Immunonutrition in Radical Cystectomy: State of the Art and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novara, G.; Catto, J.W.; Wilson, T.; Annerstedt, M.; Chan, K.; Murphy, D.G.; Motttrie, A.; Peabody, J.O.; Skinner, E.C.; Wiklund, P.N.; et al. Systematic review and cumulative analysis of perioperative outcomes and complications after robot-assisted radical cystectomy. Eur. Urol. 2015, 67, 376–401. [Google Scholar] [CrossRef] [PubMed]
- EAU Guidelines. Presented at the EAU Annual Congress, Milan, Italy, 10–13 March 2023; ISBN 978-94-92671-19-6.
- Shabsigh, A.; Korets, R.; Vora, K.C.; Brooks, C.M.; Cronin, A.M.; Savage, C.; Raj, G.; Bochner, B.H.; Dalbagni, G.; Herr, H.W.; et al. Defining early morbidity of radical cystectomy for patients with bladder cancer using a standardized reporting methodology. Eur. Urol. 2009, 55, 164–176. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Cindolo, L.; Leonardo, C.; Antonelli, A.; Ceruti, C.; Franco, G.; Falsaperla, M.; Gallucci, M.; Alvarez-Maestro, M.; Minervini, A.; et al. Analysis of radical cystectomy and urinary diversion complications with the Clavien classification system in an Italian real life cohort. Eur. J. Surg. Oncol. 2013, 39, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Xue, Y.; Zhao, J.; Liu, A.; Zhang, Z.; Sun, Y.; Xu, C. Total parenteral nutrition versus early enteral nutrition after cystectomy: A meta-analysis of postoperative outcomes. Int. Urol. Nephrol. 2018, 51, 1–7. [Google Scholar] [CrossRef]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef]
- Tobert, C.M.; Hamilton-Reeves, J.M.; Norian, L.A.; Hung, C.; Brooks, N.A.; Holzbeierlein, J.M.; Downs, T.M.; Robertson, D.P.; Grossman, R.; Nepple, K.G. Emerging Impact of Malnutrition on Surgical Patients: Literature Review and Potential Implications for Cystectomy in Bladder Cancer. J. Urol. 2017, 198, 511–519. [Google Scholar] [CrossRef]
- Cerantola, Y.; Valerio, M.; Hubner, M.; Iglesias, K.; Vaucher, L.; Jichlinski, P. Are patients at nutritional risk more prone to complications after major urological surgery? J. Urol. 2013, 190, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Gregg, J.R.; Cookson, M.S.; Phillips, S.; Salem, S.; Chang, S.S.; Clark, P.E.; Davis, R.; Stimson, C.J., Jr.; Aghazadeh, M.; Smith, J.A., Jr.; et al. Effect of preoperative nutritional deficiency on mortality after radical cystectomy for bladder cancer. J. Urol. 2011, 185, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Steenhagen, E. Preoperative nutritional optimization of esophageal cancer patients. J. Thorac. Dis. 2019, 11 (Suppl. S5), S645–S653. [Google Scholar] [CrossRef]
- Rovesti, G.; Valoriani, F.; Rimini, M.; Bardasi, C.; Ballarin, R.; Di Benedetto, F.; Menozzi, R.; Dominici, M.; Spallanzani, A. Clinical Implications of Malnutrition in the Management of Patients with Pancreatic Cancer: Introducing the Concept of the Nutritional Oncology Board. Nutrients 2021, 13, 3522. [Google Scholar] [CrossRef]
- Preiser, J.C.; Ichai, C.; Orban, J.C.; Groeneveld, A.B. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014, 113, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Pribis, J.P.; Rodriguez, P.C.; Morris, S.M., Jr.; Vodovotz, Y.; Billiar, T.R.; Ochoa, J.B. The central role of arginine catabolism in T-cell dysfunction and increased susceptibility to infection after physical injury. Ann. Surg. 2014, 259, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Casirati, A.; Da Prat, V.; Cereda, E.; Serra, F.; Perrone, L.; Corallo, S.; De Lorenzo, F.; Pedrazzoli, P.; Caccialanza, R. The Key Role of Patient Empowerment in the Future Management of Cancer-Related Malnutrition. Nutrients 2023, 15, 235. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.P.; Ashurst, I.; Ballesteros, M.D.; Bear, D.E.; Cruz-Jentoft, A.J.; Genton, L.; Landi, F.; Laviano, A.; Norman, K.; Prado, C.M. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J. Am. Med. Dir. Assoc. 2019, 20, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.; Antoun, S.; Sawyer, M.B.; Baracos, V.E. Two faces of drug therapy in cancer: Drug-related lean tissue loss and its adverse consequences to survival and toxicity. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 250–254. [Google Scholar] [CrossRef]
- Pin, F.; Couch, M.E.; Bonetto, A. Preservation of muscle mass as a strategy to reduce the toxic effects of cancer chemotherapy on body composition. Curr. Opin. Support. Palliat. Care 2018, 12, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Barreto, R.; Waning, D.L.; Gao, H.; Liu, Y.; Zimmers, T.A.; Bonetto, A. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Oncotarget 2016, 7, 43442–43460. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.; Gal, J.; Freifeld, Y.; Khoury, S.; Dekel, Y.; Hofman, A.; Malshi, K.; Amiel, G.; Sagi, I.; Leibovici, I.; et al. Nutritional Status Impairment Due to Neoadjuvant Chemotherapy Predicts Post-Radical Cystectomy Complications. Nutrients 2021, 13, 4471. [Google Scholar] [CrossRef]
- Fukushima, H.; Koga, F. Impact of sarcopenia in bladder preservation therapy for muscle-invasive bladder cancer patients: A narrative review. Transl. Androl. Urol. 2022, 11, 1433–1441. [Google Scholar] [CrossRef]
- Pathak, R.A.; Hemal, A.K. Frailty and sarcopenia impact surgical and oncologic outcomes after radical cystectomy in patients with bladder cancer. Transl. Androl. Urol. 2018, 7 (Suppl. S6), S763–S764. [Google Scholar] [CrossRef]
- Tourkochristou, E.; Triantos, C.; Mouzaki, A. The Influence of Nutritional Factors on Immunological Outcomes. Front. Immunol. 2021, 12, 665968. [Google Scholar] [CrossRef]
- Phillips, S.M.; Paddon-Jones, D.; Layman, D.K. Optimizing Adult Protein Intake During Catabolic Health Conditions. Adv. Nutr. Int. Rev. J. 2020, 11, S1058–S1069. [Google Scholar] [CrossRef]
- Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Fearon, K.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN guidelines on nutrition in cancer patients. Clin. Nutr. 2017, 36, 11–48. [Google Scholar] [CrossRef] [Green Version]
- Caccialanza, R.; Cotogni, P.; Cereda, E.; Bossi, P.; Aprile, G.; Delrio, P.; Gnagnarella, P.; Mascheroni, A.; Monge, T.; Corradi, E.; et al. Nutritional Support in Cancer patients: Update of the Italian Intersociety Working Group practical recommendations. J. Cancer 2022, 13, 2705–2716. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.; Birkhäuser, F.D.; Zehnder, P.; Thalmann, G.N.; Huwyler, M.; Burkhard, F.C.; Studer, U.E. Parenteral nutrition does not improve postoperative recovery from radical cystectomy: Results of a prospective randomised trial. Eur. Urol. 2013, 63, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Arnold, N.; Vartolomei, M.D.; Kiss, B.; Burkhard, F.; Thalmann, G.N.; Roth, B. Oncological and functional outcomes of postoperative total parenteral nutrition after radical cystectomy in bladder cancer patients: A single-center randomized trial. Int. J. Urol. 2016, 23, 992–999. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Immunonutrition in surgical and critically ill patients. Br. J. Nutr. 2007, 98 (Suppl. S1), S133–S139. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.S.; Aly, E.H. The effects of enteral immunonutrition in upper gastrointestinal surgery: A systematic review and meta-analysis. Int. J. Surg. 2016, 29, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Zheng, X.; Wang, G.; Liu, M.; Li, Y.; Yu, P.; Yang, M.; Guo, N.; Ma, X.; Bu, Y.; et al. Immunonutrition vs Standard Nutrition for Cancer Patients: A Systematic Review and Meta-Analysis (Part 1). JPEN J. Parenter. Enteral Nutr. 2020, 44, 742–767. [Google Scholar] [CrossRef]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hübner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN practical guideline: Clinical nutrition in surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, J.; Zhang, L.; Wu, J.; Zhan, Z. Enteral immunonutrition versus enteral nutrition for gastric cancer patients undergoing a total gastrectomy: A systematic review and meta-analysis. BMC Gastroenterol. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Sun, X.; Xin, Q.; Cheng, Y.; Zhan, Z.; Zhang, J.; Wu, J. Effect of immunonutrition on colorectal cancer patients undergoing surgery: A meta-analysis. Int. J. Colorectal. Dis. 2018, 33, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.A.; Chen, Y.C.; Tiong, C. Immunonutrition in Patients with Pancreatic Cancer Undergoing Surgical Intervention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020, 12, 2798. [Google Scholar] [CrossRef]
- Alsyouf, M.; Djaladat, H.; Daneshmand, S. An emerging role for immuno-nutrition in patients undergoing radical cystectomy. Nat. Rev. Urol. 2022, 19, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Senagore, A. Immunonutrition within enhanced recovery after surgery (ERAS): An unresolved matter. Perioper. Med. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Oberle, A.D.; West, J.M.; Tobert, C.M.; Conley, G.L.; Nepple, K.G. Optimizing Nutrition Prior to Radical Cystectomy. Curr. Urol. Rep. 2018, 19, 99. [Google Scholar] [CrossRef]
- Bertrand, J.; Siegler, N.; Murez, T.; Poinas, G.; Segui, B.; Ayuso, D.; Gres, P.; Wagner, L.; Thuret, R.; Costa, P.; et al. Impact of preoperative immunonutrition on morbidity following cystectomy for bladder cancer: A case-control pilot study. World J. Urol. 2014, 32, 233–237. [Google Scholar] [CrossRef]
- Hamilton-Reeves, J.M.; Bechtel, M.D.; Hand, L.K.; Schleper, A.; Yankee, T.M.; Chalise, P.; Lee, E.K.; Mirza, M.; Wyre, H.; Griffin, J.; et al. Effects of Immunonutrition for Cystectomy on Immune Response and Infection Rates: A Pilot Randomized Controlled Clinical Trial. Eur. Urol. 2016, 69, 389–392. [Google Scholar] [CrossRef] [Green Version]
- Lyon, T.D.; Turner, R.M., II; McBride, D.; Wang, L.; Gingrich, J.R.; Hrebinko, R.L.; Jacobs, B.L.; Davies, B.J.; Tarin, T.V. Preoperative immunonutrition prior to radical cystectomy: A pilot study. Can. J. Urol. 2017, 24, 8895–8901. [Google Scholar]
- Hamilton-Reeves, J.M.; Stanley, A.; Bechtel, M.D.; Yankee, T.M.; Chalise, P.; Hand, L.K.; Lee, E.K.; Smelser, W.; Mirza, M.; Wyre, H.; et al. Perioperative Immunonutrition Modulates Inflammatory Response after Radical Cystectomy: Results of a Pilot Randomized Controlled Clinical Trial. J. Urol. 2018, 200, 292–301. [Google Scholar] [CrossRef]
- Kukreja, J.B.; Seif, M.; Lozano, M.; Wang, X.; Hwang, H.; Kamat, A.; Dinney, C.; Navai, N. MP38-09 Preoperative immunonutrition in patients treated with radical cystectomy, results from a phase 1, “Oral immunonutrition to enhance recovery after surgery” Feasibility trial. J. Urol. 2019, 201 (Suppl. S4), e537. [Google Scholar]
- Ritch, C.R.; Cookson, M.S.; Clark, P.E.; Chang, S.S.; Fakhoury, K.; Ralls, V.; Thu, M.H.; Penson, D.F.; Smith, J.A., Jr.; Silver, H.J. Perioperative Oral Nutrition Supplementation Reduces Prevalence of Sarcopenia following Radical Cystectomy: Results of a Prospective Randomized Controlled Trial. J. Urol. 2019, 201, 470–477. [Google Scholar] [CrossRef]
- Cozzi, G.; Musi, G.; Milani, M.; Jemos, C.; Gandini, S.; Mazzoleni, L.; Ferro, M.; Luzzago, S.; Bianchi, R.; Omodeo Salé, E.; et al. Impact of Perioperative Immunonutrition on Complications in Patients Undergoing Radical Cystectomy: A Retrospective Analysis. Integr. Cancer Ther. 2021, 20, 15347354211019483. [Google Scholar] [CrossRef]
- Khaleel, S.; Regmi, S.; Hannah, P.; Watarai, B.; Sathianathen, N.; Weight, C.; Konety, B. Impact of Preoperative Immunonutrition on Perioperative Outcomes following Cystectomy. J. Urol. 2021, 206, 1132–1138. [Google Scholar] [CrossRef]
- Patel, S.Y.; Trona, N.; Alford, B.; Laborde, J.M.; Kim, Y.; Li, R.; Manley, B.J.; Gilbert, S.M.; Sexton, W.J.; Spiess, P.E.; et al. Preoperative immunonutrition and carbohydrate loading associated with improved bowel function after radical cystectomy. Nutr. Clin. Pract. 2022, 37, 176–182. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerksen, D.R.; Laporte, M.; Jeejeebhoy, K. Evaluation of Nutrition Status Using the Subjective Global Assessment: Malnutrition, Cachexia, and Sarcopenia. Nutr. Clin. Pract. 2021, 36, 942–956. [Google Scholar] [CrossRef]
- Mogensen, K.M.; Malone, A.; Becker, P.; Cutrell, S.; Frank, L.; Gonzales, K.; Hudson, L.; Miller, S.; Guenter, P.; Malnutrition Committee of the American Society for Parenteral and Enteral Nutrition (ASPEN). Academy of Nutrition and Dietetics/American Society for Parenteral and Enteral Nutrition Consensus Malnutrition Characteristics: Usability and Association with Outcomes. Nutr. Clin. Pract. 2019, 34, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Jager-Wittenaar, H.; Ottery, F.D. Assessing nutritional status in cancer: Role of the Patient-Generated Subjective Global Assessment. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 322–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, M.C.; Zargar, H.; Bolton, D.M.; Murphy, D.G.; Lawrentschuk, N. Enhanced Recovery After Surgery protocols for radical cystectomy surgery: Review of current evidence and local protocols. ANZ J. Surg. 2015, 85, 514–520. [Google Scholar] [CrossRef]
- Alam, S.M.; Michel, C.; Robertson, H.; Camargo, J.T.; Linares, B.; Holzbeierlein, J.; Hamilton-Reeves, J. Optimizing Nutritional Status in Patients Undergoing Radical Cystectomy: A Systematic Scoping Review. Bladder Cancer 2021, 7, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Burden, S.; Billson, H.A.; Lal, S.; Owen, K.A.; Muneer, A. Perioperative nutrition for the treatment of bladder cancer by radical cystectomy. Cochrane Database Syst Rev. 2019, 5, CD010127. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.L.; Kleckner, I.R.; Jatoi, A.; Schwarz, E.M.; Dunne, R.F. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM Clin. Rep. 2018, 3, e00065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1st Author Year, Country | Design | Sample Size, Males (%) | Age (Mean ± SD) or (Median (Range)), Years | Histology Neoadjuvant Chemotherapy (Yes/Sample) | Intervention | Type of IMN [Immuno-Nutrients] | Significant Results (IMN vs. ONS) |
---|---|---|---|---|---|---|---|
Bertrand J 2014, France [38] | Prospective Multicenter, pilot case–control study | 60 30 IMN, 77% 30 CG, 83% | IMN: 70 (52–85) CG: 69 (50–89) | Bladder carcinoma 4/30 (both IMN and CG) | 3 IMN cartons/day for 7 d before RC vs. retrospective, matched CG without IMN | Oral Impact® Nestlé Health Science [arginine, nucleotides, omega-3 fatty acids] | Postoperative complications: 40% vs. 77%, p = 0.008; Antibiotic use: 23% vs. 60%, p = 0.008; Paralytic ileus at day 7: 7% vs. 33%, p = 0.002; Pyelonephritis: 17% vs. 47%, p = 0.003; LOS: −3 days (overall), p = 0.51; The compliance rate in the IMN group was 87%. |
Hamilton-Reeves JM 2016, USA [39] | Prospective Pilot RCT | 29, 100% 14 IMN 15 ONS | IMN: 70 ± 7 ONS: 68 ± 8 | Bladder carcinoma 7/14 4/15 | 3 IMN cartons/day vs. 3 ONS (Boost Plus®) cartons/day for 5 d before and 5 d after RC | Impact Advanced Recovery® Nestlé Health Science [arginine, omega-3 fatty acids, vitamin A, nucleotides] | IMN group compared to ONS: MDSC was lower 2 d after RC (p < 0.001); NLR was lower 3 h after the first incision (p = 0.039); Postoperative complications at 90 d: 14% vs. 47%, p = 0.06; Infection rate: −39%, p 0.027; 71% (10/14) reported that they consumed all IMN cartons before surgery; 86% (12/14) resumed supplementation within 24 h of surgery. |
Lyon TD 2017, USA [40] | Prospective Phase II pilot study + retrospective control group | 144 40 IMN, 72% 104 CG, 70% | IMN: 70 (63–78) CG: 69 (61–76) | Not specified 6/40 9/104 | 4 IMN cartons/day for 5 d before RC vs. CG without IMN | Impact Advanced Recovery® Nestlé Health Science [arginine, omega-3 fatty acids, vitamin A, nucleotides] | 83% of patients consumed all prescribed volume; No serious adverse events were reported. |
Hamilton-Reeves JM 2018, USA [41] | Prospective Pilot RCT | 29, 100% 14 IMN 15 ONS | IMN: 70 ± 7 ONS: 68 ± 8 | Bladder carcinoma 7/14 4/15 | 3 IMN cartons/day vs. 3 ONS (Boost Plus® Nestlé Health Science) cartons/day for 5 d before and 5 d after RC | Impact Advanced Recovery® Nestlé Health Science [arginine, omega-3 fatty acids, vitamin A, nucleotides] | Th1-to-Th2 ratio: +54% vs. −5%, p = 0.027; IL-6: 43% lower in the IMN group on POD2, p = 0.020; Arginine: reduction of 26% from baseline to POD2 in the ONS group, p = 0.0003. |
Kukreja JB 2019, USA [42] | Prospective Pilot RCT | 46, gender not specified 23 IMN 23 CG | Not specified | Not specified Not specified | Arginine supplement (120 mL/day) + omega-3 fatty acids capsules (4 g/day) for 5 d before and 14 d after RC CG intervention was not reported | Not specified [arginine, omega-3 fatty acids] | 76% of dose was consumed. |
Ritch CR 2019, USA [43] | Prospective Pilot RCT | 61 31 IMN, 84% 30 ONS, 93% | Median 68 IMN: 69 ONS: 67 | Urothelial bladder carcinoma | 2 IMN cartons/day vs. 2 ONS (Member’s Mark® Multivitamin) cartons/day for 3–4 w before and 4 w after RC | Ensure® Clinical Strength [omega-3 fatty acids, b-hydroxy b-methyl butyrate] | WL: −5 vs. −6.5 kg, p = 0.04; Muscle mass loss: −5 vs. −3.2 cm2/m2, p = 0.01; Sarcopenic obesity: −33% vs. −17%, p = 0.01. The compliance rate was 88% in IMN group. |
Cozzi G 2021, Italy [44] | Retrospective study | 52 26 IMN, 81% 26 CG, 81% | IMN: 68 (57–71) CG: 68 (63–71) | Not specified 11/26 12/26 | 3 IMN cartons/day for 7 d before RC + 2/day for 7 d postoperatively vs. CG without IMN | Oral Impact® Nestlé Health Science [arginine, nucleotides, omega-3 fatty acids] | Documented infections: 38% vs. 8%, p = 0.009; Readmission rate: 15% vs. 0%, p = 0.03; 92% of patients consumed all IMN volume before RC. After, 88% had an adherence < 80%. |
Khaleel S 2021, USA [45] | Retrospective study | 204, 76% 104 IMN 100 CG | 69 (60–75) | Bladder cancer 93/204 | 1 IMN carton/day for 5 d before RC vs. CG without IMN | Impact® Nestlé HealthCare Nutrition [arginine, nucleotides, omega-3 fatty acids] | Postoperative TPN: 17% vs. 36%, p = 0.015; Postoperative infections: 25% vs. 45%, p = 0.003); Urinary tract infections: 8% vs. 19%, p = 0.02; C. difficile colitis: 3% vs. 12%, p = 0.015. |
Patel SY 2022, USA [46] | Retrospective Case–control study | 170 78 IMN, 90% 92 CG, 85% | IMN: 71 (43–87) CG: 71 (41–89) | Not specified | 3 IMN cartons/day for 5 d before surgery + maltodextrin the night before surgery and 2 h prior to surgery vs. CG without IMN | Not specified [arginine, nucleotides, omega-3 fatty acids] | Return of bowel function: 3.12 d vs. 3.74, p = 0.003; The compliance was 100%. |
1st Author Year, Country | BMI | Weight Loss | Muscle Mass | Food Intake | Compliance Rate to IMN | Nutritional Risk Screening or Nutritional Assessment |
---|---|---|---|---|---|---|
Bertrand J 2014, France [38] | / | / | / | / | yes | / |
Hamilton-Reeves JM 2016, USA [39] | yes | yes | / | yes | yes | PG-SGA |
Lyon TD 2017, USA [40] | yes | / | / | / | yes | / |
Hamilton-Reeves JM 2018, USA [41] | yes | yes | DXA | yes | yes | PG-SGA |
Kukreja JB 2019, USA [42] | / | / | / | / | yes | / |
Ritch CR 2019, USA [43] | yes | yes | CT, DXA | yes | yes | / |
Cozzi G 2021, Italy [44] | yes | yes | / | / | yes | MUST |
Khaleel S 2021, USA [45] | yes | / | / | / | / | / |
Patel SY 2022, USA [46] | yes | / | / | / | yes | / |
1st Author Year, Country | Aim |
---|---|
Bertrand J 2014, France [38] | To evaluate postoperative complications in a consecutive prospective group of patients receiving preoperative IMN and to compare the results with a retrospective matched group without IMN. |
Hamilton-Reeves JM 2016, USA [39] | To evaluate the efficacy of IMN on immune response and infection rates in men consuming either IMN or standard ONS before and after RC. |
Lyon TD 2017, USA [40] | To investigate the effect of preoperative high-arginine IMN supplementation prior to RC and to compare it to historical controls. |
Hamilton-Reeves JM 2018, USA [41] | To evaluate the impact of perioperative IMN intake on the Th1–Th2 balance, IL-6 concentration, and nutritional status compared to ONS controls. |
Kukreja JB 2019, USA [42] | To test a novel IMN regimen and to investigate its acceptability and tolerability in the perioperative period. |
Ritch CR 2019, USA [43] | To evaluate the effects of a IMN enriched ONS vs. standard ONS on body composition, serum biomarkers, nutrient intakes, inpatient and post-discharge complications, readmission rates, and mortality after RC. |
Cozzi G 2021, Italy [44] | To report the incidence of surgical complications in patients who received perioperative IMN compared with retrospective controls who did not, and to investigate factors associated with complications. |
Khaleel S 2021, USA [45] | To evaluate the role of IMN on postoperative outcomes and LOS in a large series of bladder cancer patients who received IMN prior to RC and compare their outcomes to a matched group who did not receive IMN. |
Patel SY 2022, USA [46] | To investigate the effects of pre-operative IMN and carbohydrate loading on perioperative and recovery outcomes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casirati, A.; Da Prat, V.; Bettiga, A.; Aretano, L.; Trevisani, F.; Cereda, E.; Briganti, A.; Colombo, E.; Preziati, G.; De Simeis, F.; et al. Immunonutrition in Radical Cystectomy: State of the Art and Perspectives. Cancers 2023, 15, 3747. https://doi.org/10.3390/cancers15143747
Casirati A, Da Prat V, Bettiga A, Aretano L, Trevisani F, Cereda E, Briganti A, Colombo E, Preziati G, De Simeis F, et al. Immunonutrition in Radical Cystectomy: State of the Art and Perspectives. Cancers. 2023; 15(14):3747. https://doi.org/10.3390/cancers15143747
Chicago/Turabian StyleCasirati, Amanda, Valentina Da Prat, Arianna Bettiga, Lucia Aretano, Francesco Trevisani, Emanuele Cereda, Alberto Briganti, Elisa Colombo, Giorgia Preziati, Francesca De Simeis, and et al. 2023. "Immunonutrition in Radical Cystectomy: State of the Art and Perspectives" Cancers 15, no. 14: 3747. https://doi.org/10.3390/cancers15143747
APA StyleCasirati, A., Da Prat, V., Bettiga, A., Aretano, L., Trevisani, F., Cereda, E., Briganti, A., Colombo, E., Preziati, G., De Simeis, F., Salonia, A., Montorsi, F., Caccialanza, R., & Naspro, R. (2023). Immunonutrition in Radical Cystectomy: State of the Art and Perspectives. Cancers, 15(14), 3747. https://doi.org/10.3390/cancers15143747