Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients and Measurements
2.3. Histological Evaluation of Vascular Mimicry
2.4. Statistical Analysis
2.5. Data Availability
3. Results
3.1. Patient Characteristics
3.2. The Outcomes of GBM with or without EVF
3.3. Prognostic Factors within Our Study Population
3.4. Subgroup Analyses
3.5. Relationship between EVF and Vascular Mimicry
4. Discussion
4.1. EVF and Its Regional Specificity in GBM
4.2. Clinical Significance of EVF
4.3. Relationship between EVF and Vascular Mimicry
4.4. Potential Efficacy of Preoperative Angiography in GBM Patients
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kondo, T. Glioblastoma-initiating cell heterogeneity generated by the cell-of-origin, genetic/epigenetic mutation and microenvironment. Semin. Cancer Biol. 2022, 82, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhang, Z.; Xia, C.; Niu, C.; Zhou, W. Non-coding RNAs in glioma microenvironment and angiogenesis. Front. Mol. Neurosci. 2021, 14, 763610. [Google Scholar] [CrossRef] [PubMed]
- Hardee, M.E.; Zagzag, D. Mechanisms of glioma-associated neovascularization. Am. J. Pathol. 2012, 181, 1126–1141. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.P.; Liao, Y.D.; Mai, D.M.; Xie, P.; Qiang, Y.Y.; Zheng, L.S.; Wang, M.Y.; Mei, Y.; Meng, D.F.; Xu, L.; et al. Tumor vasculogenic mimicry predicts poor prognosis in cancer patients: A meta-analysis. Angiogenesis 2016, 19, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Maniotis, A.J.; Folberg, R.; Hess, A.; Seftor, E.A.; Gardner, L.M.; Pe’er, J.; Trent, J.M.; Meltzer, P.S.; Hendrix, M.J. Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. Am. J. Pathol. 1999, 155, 739–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, E.J.; Gabriele, O.F.; Hipona, F.A.; Shapiro, J.H. Early venous filling in cranial angiography. Radiology 1968, 90, 553–557. [Google Scholar] [CrossRef]
- El Hallani, S.; Boisselier, B.; Peglion, F.; Rousseau, A.; Colin, C.; Idbaih, A.; Marie, Y.; Mokhtari, K.; Thomas, J.L.; Eichmann, A.; et al. A new alternative mechanism in glioblastoma vascularization: Tubular vasculogenic mimicry. Brain 2010, 133, 973–982. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Huang, Z.; Zou, X.; Liu, T. Bevacizumab and wound-healing complications: A systematic review and meta-analysis of randomized controlled trials. Oncotarget 2016, 7, 82473–82481. [Google Scholar] [CrossRef] [Green Version]
- Balana, C.; De Las Penas, R.; Sepúlveda, J.M.; Gil-Gil, M.J.; Luque, R.; Gallego, O.; Carrato, C.; Sanz, C.; Reynes, G.; Herrero, A.; et al. Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: The GENOM 009 randomized phase II trial. J. Neurooncol. 2016, 127, 569–579. [Google Scholar] [CrossRef]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [Green Version]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariani, L.; Schroth, G.; Wielepp, J.P.; Haldemann, A.; Seiler, R.W. Intratumoral arteriovenous shunting in malignant gliomas. Neurosurgery 2001, 48, 353–357; discussion 357–358. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.L.Y.; Ho, I.A.W. Recent Advances in Glioma Therapy: Combining Vascular Normalization and Immune Checkpoint Blockade. Cancers 2021, 13, 3686. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, A.; Nakada, M.; Kita, D.; Watanabe, T.; Kinoshita, M.; Miyashita, K.; Furuta, T.; Hamada, J.I.; Uchiyama, N.; Hayashi, Y. Visualization of angiographical arteriovenous shunting in perisylvian glioblastomas. Acta Neurochir. 2013, 155, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Nabavizadeh, S.A.; Akbari, H.; Ware, J.B.; Nasrallah, M.; Guiry, S.; Bagley, S.J.; Desai, A.; Levy, S.; Sarchiapone, W.; Prior, T.; et al. Arterial Spin Labeling and Dynamic Susceptibility Contrast-enhanced MR Imaging for evaluation of arteriovenous shunting and tumor hypoxia in glioblastoma. Sci. Rep. 2019, 9, 8747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahara, N.; Hartanto, R.; Yoshuantari, N.; Dananjoyo, K.; Widodo, I.; Malueka, R.G.; Dwianingsih, E.K. Diagnostic accuracy of immunohistochemistry in detecting MGMT methylation status in patients with glioma. Asian Pac. J. Cancer Prev. 2021, 22, 3803–3808. [Google Scholar] [CrossRef]
- Mei, X.; Chen, Y.S.; Zhang, Q.P.; Chen, F.R.; Xi, S.Y.; Long, Y.K.; Zhang, J.; Cai, H.P.; Ke, C.; Wang, J.; et al. Association between glioblastoma cell-derived vessels and poor prognosis of the patients. Cancer Commun. 2020, 40, 211–221. [Google Scholar] [CrossRef]
- Li, J.; Wang, M.; Won, M.; Shaw, E.G.; Coughlin, C.; Curran, W.J.; Mehta, M.P. Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 623–630. [Google Scholar] [CrossRef] [Green Version]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef] [Green Version]
- McGahan, B.G.; Neilsen, B.K.; Kelly, D.L.; McComb, R.D.; Kazmi, S.A.; White, M.L.; Zhang, Y.; Aizenberg, M.R. Assessment of vascularity in glioblastoma and its implications on patient outcomes. J. Neurooncol. 2017, 132, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Baumann, C.; Tichy, J.; Schaefer, J.H.; Steinbach, J.P.; Mittelbronn, M.; Wagner, M.; Foerch, C. Delay in diagnosing patients with right-sided glioblastoma induced by hemispheric-specific clinical presentation. J. Neurooncol. 2020, 146, 63–69. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Y.; Wang, K.; Liu, S.; Liu, Y.; Ma, J.; Li, S.; Jiang, T. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: A voxel-based mapping analysis. Neuroradiology 2016, 58, 69–75. [Google Scholar] [CrossRef]
- Zlatescu, M.C.; TehraniYazdi, A.; Sasaki, H.; Megyesi, J.F.; Betensky, R.A.; Louis, D.N.; Cairncross, J.G. Tumor location and growth pattern correlate with genetic signature in oligodendroglial neoplasms. Cancer Res. 2001, 61, 6713–6715. [Google Scholar]
- Pries, A.R.; Höpfner, M.; le Noble, F.; Dewhirst, M.W.; Secomb, T.W. The shunt problem: Control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer 2010, 10, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Emami Nejad, A.; Najafgholian, S.; Rostami, A.; Sistani, A.; Shojaeifar, S.; Esparvarinha, M.; Nedaeinia, R.; Haghjooy Javanmard, S.; Taherian, M.; Ahmadlou, M.; et al. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Ohta, H.; Nakano, S.; Yokogami, K.; Iseda, T.; Yoneyama, T.; Wakisaka, S. Appearance of early venous filling during intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: A predictive sign for hemorrhagic complications. Stroke 2004, 35, 893–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treps, L.; Faure, S.; Clere, N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis—Interest in making it a therapeutic target. Pharmacol. Ther. 2021, 223, 107805. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | |||||
---|---|---|---|---|---|
All Glioblastoma (n = 91) | Non-Early Venous Filling (n = 44) | Early Venous Filling (n = 47) | p | ||
Age in years, median, IQR | 64 (52–71) | 59 (45–71.8) | 66 (57–71) | 0.15 | |
Men, n (%) | 61 (67.0) | 28 (63.6) | 33 (70.2) | 0.5 | |
Lesion of tumor | |||||
Right, n (%) | 42 (46.2) | 13 (29.6) | 29 (61.7) | 0.007 | |
Left, n (%) | 41 (45.1) | 25 (56.8) | 16 (34.0) | ||
Middle, n (%) | 8 (0.9) | 6 (13.6) | 2 (4.3) | ||
Neopallium, n (%) | 81 (90.0) | 37 (86.1) | 44 (93.6) | 0.23 | |
Non-neopallium, n (%) | 9 (10) | 6 (13.9) | 3 (4.4) | ||
Baseline neurological findings | |||||
Modified Rankin Scale, median, IQR | 2 (1–4) | 2 (1–4) | 3 (2–4) | 0.54 | |
Karnofsky Performance Status, median, IQR | 70 (50–80) | 70 (52.5–90) | 70 (50–80) | 0.39 | |
MRI findings | |||||
Tumor size enhanced lesion, mm median, IQR | 4.9 (3.9–5.8) | 4.9 (2.8–6) | 4.9 (4.1–5.7) | 0.47 | |
Tumor size FLAIR high-intensity lesion, mm median, IQR | 7.7 (5.6–9.2) | 7.8 (5.3–9.3) | 7.5 (6.1–9.0) | 0.74 | |
Angiographical findings | |||||
Dural feeder, n (%) | 8 (8.9) | 0 (0) | 8 (17.4) | 0.006 | |
The degree of removal | |||||
Biopsy, n (%) | 10 (11.0) | 7 (15.9) | 3 (6.4) | 0.19 | |
Maximum safe removal, n (%) | 81 (89.0) | 37 (84.1) | 44 (93.6) | ||
Maximum safe removal | Partial removal, n (%) | 20 (22.0) | 10 (22.7) | 10 (21.3) | 0.65 |
Total (>90%) removal, n (%) | 61 (67.0) | 27 (61.4) | 34 (72.3) | ||
Adjuvant therapy | |||||
Non-adjuvant therapy, n (%) | 2 (2.2) | 2 (4.6) | 0 (0) | 0.22 | |
Chemotherapy and radiation therapy, n (%) | 87 (95.6) | 40 (90.9) | 47 (100) | ||
Only radiation therapy, n (%) | 1 (1.1) | 1 (2.3) | 0 (0) | ||
Others, n (%) | 1 (1.1) | 1 (2.3) | 0 (0) | ||
Avastin, n (%) | 26 (28.6) | 13 (29.6) | 13 (27.7) | 1 | |
Molecular features | |||||
IDH mutation, n (%) | 3 (3.8) | 3 (8.1) | 0 (0) | 0.09 | |
MGMT methylation, n (%) | 23 (32.4) | 13 (39.4) | 10 (26.3) | 0.24 | |
MIB1 index, median, IQR | 0.3 (0.2–0.4) | 0.3 (0.2–0.4) | 0.3 (0.2–0.4) | 0.83 | |
Follow-up | |||||
Reoperation, n (%) | 17 (18.7) | 9 (17.0) | 8 (20.5) | 0.67 | |
Follow-up duration, months median, IQR | 17 (9–26) | 21.5 (12–34.8) | 14 (8–21) | 0.01 |
Crude HR (95% CI) | p | |
---|---|---|
Right, n (%) | 1.25 (0.77–2.04) | 0.37 |
Total (>90%) removal, n (%) | 0.79 (0.49–1.29) | 0.35 |
Reoperation, n (%) | 0.98 (0.53–1.78) | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatebayashi, K.; Nakayama, N.; Sakamoto, D.; Iida, T.; Ono, S.; Matsuda, I.; Enomoto, Y.; Tanaka, M.; Fujita, M.; Hirota, S.; et al. Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma. Cancers 2023, 15, 3800. https://doi.org/10.3390/cancers15153800
Tatebayashi K, Nakayama N, Sakamoto D, Iida T, Ono S, Matsuda I, Enomoto Y, Tanaka M, Fujita M, Hirota S, et al. Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma. Cancers. 2023; 15(15):3800. https://doi.org/10.3390/cancers15153800
Chicago/Turabian StyleTatebayashi, Kotaro, Noriyuki Nakayama, Daisuke Sakamoto, Tomoko Iida, Shun Ono, Ikuo Matsuda, Yukiko Enomoto, Michihiro Tanaka, Mitsugu Fujita, Seiichi Hirota, and et al. 2023. "Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma" Cancers 15, no. 15: 3800. https://doi.org/10.3390/cancers15153800
APA StyleTatebayashi, K., Nakayama, N., Sakamoto, D., Iida, T., Ono, S., Matsuda, I., Enomoto, Y., Tanaka, M., Fujita, M., Hirota, S., & Yoshimura, S. (2023). Clinical Significance of Early Venous Filling Detected via Preoperative Angiography in Glioblastoma. Cancers, 15(15), 3800. https://doi.org/10.3390/cancers15153800