Cordycepin (3′dA) Induces Cell Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Line and Primary Cell Cultures
2.2. Cell-Based Assays
2.3. Transcriptomic Analysis
2.4. Real-Time qPCR Analysis
2.5. Ion AmpliSeq NGS WNT-Panel for Targeted Sequencing
2.6. Immunoblot
2.7. Statistical Analysis
3. Results
3.1. Modulation of Cell Viability after Treatment with Cordycepin on MUTZ-2 and Primary Cells
3.2. Cordycepin Induces High Apoptosis Rates in MUTZ-2 Cells
3.3. Expression Analysis Revealed WIF1 Re-Expression and MYC Down-Modulation in MUTZ-2 Cells after Treatment with Cordycepin
Immunoblot Blot Analysis on MYC Protein following Cordycepin Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goardon, N.; Marchi, E.; Atzberger, A.; Quek, L.; Schuh, A.; Soneji, S.; Woll, P.; Mead, A.; Alford, K.A.; Rout, R.; et al. Coexistence of LMPP-like and GMP-like Leukemia Stem Cells in Acute Myeloid Leukemia. Cancer Cell 2011, 19, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Beghini, A.; Corlazzoli, F.; Del Giacco, L.; Re, M.; Lazzaroni, F.; Brioschi, M.; Valentini, G.; Ferrazzi, F.; Ghilardi, A.; Righi, M.; et al. Regeneration-Associated WNT Signaling Is Activated in Long-Term Reconstituting AC133bright Acute Myeloid Leukemia Cells. Neoplasia 2012, 14, 1236–1248, IN44–IN45. [Google Scholar] [CrossRef] [Green Version]
- Görgens, A.; Radtke, S.; Möllmann, M.; Cross, M.; Dürig, J.; Horn, P.A.; Giebel, B. Revision of the Human Hematopoietic Tree: Granulocyte Subtypes Derive from Distinct Hematopoietic Lineages. Cell Rep. 2013, 3, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Hérault, A.; Binnewies, M.; Leong, S.; Calero-Nieto, F.J.; Zhang, S.Y.; Kang, Y.A.; Wang, X.; Pietras, E.M.; Chu, S.H.; Barry-Holson, K.; et al. Myeloid Progenitor Cluster Formation Drives Emergency and Leukaemic Myelopoiesis. Nature 2017, 544, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Krivtsov, A.V.; Sinha, A.U.; North, T.E.; Goessling, W.; Feng, Z.; Zon, L.I.; Armstrong, S.A. The Wnt/β-Catenin Pathway Is Required for the Development of Leukemia Stem Cells in AML. Science (1979) 2010, 327, 1650–1653. [Google Scholar] [CrossRef] [Green Version]
- Siapati, E.K.; Papadaki, M.; Kozaou, Z.; Rouka, E.; Michali, E.; Savvidou, I.; Gogos, D.; Kyriakou, D.; Anagnostopoulos, N.I.; Vassilopoulos, G. Proliferation and Bone Marrow Engraftment of AML Blasts Is Dependent on β-Catenin Signalling. Br. J. Haematol. 2011, 152, 164–174. [Google Scholar] [CrossRef]
- Lane, S.W.; Wang, Y.J.; Lo Celso, C.; Ragu, C.; Bullinger, L.; Sykes, S.M.; Ferraro, F.; Shterental, S.; Lin, C.P.; Gilliland, D.G.; et al. Differential Niche and Wnt Requirements during Acute Myeloid Leukemia Progression. Blood 2011, 118, 2849–2856. [Google Scholar] [CrossRef] [Green Version]
- Soares-Lima, S.C.; Pombo-de-Oliveira, M.S.; Carneiro, F.R.G. The Multiple Ways Wnt Signaling Contributes to Acute Leukemia Pathogenesis. J. Leukoc. Biol. 2020, 108, 1081–1099. [Google Scholar] [CrossRef]
- Kang, Y.A.; Pietras, E.M.; Passegué, E. Deregulated Notch and Wnt Signaling Activates Early-Stage Myeloid Regeneration Pathways in Leukemia. J. Exp. Med. 2020, 217, e20190787. [Google Scholar] [CrossRef]
- He, T.C.; Sparks, A.B.; Rago, C.; Hermeking, H.; Zawel, L.; Da Costa, L.T.; Morin, P.J.; Vogelstein, B.; Kinzler, K.W. Identification of C-MYC as a Target of the APC Pathway. Science (1979) 1998, 281, 1509–1512. [Google Scholar] [CrossRef]
- Wielenga, V.J.M.; Smits, R.; Korinek, V.; Smit, L.; Kielman, M.; Fodde, R.; Clevers, H.; Pals, S.T. Expression of CD44 in Apc and Tcf Mutant Mice Implies Regulation by the WNT Pathway. Am. J. Pathol. 1999, 154, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Shtutman, M.; Zhurinsky, J.; Simcha, I.; Albanese, C.; D’Amico, M.; Pestell, R.; Ben-Ze’ev, A. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 1999, 96, 5522–5527. [Google Scholar] [CrossRef]
- Hoffman, B.; Amanullah, A.; Shafarenko, M.; Liebermann, D.A. The Proto-Oncogene c-Myc in Hematopoietic Development and Leukemogenesis. Oncogene 2002, 21, 3414–3421. [Google Scholar] [CrossRef] [Green Version]
- Röhrs, S.; Kutzner, N.; Vlad, A.; Grunwald, T.; Ziegler, S.; Müller, O. Chronological Expression of Wnt Target Genes Ccnd1, Myc, Cdkn1a, Tfrc, Plf1 and Ramp3. Cell Biol. Int. 2009, 33, 501–508. [Google Scholar] [CrossRef]
- Salvatori, B.; Iosue, I.; Damas, N.D.; Mangiavacchi, A.; Chiaretti, S.; Messina, M.; Padula, F.; Guarini, A.; Bozzoni, I.; Fazi, F.; et al. Critical Role of C-Myc in Acute Myeloid Leukemia Involving Direct Regulation of MiR-26a and Histone Methyltransferase EZH2. Genes Cancer 2011, 2, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Rennoll, S. Regulation of MYC Gene Expression by Aberrant Wnt/β-Catenin Signaling in Colorectal Cancer. World J. Biol. Chem. 2015, 6, 290–300. [Google Scholar] [CrossRef]
- Zhou, C.; Martinez, E.; Di Marcantonio, D.; Solanki-Patel, N.; Aghayev, T.; Peri, S.; Ferraro, F.; Skorski, T.; Scholl, C.; Fröhling, S.; et al. JUN Is a Key Transcriptional Regulator of the Unfolded Protein Response in Acute Myeloid Leukemia. Leukemia 2017, 31, 1196–1205. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Murphy, M.J.; Oskarsson, T.; Kaloulis, K.; Bettess, M.D.; Oser, G.M.; Pasche, A.C.; Knabenhans, C.; MacDonald, H.R.; Trumpp, A. C-Myc Controls the Balance between Hematopoietic Stem Cell Self-Renewal and Differentiation. Genes Dev. 2004, 18, 2747–2763. [Google Scholar] [CrossRef] [Green Version]
- Laurenti, E.; Varnum-Finney, B.; Wilson, A.; Ferrero, I.; Blanco-Bose, W.E.; Ehninger, A.; Knoepfler, P.S.; Cheng, P.F.; MacDonald, H.R.; Eisenman, R.N.; et al. Hematopoietic Stem Cell Function and Survival Depend on C-Myc and N-Myc Activity. Cell Stem Cell 2008, 3, 611–624. [Google Scholar] [CrossRef] [Green Version]
- Dolores Delgado, M.; León, J. Myc Roles in Hematopoiesis and Leukemia. Genes Cancer 2010, 1, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Satoh, Y.; Matsumura, I.; Tanaka, H.; Ezoe, S.; Sugahara, H.; Mizuki, M.; Shibayama, H.; Ishiko, E.; Ishiko, J.; Nakajima, K.; et al. Roles for C-Myc in Self-Renewal of Hematopoietic Stem Cells. J. Biol. Chem. 2004, 279, 24986–24993. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Ma, R.; Yu, C.; Wu, Q.; Zhang, S.; Paulsen, K.; Zhang, J.; Ni, H.; Huang, Y.; Zheng, Y.; et al. Role of C-Myc Haploinsufficiency in the Maintenance of HSCs in Mice. Blood 2021, 137, 610–623. [Google Scholar] [CrossRef]
- Bolouri, H.; Farrar, J.E.; Triche, T.; Ries, R.E.; Lim, E.L.; Alonzo, T.A.; Ma, Y.; Moore, R.; Mungall, A.J.; Marra, M.A.; et al. The Molecular Landscape of Pediatric Acute Myeloid Leukemia Reveals Recurrent Structural Alterations and Age-Specific Mutational Interactions. Nat. Med. 2018, 24, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Saeed, A.; Golem, S.; Zhang, D.; Woodroof, J.; McGuirk, J.; Ganguly, S.; Abhyankar, S.; Lin, T.L.; Cui, W. High-Level MYC Expression Associates with Poor Survival in Patients with Acute Myeloid Leukemia and Collaborates with Overexpressed P53 in Leukemic Transformation in Patients with Myelodysplastic Syndrome. Int. J. Lab. Hematol. 2021, 43, 99–109. [Google Scholar] [CrossRef]
- Ahmadi, S.E.; Rahimi, S.; Zarandi, B.; Chegeni, R.; Safa, M. Correction to: MYC: A Multipurpose Oncogene with Prognostic and Therapeutic Implications in Blood Malignancies. J. Hematol. Oncol. 2021, 14, 121. [Google Scholar] [CrossRef]
- Gajzer, D.; Logothetis, C.N.; Sallman, D.A.; Calon, G.; Babu, A.; Chan, O.; Vincelette, N.D.; Volpe, V.O.; Al Ali, N.H.; Basra, P.; et al. MYC Overexpression Is Associated with an Early Disease Progression from MDS to AML. Leuk. Res. 2021, 111, 106733. [Google Scholar] [CrossRef]
- Valencia, A.; Román-Gómez, J.; Cervera, J.; Such, E.; Barragán, E.; Bolufer, P.; Moscardó, F.; Sanz, G.F.; A Sanz, M. Wnt Signaling Pathway Is Epigenetically Regulated by Methylation of Wnt Antagonists in Acute Myeloid Leukemia. Leukemia 2009, 23, 1658–1666. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, A.; Ghotaslou, A.; Mohammadi, M.; Abbasian, S.; Ghaffari, K. Methylation of the Wnt Signaling Antagonist, Wnt Inhibitory Factor 1 and Dickkopf-1 Genes in Acute Myeloid Leukemia at the Time of Diagnosis. Zahedan J. Res. Med. Sci. 2016, in press. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Hope, K.J.; Zhai, Q.; Smadja-Joffe, F.; Dick, J.E. Targeting of CD44 Eradicates Human Acute Myeloid Leukemic Stem Cells. Nat. Med. 2006, 12, 1167–1174. [Google Scholar] [CrossRef]
- Pepe, F.; Bill, M.; Papaioannou, D.; Karunasiri, M.; Walker, A.; Naumann, E.; Snyder, K.; Ranganathan, P.; Dorrance, A.; Garzon, R. Targeting Wnt Signaling in Acute Myeloid Leukemia Stem Cells. Haematologica 2022, 107, 307–311. [Google Scholar] [CrossRef]
- Ko, B.S.; Lu, Y.J.; Yao, W.L.; Liu, T.A.; Tzean, S.S.; Shen, T.L.; Liou, J.Y. Cordycepin Regulates GSK-3β/β-Catenin Signaling in Human Leukemia Cells. PLoS ONE 2013, 8, e76320. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.M.; Lu, Y.J.; Ko, B.S.; Jan, Y.J.; Shyue, S.K.; Yet, S.F.; Liou, J.Y. Cordycepin Disrupts Leukemia Association with Mesenchymal Stromal Cells and Eliminates Leukemia Stem Cell Activity. Sci. Rep. 2017, 7, srep43930. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Mo, H.; Gu, J.; Chen, K.; Han, Z.; Liu, Y. Cordycepin Induces Apoptosis of Human Acute Monocytic Leukemia Cells via Downregulation of the ERK/Akt Signaling Pathway. Exp. Ther. Med. 2017, 14, 3067–3073. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Kuzin, V.; Cameron, D.P.; Sanford, S.; Jha, R.K.; Nie, Z.; Rosello, M.T.; Holewinski, R.; Andresson, T.; Wisniewski, J.; et al. MYC Assembles and Stimulates Topoisomerases 1 and 2 in a “Topoisome”. Mol. Cell 2022, 82, 140–158.e12. [Google Scholar] [CrossRef]
- Kratz-Albers, K.; Zuhlsdorf, M.; Leo, R.; Berdel, W.E.; Buchner, T.; Serve, H. Expression of AC133, a Novel Stem Cell Marker, on Human Leukemic Blasts Lacking CD34- Antigen and on a Human CD34+ Leukemic Cell Line: MUTZ-2. Blood J. Am. Soc. Hematol. 1998, 92, 4485–4487. [Google Scholar]
- Thakral, D.; Gupta, R.; Khan, A. Leukemic Stem Cell Signatures in Acute Myeloid Leukemia- Targeting the Guardians with Novel Approaches. Stem Cell Rev. Rep. 2022, 18, 1756–1773. [Google Scholar] [CrossRef]
- Park, C.; Hong, S.H.; Lee, J.Y.; Kim, G.Y.; Choi, B.T.; Lee, Y.T.; Park, D.I.; Park, Y.M.; Jeong, Y.K.; Choi, Y.H. Growth Inhibition of U937 Leukemia Cells by Aqueous Extract of Cordyceps Militaris through Induction of Apoptosis. Oncol. Rep. 2005, 13, 1211–1216. [Google Scholar] [CrossRef]
- Ko, Y.B.; Kim, B.R.; Yoon, K.; Choi, E.K.; Seo, S.H.; Lee, Y.; Lee, M.A.; Yang, J.B.; Park, M.S.; Rho, S.B. WIF1 Can Effectively Co-Regulate pro-Apoptotic Activity through the Combination with DKK1. Cell Signal 2014, 26, 2562–2572. [Google Scholar] [CrossRef]
- Poggi, L.; Casarosa, S.; Carl, M. An Eye on the Wnt Inhibitory Factor Wif1. Front. Cell Dev. Biol. 2018, 6, 167. [Google Scholar] [CrossRef] [Green Version]
- Rim, E.Y.; Clevers, H.; Nusse, R. The Wnt Pathway: From Signaling Mechanisms to Synthetic Modulators. Annu. Rev. Biochem. 2022, 91, 571–598. [Google Scholar] [CrossRef]
- Liu, J.; Lam, J.B.B.; Chow, K.H.M.; Xu, A.; Lam, K.S.L.; Moon, R.T.; Wang, Y. Adiponectin Stimulates Wnt Inhibitory Factor-1 Expression through Epigenetic Regulations Involving the Transcription Factor Specificity Protein 1. Carcinogenesis 2008, 29, 2195–2202. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.W.; Hong, T.W.; Wang, Y.J.; Chen, K.C.; Pei, J.C.; Chuang, T.Y.; Lai, W.S.; Tsai, S.H.; Chu, R.; Chen, W.C.; et al. Ophiocordyceps Formosana Improves Hyperglycemia and Depression-like Behavior in an STZ-Induced Diabetic Mouse Model. BMC Complement. Altern. Med. 2016, 16, 310. [Google Scholar] [CrossRef] [Green Version]
- Brondfield, S.; Umesh, S.; Corella, A.; Zuber, J.; Rappaport, A.R.; Gaillard, C.; Lowe, S.W.; Goga, A.; Kogan, S.C. Direct and Indirect Targeting of MYC to Treat Acute Myeloid Leukemia. Cancer Chemother. Pharmacol. 2015, 76, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.J.; Cheng, Y.C.; Liu, C.R.; Lin, S.; Liu, H.E. A Small-Molecule c-Myc Inhibitor, 10058-F4, Induces Cell-Cycle Arrest, Apoptosis, and Myeloid Differentiation of Human Acute Myeloid Leukemia. Exp. Hematol. 2006, 34, 1480–1489. [Google Scholar] [CrossRef]
- Kalkat, M.; Resetca, D.; Lourenco, C.; Chan, P.K.; Wei, Y.; Shiah, Y.J.; Vitkin, N.; Tong, Y.; Sunnerhagen, M.; Done, S.J.; et al. MYC Protein Interactome Profiling Reveals Functionally Distinct Regions That Cooperate to Drive Tumorigenesis. Mol. Cell. 2018, 72, 836–848.e7. [Google Scholar] [CrossRef] [Green Version]
- Mudgapalli, N.; Nallasamy, P.; Chava, H.; Chava, S.; Pathania, A.S.; Gunda, V.; Gorantla, S.; Pandey, M.K.; Gupta, S.C.; Challagundla, K.B. The Role of Exosomes and MYC in Therapy Resistance of Acute Myeloid Leukemia: Challenges and Opportunities. Mol. Aspects. Med. 2019, 70, 21–32. [Google Scholar] [CrossRef]
- Pippa, R.; Odero, M.D. The Role of MYC and PP2A in the Initiation and Progression of Myeloid Leukemias. Cells 2020, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Farrell, A.S.; Sears, R.C. MYC Degradation. Cold Spring Harb. Perspect. Med. 2014, 4, a014365. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.X.; Li, Y.; Sears, R.C.; Dai, M.S. Targeting the MYC Ubiquitination-Proteasome Degradation Pathway for Cancer Therapy. Front. Oncol. 2021, 11, 679445. [Google Scholar] [CrossRef]
- Ioannidis, P.; Courtis, N.; Havredaki, M.; Michailakis, E.; Tsiapalis, C.M.; Trangas, T. The Polyadenylation Inhibitor Cordycepin (3′dA) Causes a Decline in c-MYC MRNA Levels without A€ecting c-MYC Protein Levels. Oncogene 1999, 18, 117–125. [Google Scholar]
- Picot, T.; Aanei, C.M.; Fayard, A.; Flandrin-Gresta, P.; Tondeur, S.; Gouttenoire, M.; Tavernier-Tardy, E.; Wattel, E.; Guyotat, D.; Campos, L. Expression of Embryonic Stem Cell Markers in Acute Myeloid Leukemia. Tumor Biol. 2017, 39, 1010428317716629. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.; Li, X.K.; Yang, H.; Wang, Z.Y.; Lu, D.X. Therapeutic Potential and Biological Applications of Cordycepin and Metabolic Mechanisms in Cordycepin-Producing Fungi. Molecules 2019, 24, 2231. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.W.; Jin, C.Y.; Park, C.; Hong, S.H.; Kim, G.Y.; Jeong, Y.K.; Lee, J.D.; Yoo, Y.H.; Choi, Y.H. Induction of Apoptosis by Cordycepin via Reactive Oxygen Species Generation in Human Leukemia Cells. Toxicol. Vitr. 2011, 25, 817–824. [Google Scholar] [CrossRef]
- Radhi, M.; Ashraf, S.; Lawrence, S.; Tranholm, A.A.; Wellham, P.A.D.; Hafeez, A.; Khamis, A.S.; Thomas, R.; McWilliams, D.; De Moor, C.H. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021, 26, 5886. [Google Scholar] [CrossRef]
- Guggenheim, A.G.; Wright, K.M.; Zwickey, H.L. Immune Modulation from Five Major Mushrooms: Application to Integrative Oncology. Integr. Med. 2014, 13, 32–44. [Google Scholar]
Gene Expression Avg (log2) | Untreated | 200 µM COR | Fold Change |
---|---|---|---|
MYC | 15.3 | 12.5 | −7.1 |
PROM1 | 11.7 | 9.9 | −3.4 |
WIF1 | 0.0 | 6.0 | 63.3 |
PPP3R2 | 0.0 | 6.0 | 62.7 |
PRKCG | 0.0 | 4.5 | 30.7 |
DKK1 | 0.0 | 2.3 | 4.8 |
NANOG | 3.3 | 6.4 | 8.6 |
SOX2 | 0.0 | 7.4 | 172.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abazari, N.; Stefanucci, M.R.; Bossi, L.E.; Trojani, A.; Cairoli, R.; Beghini, A. Cordycepin (3′dA) Induces Cell Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers 2023, 15, 3931. https://doi.org/10.3390/cancers15153931
Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R, Beghini A. Cordycepin (3′dA) Induces Cell Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers. 2023; 15(15):3931. https://doi.org/10.3390/cancers15153931
Chicago/Turabian StyleAbazari, Nazanin, Marta Rachele Stefanucci, Luca Emanuele Bossi, Alessandra Trojani, Roberto Cairoli, and Alessandro Beghini. 2023. "Cordycepin (3′dA) Induces Cell Death of AC133+ Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC" Cancers 15, no. 15: 3931. https://doi.org/10.3390/cancers15153931