, J.; Dillon, R.; Grimwade, D.; NCRI AML Working Group. Attenuated arsenic trioxide plus ATRA therapy for newly diagnosed and relapsed APL: Long-term follow-up of the AML17 trial. Blood 2018, 132, 1452–1454. [Google Scholar] [CrossRef] [Green Version]
- Lo-Coco, F.; Cimino, G.; Breccia, M.; Noguera, N.I.; Diverio, D.; Finolezzi, E.; Pogliani, E.M.; Di Bona, E.; Micalizzi, C.; Kropp, M.; et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 2004, 104, 1995–1999. [Google Scholar] [CrossRef]
- Sanford, D.; Lo-Coco, F.; Sanz, M.A.; Di Bona, E.; Coutre, S.; Altman, J.K.; Wetzler, M.; Allen, S.L.; Ravandi, F.; Kantarjian, H.; et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-transretinoic acid and arsenic trioxide. Br. J. Haematol. 2015, 171, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, M.; Ogiya, D.; Ichiki, A.; Hara, R.; Amaki, J.; Kawai, H.; Numata, H.; Sato, A.; Miyamoto, M.; Suzuki, R.; et al. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene: A case report. Leuk. Res. Rep. 2016, 5, 11–13. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Wang, X.; Kong, X.; Wang, M.; Yao, L.; Shen, H.; Zhang, J.; Qiu, H. Clinical response to venetoclax and decitabine in acute promyelocytic leukemia with a novel RARA-THRAP3 fusion: A case report. Front. Oncol. 2022, 12, 828852. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, J.; Wang, W.; Li, X.; Tan, Y.; Zhang, X.; Qian, W. Treatment of central nervous system relapse in acute promyelocytic leukemia by venetoclax: A case report. Front. Oncol. 2021, 11, 693670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Wang, H.F.; Zhao, J.Z.; Naranmandura, H.; Jin, J.; Zhu, H.H. Venetoclax for arsenic-resistant acute promyelocytic leukaemia. Br. J. Haematol. 2022, 197, e58–e60. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, U.; Ganesan, S.; Alex, A.A.; Palani, H.; David, S.; Balasundaram, N.; Venkatraman, A.; Thenmozhi, M.; Jeyaseelan, L.; Korula, A.; et al. A phase II study evaluating the role of bortezomib in the management of relapsed acute promyelocytic leukemia treated upfront with arsenic trioxide. Cancer Med. 2020, 9, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Au, W.; Kumana, C.; Kou, M.; Mak, R.; Chan, G.; Lam, C.-W.; Kwong, Y.L. Oral arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia. Blood 2003, 102, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.; Yim, R.; Lee, H.K.K.; Mak, V.; Lin, S.Y.; Kho, B.; Yip, S.F.; Lau, J.S.M.; Li, W.; Ip, H.W.; et al. Long-term outcome of relapsed acute promyelocytic leukemia treated with oral arsenic trioxide-based reinduction and maintenance regimens: A 15-year prospective study. Cancer 2018, 124, 2316–2326. [Google Scholar] [CrossRef] [Green Version]
- Radu, C.-P.; Pana, B.C.; Pele, D.T.; Costea, R.V. Evolution of Public Health Expenditure Financed by the Romanian Social Health Insurance Scheme From 1999 to 2019. Front. Public Health 2021, 9, 795869. [Google Scholar] [CrossRef]
Study | Study Period/ Type | Relapse Therapy | Post- Remission Treatment | No. | RFS | EFS | OS | RR |
---|---|---|---|---|---|---|---|---|
de Botton et al., 2005 [42] | 1992–2001 Retrospective Multicentric | ATRA + CT | Auto Allo Non-HSCT | 50 23 49 | 79% (7y) 92% (7y) 38% (7y) | 61% (7y) 52% (7y) 30% (7y) | 60% (7y) 52% (7y) 40% (7y) | |
Thirugnanam et al., 2009 [44] | 1998–2006 Retrospective Unicentric | ATO—based | Auto Non-HSCT | 14 19 | 83% (5y) 34% (5y) | 100% (5y) 39% (5y) | 7% (7y) 63% (7y) | |
Pemmaraju et al., 2013 [45] | 1980–2010 Retrospective Unicentric | Various | Auto Allo Non-HSCT | 10 17 16 | 69% (7y) 41% (7y) NA | 86% (7y) 49% (7y) 40% (7y) | ||
Fujita et al., 2013 [45] | 1997–2002 Retrospective Multicentric | ATRA + CT | Auto Allo Non-HSCT | 6 21 30 | 42% (5y) 71% (5y) 45% (5y) | 83% (5y) 76% (5y) 75% (5y) | 58% (5y) 10% (5y) 51% (95y) | |
Lengfelder et al., 2015 [15] | 2003–2011 Retrospective ELN Registry | ATO—based | Auto Allo Non-HSCT | 60 33 55 | 77% (3y) 79% (3y) 59% (3y) | 37% (3y) 39% (3y) 59% (3y) | ||
Ganzel et al., 2016 [46] | 2000–2011 Retrospective Registry data | ATO or CT based | Auto Non-HSCT | 140 67 | 78% (5y) 42% (5y) | |||
Fouzia et al., 2021 [41] | 1998–2015 Retrospective Unicentric | ATO—based | Auto Non-HSCT | 35 28 | 87% (5y) 48% (5y) | 90% (5y) 59% (5y) | ||
Min et al., 2022 [13] | 2000–2019 Retrospective Unicentric | ATO or CT based | Auto Allo Non-HSCT | 12 6 19 | 66% (3y) * 50% (3y) 44% (3y) | 75% (3y) 66% (3y) 65% (3y) | 41% (3y) 0% (3y) 50% (3y) | |
Douer et al., 2003 [47] | 1997–2000 Retrospective analysis of 2 studies | ATO | Auto Allo Non-HSCT | 4 14 27 | 4 ** 12 ** 11 ** | 0 † 1 † NA |
Study | Study Period/Type | Relapse Therapy | HSCT Type | No. | RFS | EFS | OS | RR | NRM |
---|---|---|---|---|---|---|---|---|---|
de Botton et al., 2005 [42] | 1992–2001 Retrospective Multicentric | ATRA + CT | Auto Allo | 50 23 | 79% (7y) 92% (7y) | 61% (7y) 52% (7y) | 60% (7y) 52% (7y) | ||
Pemmaraju et al., 2013 [45] | 1980–2010 Retrospective Unicentric | Various | Auto Allo | 10 17 | 69% (7y) 41% (7y) | 86% (7y) 49% (7y) | |||
Fujita et al., 2013 [43] | 1997–2002 Retrospective Multicentric | ATRA + CT | Auto Allo | 6 21 | 42% (5y) 71% (5y) | 83% (5y) 76% (5y) | 58% (5y) 10% (5y) | ||
Lengfelder et al., 2015 [15] | 2003–2011 Retrospective Multicentric | ATO—based | Auto Allo | 60 33 | 77% (3y) 79% (3y) | 37% (3y) 39% (3y) | |||
Min et al., 2022 [13] | 2000–2019 Retrospective Unicentric | ATO or CT based | Auto Allo | 12 6 | 66% (3y) * 50% (3y) | 75% (3y) 66% (3y) | 41% (3y) 0% (3y) | ||
Kohno et al., 2008 [53] | 1999–2004 Retrospective Multicentric | Various | Auto Allo | 15 13 | 69% (4y) 46% (4y) | 76% (4y) 46% (4y) | 21% (4y) 9% (4y) | ||
Holter Chakrabarty et al., 2014 [49] | 1995–2006 Retrospective Registry data | non-ATO/ ATO based | Auto Allo | 62 232 | 63% (5y) 50% (5y) | 75% (5y) 54% (5y) | 30% (5y) 18% (5y) | 7% (5y) 31% (5y) | |
Alimoghaddam et al., 2011 [54] | 1989–2011 | Auto Allo | 11 29 | 52% (5y) 62% (5y) | 47% (5y) 66% (5y) | 0% (5y) 21% (5y) | |||
Sanz et al., 2007 [22] | 1993–2003 | ATRA + CT | Auto Allo | 195 137 | 51% (5y) 59% (5y) | 37% (5y) 17% (5y) | 16% (5y) 24% (5y) | ||
Sanz et al., 2021 [55] | 2004–2018 Retrospective Registry data | Auto Allo | 341 228 | 75% (2y) 55% (2y) | 82% (2y) 64% (2y) | 23% (2y) 28% (2y) | 3% (2y) 17% (2y) |
Study | Study Period/Type | HSCT Type | Factors Influencing Outcome | Data on MRD Status/Impact on Outcome |
---|---|---|---|---|
de Botton et al., 2005 [42] | 1992–2001 Retrospective Multicentric | Auto Allo | Auto-HSCT—Superior 7y RFS, EFS, OS in patients with mCR compared to patients lacking molecular analysis (p = NS) | |
Ramadan et al., 2012 [67] | 2000–2010 Retrospective Multicentric | Allo | CR2 vs. CR3+ for OS (p = 0.05) | mCR prior to allo-HSCT—better OS (p = 0.03), lower CIR (p = 0.3) |
Ganzel et al., 2016 [46] | 2000−2011 Retrospective Registry data | Auto | CR1 duration for OS (p = 0.001), DFS (p = 0.002), multivariate (p < 0.001) Extramedullary disease—on OS (p = 0.046), NS in multivariate analysis | |
Fujita et al., 2013 [43] | 1997–2002 Retrospective Multicentric | Auto Allo | age at CR2 ≥ 40 years (p = 0.006) | Auto-HSCT—pre-transplant MRD had no predictive significance with respect to relapse |
Lengfelder et al., 2015 [15] | 2003–2011 Retrospective Multicentric | Auto Allo | CR1 duration ≥ 1.5 years (p = 0.006) No negative impact of extramedullary disease on transplant outcomes | mCR2 before HSCT (p < 0.001) (univariable and multivariable analysis) |
Holter Chakrabarty et al., 2014 [49] | 1995–2006 Retrospective Registry data | Auto Allo | age > 40 years for DFS (p = 0.005), OS (p < 0.001) CR1 < 12 months on OS (p = 0.021) | No influence of pre-HSCT MRD positive status on relapse, treatment failure, or survival in auto- and allo-HSCT |
Sanz et al., 2007 [22] | 1993–2003 Retrospective Registry data | Auto Allo | Auto-HSCT Year of HSCT for LFS (p = 0.05) Interval from diagnosis to HSCT > 18 months for LFS (p = 0.0001), TRM (p = 0.0016) Allo-HSCT Year of HSCT for RI (p = 0.0004), TRM (p = 0.03) WBC at diagnosis for RI (p = 0.008) Source of HSC for TRM (p = 0.008) | |
Sanz et al., 2021 [55] | 2004–2018 Retrospective Registry data | Auto Allo | Age (p = 0.002) Time diagnosis to HSCT (p = 0.006) | negative MRD before allo-HSCT~better 2y OS (p = 0.001), 2y LFS (p = 0.002) |
Fouzia et al., 2021 [41] | 1998–2015 Retrospective Unicentric | Auto | CR1 duration (p = 0.025) | |
Yanada et al., 2020 [23] | 1992–2016 Retrospective Multicentric | Auto | HSCT period for RI (p = 0.014) Age ≥ 50 years for NRM (p = 0.007) Male vs. female for NRM (p = 0.009) | No association between MRD status and TRM, relapse, and OS rates |
Yanada et al., 2022 [64] | 2006–2019 Retrospective Registry data | Auto | CR1 duration ≥ 2 years for RFS (p = 0.002) CR3+ vs. CR2 for NRM (p = 0.036) | MRD status–not predictive for survival outcomes |
Yanada et al., 2017 [50] | 1995–2012 Retrospective Multicentric | Auto | PS 0 vs. ≥1 | pre-transplantation PML-RARA status—not predictive for outcomes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colita, A.; Tanase, A.D.; Tomuleasa, C.; Colita, A. Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia in the Era of All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO). Cancers 2023, 15, 4111. https://doi.org/10.3390/cancers15164111
Colita A, Tanase AD, Tomuleasa C, Colita A. Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia in the Era of All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO). Cancers. 2023; 15(16):4111. https://doi.org/10.3390/cancers15164111
Chicago/Turabian StyleColita, Andrei, Alina Daniela Tanase, Ciprian Tomuleasa, and Anca Colita. 2023. "Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia in the Era of All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO)" Cancers 15, no. 16: 4111. https://doi.org/10.3390/cancers15164111
APA StyleColita, A., Tanase, A. D., Tomuleasa, C., & Colita, A. (2023). Hematopoietic Stem Cell Transplantation in Acute Promyelocytic Leukemia in the Era of All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide (ATO). Cancers, 15(16), 4111. https://doi.org/10.3390/cancers15164111