Amorphous Calcium Carbonate Shows Anti-Cancer Properties That are Attributed to Its Buffering Capacity
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. ACC Preparation Protocol
2.2. Evaluations of Various ACC and CCC Suspensions on Acidified Medium with Serum
2.3. Amorphous Phase Validation of ACC and Quantification via X-ray Diffraction (XRD) Analysis
2.4. Scanning Electron Microscopy (SEM) of ACC
2.5. In Vitro Culture of LLC and A549 Cell Lines
2.6. In Vivo Experiments with Lewis Lung Carcinoma Cells
2.7. Cathepsin B Activity Measurements
2.8. Xenograft Model of A549 Human NSCLC
2.9. Differential Gene Expression Evaluations of ACC-Treated A549 Cells
2.10. Statistics
3. Results
3.1. ACC and CCC Evaluation in an Acidified Medium with Serum
3.2. Amorphous Phase Validation of ACC by XRD Diffractograms
3.3. SEM of ACC
3.4. ACC Effect on A549 Proliferation
3.5. ACC Effect on LLC Tumor Growth Rates
3.6. ACC Effect on Cathepsin B Activity
3.7. ACC Effect on Human A549 NSCLC Xenograft Growth Rates
3.8. ACC Effect on the Differential Gene Expression of A549 Cells
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Nooreldeen, R.; Bach, H. Current and Future Development in Lung Cancer Diagnosis. Int. J. Mol. Sci. 2021, 22, 8661. [Google Scholar] [CrossRef] [PubMed]
- Mittal, V.; El Rayes, T.; Narula, N.; McGraw, T.E.; Altorki, N.K. Barcellos-Hoff MH. The Microenvironment of Lung Cancer and Therapeutic Implications. Adv. Exp. Med. Biol. 2016, 890, 75–110. [Google Scholar] [PubMed]
- Graves, E.E.; Maity, A.; Le, Q.T. The tumor microenvironment in non-small-cell lung cancer. Semin. Radiat. Oncol. 2010, 20, 156–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019, 95, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Payen, V.L.; Porporato, P.E.; Baselet, B.; Sonveaux, P. Metabolic changes associated with tumor metastasis, part 1: Tumor pH, glycolysis and the pentose phosphate pathway. Cell. Mol. Life Sci. 2016, 73, 1333–1348. [Google Scholar] [CrossRef]
- Porporato, P.E.; Payen, V.L.; Baselet, B.; Sonveaux, P. Metabolic changes associated with tumor metastasis, part 2: Mitochondria, lipid and amino acid metabolism. Cell. Mol. Life Sci. 2016, 73, 1349–1363. [Google Scholar] [CrossRef]
- Boedtkjer, E.; Pedersen, S.F. The Acidic Tumor Microenvironment as a Driver of Cancer. Annu. Rev. Physiol. 2020, 82, 103–126. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim-Hashim, A.; Estrella, V. Acidosis and cancer: From mechanism to neutralization. Cancer Metastasis. Rev. 2019, 38, 149–155. [Google Scholar] [CrossRef]
- Piasentin, N.; Milotti, E.; Chignola, R. The control of acidity in tumor cells: A biophysical model. Sci. Rep. 2020, 10, 13613. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Mayernik, L.; Moin, K.; Sloane, B.F. Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Rev. 2019, 38, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Thews, O.; Riemann, A. Tumor pH and metastasis: A malignant process beyond hypoxia. Cancer Metastasis Rev. 2019, 38, 113–129. [Google Scholar] [CrossRef]
- Justus, C.R.; Sanderlin, E.J.; Yang, L.V. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment. Int. J. Mol. Sci. 2015, 16, 11055–11086. [Google Scholar] [CrossRef] [Green Version]
- Rothberg, J.M.; Bailey, K.M.; Wojtkowiak, J.W.; Ben-Nun, Y.; Bogyo, M.; Weber, E.; Moin, K.; Blum, G.; Mattingly, R.R.; Gillies, R.J.; et al. Acid-mediated tumor proteolysis: Contribution of cysteine cathepsins. Neoplasia 2013, 15, 1125–1137. [Google Scholar] [CrossRef]
- Estrella, V.; Chen, T.; Lloyd, M.; Wojtkowiak, J.; Cornnell, H.H.; Ibrahim-Hashim, A.; Bailey, K.; Balagurunathan, Y.; Rothberg, J.M.; Sloane, B.F.; et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013, 73, 1524–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, G.J.; Peng, Z.K.; Lu, J.P.; Tang, F.Q. Cathepsins mediate tumor metastasis. World J. Biol. Chem. 2013, 4, 91–101. [Google Scholar] [CrossRef]
- Lyssiotis, C.A.; Kimmelman, A.C. Metabolic Interactions in the Tumor Microenvironment. Trends Cell Biol. 2017, 27, 863–875. [Google Scholar] [CrossRef] [Green Version]
- Tamura, R.; Tanaka, T.; Akasaki, Y.; Murayama, Y.; Yoshida, K.; Sasaki, H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: Perspectives for therapeutic implications. Med. Oncol. 2019, 37, 2. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Huber, V.; Camisaschi, C.; Berzi, A.; Ferro, S.; Lugini, L.; Triulzi, T.; Tuccitto, A.; Tagliabue, E.; Castelli, C.; Rivoltini, L. Cancer acidity: An ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin. Cancer Biol. 2017, 43, 74–89. [Google Scholar] [CrossRef]
- Domblides, C.; Lartigue, L.; Faustin, B. Control of the Antitumor Immune Response by Cancer Metabolism. Cells 2019, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Jin, Y.; Fan, Z. The Mechanism of Warburg Effect-Induced Chemoresistance in Cancer. Front. Oncol. 2021, 11, 698023. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wei, F.; Wu, Y.; He, Y.; Shi, L.; Xiong, F.; Gong, Z.; Guo, C.; Li, X.; Deng, H.; et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J. Exp. Clin. Cancer Res. 2018, 37, 87. [Google Scholar] [CrossRef] [PubMed]
- Bentov, S.; Weil, S.; Glazer, L.; Sagi, A.; Berman, A. Stabilization of amorphous calcium carbonate by phosphate rich organic matrix proteins and by single phosphoamino acids. J. Struct. Biol. 2010, 171, 207–215. [Google Scholar] [CrossRef]
- Meiron, O.E.; Bar-David, E.; Aflalo, E.D.; Shechter, A.; Stepensky, D.; Berman, A.; Sagi, A. Solubility and bioavailability of stabilized amorphous calcium carbonate. J. Bone Miner. Res. 2011, 26, 364–372. [Google Scholar] [CrossRef]
- Shaltiel, G.; Bar-David, E.; Meiron, O.E.; Waltman, E.; Shechter, A.; Aflalo, E.D.; Sagi, A. Bone loss prevention in ovariectomized rats using stable amorphous calcium carbonate. Health 2013, 5, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Vaisman, N.; Shaltiel, G.; Daniely, M.; Meiron, O.E.; Shechter, A.; Abrams, S.A.; Niv, E.; Shapira, Y.; Sagi, A. Increased calcium absorption from synthetic stable amorphous calcium carbonate: Double-blind randomized crossover clinical trial in postmenopausal women. J. Bone Miner. Res. 2014, 29, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Luo, Z.; Li, M.; Qu, Q.; Ma, X.; Yu, S.H.; Zhao, Y. A preloaded amorphous calcium carbonate/doxorubicin@silica nanoreactor for pH-responsive delivery of an anticancer drug. Angew. Chem. Int. Ed. Engl. 2015, 54, 919–922. [Google Scholar] [CrossRef] [PubMed]
- Trushina, D.B.; Borodina, T.N.; Belyakov, S.; Antipina, M.N. Calcium carbonate vaterite particles for drug delivery: Advances and challenges. Mater. Today Adv. 2022, 14, 100214. [Google Scholar] [CrossRef]
- Robey, I.F.; Baggett, B.K.; Kirkpatrick, N.D.; Roe, D.J.; Dosescu, J.; Sloane, B.F.; Hashim, A.I.; Morse, D.L.; Raghunand, N.; Gatenby, R.A.; et al. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 2009, 69, 2260–2268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim Hashim, A.; Cornnell, H.H.; Coelho Ribeiro Mde, L.; Abrahams, D.; Cunningham, J.; Lloyd, M.; Martinez, G.V.; Gatenby, R.A.; Gillies, R.J. Reduction of metastasis using a non-volatile buffer. Clin. Exp. Metastasis 2011, 28, 841–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, M.; Silva, A.S.; Bailey, K.; Kumar, N.B.; Sellers, T.A.; Gatenby, R.A.; Ibrahim Hashim, A.; Gillies, R.J. Buffer Therapy for Cancer. J. Nutr. Food Sci. 2012, 2, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, B.; Wong, W.Y.; Hegmann, E.; Gaspar, K.; Kumar, P.; Chao, H. Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer. Bioconjug. Chem. 2015, 26, 1144–1155. [Google Scholar] [CrossRef]
- Pilot, C.; Mahipal, A.; Gillies, R.J. Buffer Therapy → Buffer Diet. J. Nutr. Food Sci. 2018, 8, 684–688. [Google Scholar] [CrossRef]
- Som, A.; Raliya, R.; Tian, L.; Akers, W.; Ippolito, J.E.; Singamaneni, S.; Biswas, P.; Achilefu, S. Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale 2016, 8, 12639–12647. [Google Scholar] [CrossRef] [Green Version]
- Code of Federal Regulation Title 21: Food and Drugs; Chapter 1: Food and Drug Administration Department of Health and Human Services; Subchapter B: Food for Human Consumption (continued); Part 184: Direct Food Substances Affirmed as Generally Regarded as Safe. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1409 (accessed on 7 December 2022).
- To Study the Effect of Amorphous Calcium Carbonate (ACC) Treatment on Function and Welfare Improvement in Late-Stage Solid Cancer Subjects. Available online: https://clinicaltrials.gov/ct2/show/NCT03582280?term=Amorphical&draw=2&rank=6 (accessed on 7 December 2022).
- Improving Function, Welfare of Late-Stage Cancer Subjects by ACC. Available online: https://clinicaltrials.gov/ct2/show/NCT03057314?term=Amorphical&draw=2&rank=7 (accessed on 7 December 2022).
- Safety, Tolerability and Efficacy of Amorphous Calcium Carbonate (ACC) Compared to Placebo and Best Available Care (BAT), for the Treatment of Moderate to Severe COVID-19 Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT04900337?term=Amorphical&draw=2&rank=5 (accessed on 7 December 2022).
- Perše, M. Cisplatin Mouse Models: Treatment, Toxicity and Translatability. Biomedicines 2021, 9, 1406. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; Gillies, R.J. Tumor pH and its measurement. J. Nucl. Med. 2010, 51, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Edgar, R.; Domrachev, M.; Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Tamayo, P.; Mooth, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Zhang, Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front. Pharmacol. 2021, 12, 731798. [Google Scholar] [CrossRef] [PubMed]
- Inaguma, S.; Lasota, J.; Wang, Z.; Czapiewski, P.; Langfort, R.; Rys, J.; Szpor, J.; Waloszczyk, P.; Okoń, K.; Biernat, W.; et al. Expression of ALCAM (CD166) and PD-L1 (CD274) independently predicts shorter survival in malignant pleural mesothelioma. Hum. Pathol. 2018, 71, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Prestipino, A.; Zeiser, R. Clinical implications of tumor-intrinsic mechanisms regulating PD-L1. Sci. Transl. Med. 2019, 11, eaav4810. [Google Scholar] [CrossRef]
- Heib, V.; Sparber, F.; Tripp, C.H.; Ortner, D.; Stoitzner, P.; Heufler, C. Cytip regulates dendritic-cell function in contact hypersensitivity. Eur. J. Immunol. 2012, 42, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Zu, L.; He, J.; Zhou, N.; Zeng, J.; Zhu, Y.; Tang, Q.; Jin, X.; Zhang, L.; Xu, S. The Profile and Clinical Significance of ITGB2 Expression in Non-Small-Cell Lung Cancer. J. Clin. Med. 2022, 11, 6421. [Google Scholar] [CrossRef]
- Shao, C.; Huang, Y.; Fu, B.; Pan, S.; Zhao, X.; Zhang, N.; Wang, W.; Zhang, Z.; Qiu, Y.; Wang, R.; et al. Targeting c-Jun in A549 Cancer Cells Exhibits Antiangiogenic Activity In Vitro and In Vivo Through Exosome/miRNA-494-3p/PTEN Signal Pathway. Front. Oncol. 2021, 11, 663183. [Google Scholar] [CrossRef] [PubMed]
- Herreño, A.M.; Ramírez, A.C.; Chaparro, V.P.; Fernandez, M.J.; Cañas, A.; Morantes, C.F.; Moreno, O.M.; Brugés, R.E.; Mejía, J.A.; Bustos, F.J.; et al. Role of RUNX2 transcription factor in epithelial mesenchymal transition in non-small cell lung cancer lung cancer: Epigenetic control of the RUNX2 P1 promoter. Tumour Biol. 2019, 41, 1010428319851014. [Google Scholar] [CrossRef] [Green Version]
- Agresta, L.; Lehn, M.; Lampe, K.; Cantrell, R.; Hennies, C.; Szabo, S.; Wise-Draper, T.; Conforti, L.; Hoebe, K.; Janssen, E.M. CD244 represents a new therapeutic target in head and neck squamous cell carcinoma. J. Immunother. Cancer 2020, 8, e000245. [Google Scholar] [CrossRef]
- Cui, Q.; Ren, J.; Zhou, Q.; Yang, Q.; Li, B. Effect of asiatic acid on epithelial-mesenchymal transition of human alveolar epithelium A549 cells induced by TGF-β1. Oncol. Lett. 2019, 17, 4285–4292. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xue, M.; Du, S.; Feng, W.; Zhang, K.; Zhang, L.; Liu, H.; Jia, G.; Wu, L.; Hu, X.; et al. Competitive endogenous RNA is an intrinsic component of EMT regulatory circuits and modulates EMT. Nat. Commun. 2019, 10, 1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Weinberg, R.A. Epithelial-to-mesenchymal transition in cancer: Complexity and opportunities. Front. Med. 2018, 12, 361–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, M.; Khurana, P.; Sugadev, R. Lung cancer signature biomarkers: Tissue specific semantic similarity based clustering of digital differential display (DDD) data. BMC Res. Notes 2012, 5, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Gross, K.M.; Kuperwasser, C. Molecular regulation of Snai2 in development and disease. J. Cell Sci. 2019, 132, jcs235127. [Google Scholar] [CrossRef] [PubMed]
- Cobaleda, C.; Pérez-Caro, M.; Vicente-Dueñas, C.; Sánchez-García, I. Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu. Rev. Genet. 2007, 41, 41–61. [Google Scholar] [CrossRef]
- Jin, R.; Shen, J.; Zhang, T.; Liu, Q.; Liao, C.; Ma, H.; Li, S.; Yu, Z. The highly expressed COL4A1 genes contributes to the proliferation and migration of the invasive ductal carcinomas. Oncotarget 2017, 8, 58172–58183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.J.; Gil, M.; Lee, I.S. Association of Elevated Expression Levels of COL4A1 in Stromal Cells with an Immunosuppressive Tumor Microenvironment in Low-Grade Glioma, Pancreatic Adenocarcinoma, Skin Cutaneous Melanoma, and Stomach Adenocarcinoma. J. Pers. Med. 2022, 12, 534. [Google Scholar] [CrossRef]
- Zhuo, H.; Zhao, Y.; Cheng, X.; Xu, M.; Wang, L.; Lin, L.; Lyu, Z.; Hong, X.; Cai, J. Tumor endothelial cell-derived cadherin-2 promotes angiogenesis and has prognostic significance for lung adenocarcinoma. Mol. Cancer 2019, 18, 34. [Google Scholar] [CrossRef]
- Grinberg-Rashi, H.; Ofek, E.; Perelman, M.; Skarda, J.; Yaron, P.; Hajdúch, M.; Jacob-Hirsch, J.; Amariglio, N.; Krupsky, M.; Simansky, D.A.; et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin. Cancer Res. 2009, 15, 1755–1761. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chang, M.; Wang, N.; Zhuang, Y.; Wang, F.; Zhang, X.; Guo, M.; Lin, N.; Li, J.Z.; Wang, Q. Phosphatidylserine-Specific Phospholipase A1 Limits Aggressiveness of Lung Adenocarcinoma by Lysophosphatidylserine and Protein Kinase A-Dependent Pathway. Am. J. Pathol. 2022, 192, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.L.; Liu, Y.; Yang, J.X.; Wang, Y.Y.; Gong, B.C.; Jin, Y.; Qu, T.Y.; Xia, F.T.; Han, L.; Zhao, Q. B3GALT4 remodels the tumor microenvironment through GD2-mediated lipid raft formation and the c-met/AKT/mTOR/IRF-1 axis in neuroblastoma. J. Exp. Clin. Cancer Res. 2022, 41, 314. [Google Scholar] [CrossRef] [PubMed]
- Som, A.; Raliya, R.; Paranandi, K.; High, R.A.; Reed, N.; Beeman, S.C.; Brandenburg, M.; Sudlow, G.; Prior, J.L.; Akers, W.; et al. Calcium carbonate nanoparticles stimulate tumor metabolic reprogramming and modulate tumor metastasis. Nanomedicine. 2019, 14, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Rofstad, E.K.; Mathiesen, B.; Kindem, K.; Galappathi, K. Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res. 2006, 66, 6699–6707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riemann, A.; Schneider, B.; Gündel, D.; Stock, C.; Gekle, M.; Thews, O. Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility. Adv. Exp. Med. Biol. 2016, 876, 215–220. [Google Scholar] [PubMed]
- Chiche, J.; Brahimi-Horn, M.C.; Pouysségur, J. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. J. Cell. Mol. Med. 2010, 14, 771–794. [Google Scholar] [CrossRef] [Green Version]
- Vander Linden, C.; Corbet, C. Therapeutic Targeting of Cancer Stem Cells: Integrating and Exploiting the Acidic Niche. Front. Oncol. 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
- Rostamizadeh, L.; Molavi, O.; Rashid, M.; Ramazani, F.; Baradaran, B.; Lavasanaifar, A.; Lai, R. Recent advances in cancer immunotherapy: Modulation of tumor microenvironment by Toll-like receptor ligands. Bioimpacts 2022, 12, 261–290. [Google Scholar] [CrossRef] [PubMed]
- Raghunand, N.; He, X.; van Sluis, R.; Mahoney, B.; Baggett, B.; Taylor, C.W.; Paine-Murrieta, G.; Roe, D.; Bhujwalla, Z.M.; Gillies, R.J. Enhancement of chemotherapy by manipulation of tumour pH. Br. J. Cancer 1999, 80, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Wojtkowiak, J.W.; Verduzco, D.; Schramm, K.J.; Gillies, R.J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 2011, 8, 2032–2038. [Google Scholar] [CrossRef]
- Shirmanova, M.V.; Druzhkova, I.N.; Lukina, M.M.; Dudenkova, V.V.; Ignatova, N.I.; Snopova, L.B.; Shcheslavskiy, V.I.; Belousov, V.V.; Zagaynova, E.V. Chemotherapy with cisplatin: Insights into intracellular pH and metabolic landscape of cancer cells in vitro and in vivo. Sci. Rep. 2017, 7, 8911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Xie, J.; Li, J.; Liu, F.; Wu, X.; Wang, Z. Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin β5-mediated glycolysis. Am. J. Cancer Res. 2016, 6, 1108–1117. [Google Scholar] [PubMed]
- Todd, R.C.; Lovejoy, K.S.; Lippard, S.J. Understanding the effect of carbonate ion on cisplatin binding to DNA. J. Am. Chem. Soc. 2007, 129, 6301–6370. [Google Scholar] [CrossRef] [Green Version]
- McEvoy, G.K. (Ed.) American Hospital Formulary Service, Drug Information; American Society of Hospital Pharmacists: Bethesda, MD, USA, 1992. [Google Scholar]
- Hsu, P.P.; Sabatini, D.M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Herceg, Z.; Hainaut, P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol. Oncol. 2007, 1, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis 2000, 21, 485–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, D.W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol. Rev. 2012, 64, 706–721. [Google Scholar] [CrossRef] [Green Version]
Diseases or Functions | Predicted Activation | Activation z-Score |
---|---|---|
Glucose metabolism disorder | Decreased | −2.866 |
Lymphoreticular neoplasm | Decreased | −2.627 |
Cancer of cells | Decreased | −2.543 |
Dysglycemia | Decreased | −2.441 |
Development of digestive organ tumor | Decreased | −2.304 |
Migration of smooth muscle cells | Decreased | −2.258 |
Cell movement of smooth muscle cells | Decreased | −2.218 |
Tumorigenesis of epithelial neoplasm | Decreased | −2.177 |
Lymphohematopoietic cancer | Decreased | −2.174 |
Hematologic cancer | Decreased | −2.174 |
Myeloid or lymphoid neoplasm | Decreased | −2.167 |
Neoplasia of blood cells | Decreased | −2.164 |
Growth of smooth muscle | Decreased | −2.158 |
Synthesis of glycosaminoglycan | Decreased | −2.154 |
Formation of solid tumor | Decreased | −2.153 |
Liver lesion | Decreased | −2.152 |
Hematological or lymphatic system tumor | Decreased | −2.095 |
Hematologic cancer of cells | Decreased | −2.064 |
Proliferation of smooth muscle cells | Decreased | −2.037 |
Lymphoma | Decreased | −2.011 |
Lymphatic system tumor | Decreased | −2.004 |
Immune mediated inflammatory disease | Increased | 2.031 |
Cell death of immune cells | Increased | 2.11 |
Differentiation of mononuclear leukocytes | Increased | 2.117 |
Breast or ovarian carcinoma | Increased | 2.178 |
Breast cancer | Increased | 2.178 |
Acute lung injury | Increased | 2.188 |
Transport of metal | Increased | 2.214 |
Transport of metal ion | Increased | 2.322 |
Relaxation of muscle | Increased | 2.348 |
Breast or ovarian cancer | Increased | 2.373 |
Breast or gastric cancer | Increased | 2.373 |
Breast or gynecological cancer | Increased | 2.373 |
Lung injury | Increased | 2.386 |
Transport of monovalent inorganic cation | Increased | 2.433 |
Transport of inorganic cation | Increased | 2.496 |
Multiple cancers | Increased | 2.556 |
Breast or pancreatic cancer | Increased | 2.557 |
Secretion of molecule | Increased | 2.581 |
Leukopoiesis | Increased | 2.654 |
Cellular homeostasis | Increased | 2.712 |
Transport of molecule | Increased | 3.239 |
Gene Name (Encoded Protein) | ACC Effect on Gene Expression Fold Change (p Value; p adj) | Potential Outcome Meaning and Relevant References |
---|---|---|
CD274 (PDL-1) | −3.8 (0; 0) | Activation of the immune response [47,48,49] |
CYTIP (Cytohesin 1-Interacting Protein) | +72.5 (3.75 × 10−5; 2.62 × 10−4) | Activation of the immune response of T cells [50]. |
ITGB2 (CD18) | +7.2 (0; 0) | ITGB2 overexpression inhibited the proliferation, migration, and invasion of NSCLC cell lines [51]. |
JUN (Protooncogene JUN) | −3.6 (0; 0) | Inhibition of c-JUN decreased angiogenesis in A549 cells in vivo and in vitro [52]. |
RUNX2 (RUNX2 or CBF- alpha-1) | −15.35 (0; 0) | RUNX2 was overexpressed in the tissues of patient with primary NSCLC and lung metastasis. Moreover, overexpression observed when epithelial–mesenchymal transition (EMT) increased. Additionally, absence of RUNX2 decreased EMT and invasion capacity in A549 cells [53]. |
CD244/2B4 (CD244) | −227.54 (0.00441; 0.0191) | CD244 is an immunomodulator of T-cells and NK cells. It is associated with an immunosuppressive environment in cancer [54]. |
TGFB1-(TGF β) | −1.6 (0; 0) | TGF-β1 signaling is a potent inducer of the EMT in various types of cancer, including NSCLC [55,56] and specifically in A549 cells [57]. |
TMSB4X (Thymosin beta4) | −1.67 (0; 0) | Upregulation of TMSB4X was found to be associated with chemoresistance in lung cancer tissues [58]. |
SNAI2/SLUG-(Snail Family Transcriptional Repressor 2) | −3.758 (0.0031; 0.014) | Overexpression of SNAI2 is associated with EMT and poor prognosis of cancer patients [59] and with loss of E-cadherin (which is associated with increased infiltration and invasiveness) [60]. |
COL4A1 (collagen type IV alpha chain 1) | −2.14 (0; 0) | Overexpression is associated with increased proliferation and migration and poor prognosis in several cancers [61,62] |
CDH2 (Cadherin-2) | −1.42 (0; 0) | High expression is associated with angiogenesis promotion and poor survival in lung cancer [63], as well as with increased likelihood of brain metastasis [64]. |
PLA1A (phosphatidylserine-specific phospholipase A1) | +3.43 (1.29 × 10−8; 1.5 × 10−7) | Overexpression has been found to limit aggressiveness in lung adenocarcinoma [65] |
B3GALT4 | +1.42 (10−10; 1.3 × 10−9) | Overexpression associated with remodeling of TME and enhancing immunotherapy efficacy [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natan, Y.; Blum, Y.D.; Arav, A.; Poliansky, Y.; Neuman, S.; Ecker Cohen, O.; Ben, Y. Amorphous Calcium Carbonate Shows Anti-Cancer Properties That are Attributed to Its Buffering Capacity. Cancers 2023, 15, 3785. https://doi.org/10.3390/cancers15153785
Natan Y, Blum YD, Arav A, Poliansky Y, Neuman S, Ecker Cohen O, Ben Y. Amorphous Calcium Carbonate Shows Anti-Cancer Properties That are Attributed to Its Buffering Capacity. Cancers. 2023; 15(15):3785. https://doi.org/10.3390/cancers15153785
Chicago/Turabian StyleNatan, Yehudit, Yigal Dov Blum, Amir Arav, Ylena Poliansky, Sara Neuman, Orit Ecker Cohen, and Yossi Ben. 2023. "Amorphous Calcium Carbonate Shows Anti-Cancer Properties That are Attributed to Its Buffering Capacity" Cancers 15, no. 15: 3785. https://doi.org/10.3390/cancers15153785
APA StyleNatan, Y., Blum, Y. D., Arav, A., Poliansky, Y., Neuman, S., Ecker Cohen, O., & Ben, Y. (2023). Amorphous Calcium Carbonate Shows Anti-Cancer Properties That are Attributed to Its Buffering Capacity. Cancers, 15(15), 3785. https://doi.org/10.3390/cancers15153785