Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Tissue Samples
2.2. Immunohistochemistry
3. Results
3.1. HLA Class II
3.1.1. HLA-DR
Reactive Lesions
Neoplastic Lesions
3.2. Cell Cycle Group
3.2.1. Cyclin D1
Reactive Lesions
Neoplastic Lesions
3.2.2. Cyclin E
Reactive Lesions
Neoplastic Lesions
3.2.3. p16
Reactive Lesions
Neoplastic Lesions
3.2.4. p21
Reactive Lesions
Neoplastic Lesions
3.3. Bone Metabolism Group
3.3.1. Receptor Activator of Nuclear Factor κB (RANK)
Reactive Lesions
Neoplastic Lesions
3.3.2. Receptor Activator of Nuclear Factor κB Ligand (RANK-L)
Reactive Lesions
Neoplastic Lesions
3.3.3. Osteoprotegerin (OPG)
Reactive Lesions
Neoplastic Lesions
3.3.4. Osteonectin
Reactive Lesions
Neoplastic Lesions
3.3.5. Osteopontin
Reactive Lesions
Neoplastic Lesions
3.3.6. Tartrate Resistant Acid Phosphatase (TRAP)
Reactive Lesions
Neoplastic Lesions
3.3.7. Runt-Related Transcription Factor 2 (RUNX2)
Reactive Lesions
Neoplastic Lesions
3.4. Differentiation Group
3.4.1. CD68
Reactive Lesions
Neoplastic Lesions
3.4.2. CD163
Reactive and Neoplastic Lesions
3.4.3. Langerin
Reactive and Neoplastic Lesions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- von Rustizky, J. Untersuchungen über Knochenresorption und Riesenzellen. Virchows Arch. Int. J. Pathol. 1874, 59, 202–227. [Google Scholar] [CrossRef]
- Morison, D. III. from Soviet archives. Cent. Asian Surv. 1985, 4, 35–38. [Google Scholar] [CrossRef]
- Brooks, P.J.; Glogauer, M.; McCulloch, C.A. An Overview of the Derivation and Function of Multinucleated Giant Cells and Their Role in Pathologic Processes. Am. J. Pathol. 2019, 189, 1145–1158. [Google Scholar] [CrossRef] [Green Version]
- Sakai, H.; Okafuji, I.; Nishikomori, R.; Abe, J.; Izawa, K.; Kambe, N.; Yasumi, T.; Nakahata, T.; Heike, T. The CD40-CD40L axis and IFN-γ play critical roles in Langhans giant cell formation. Int. Immunol. 2012, 24, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, T.J. Multinucleate giant cells. J. Pathol. 1978, 126, 125–148. [Google Scholar] [CrossRef]
- Dougall, W.C.; Glaccum, M.; Charrier, K.; Rohrbach, K.; Brasel, K.; De Smedt, T.; Daro, E.; Smith, J.; Tometsko, M.E.; Maliszewski, C.R.; et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999, 13, 2412–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ariizumi, T.; Ogose, A.; Kawashima, H.; Hotta, T.; Umezu, H.; Endo, N. Multinucleation followed by an acytokinetic cell division in myxofibrosarcoma with giant cell proliferation. J. Exp. Clin. Cancer Res. CR 2009, 28, 44. [Google Scholar] [CrossRef] [Green Version]
- Rengstl, B.; Newrzela, S.; Heinrich, T.; Weiser, C.; Thalheimer, F.B.; Schmid, F.; Warner, K.; Hartmann, S.; Schroeder, T.; Küppers, R.; et al. Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed—Sternberg cells. Proc. Natl. Acad. Sci. USA 2013, 110, 20729–20734. [Google Scholar] [CrossRef]
- Brodbeck, W.G.; Anderson, J.M. Giant cell formation and function. Curr. Opin. Hematol. 2009, 16, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möst, J.; Spötl, L.; Mayr, G.; Gasser, A.; Sarti, A.; Dierich, M.P. Formation of multinucleated giant cells in vitro is dependent on the stage of monocyte to macrophage maturation. Blood 1997, 89, 662–671. [Google Scholar] [CrossRef]
- Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005, 5, 953–964. [Google Scholar] [CrossRef]
- Okamoto, H.; Mizuno, K.; Horio, T. Monocyte-derived multinucleated giant cells and sarcoidosis. J. Dermatol. Sci. 2003, 31, 119. [Google Scholar] [CrossRef]
- Mcnally, A.K.; Anderson, J.M. Macrophage Fusion and Multinucleated Giant Cells of Inflammation. Adv. Exp. Med. Biol. 1995, 147, 97. [Google Scholar] [CrossRef]
- Maggiani, F.; Forsyth, R.; Hogendoorn, P.C.W.; Krenacs, T.; Athanasou, N.A. The immunophenotype of osteoclasts and macrophage polykaryons. J. Clin. Pathol. 2011, 64, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Fazzalari, N.L. Bone fracture and bone fracture repair. Osteoporos. Int. 2011, 22, 2003–2006. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, J.; Varga, A.; Bessenyei, M.; Gomba, S. Renal cell cancer associated with sarcoid-like reaction. Pathol. Oncol. Res. 2004, 10, 169–171. [Google Scholar] [CrossRef]
- Brierley, D.J.; Crane, H.; Hunter, K.D. Lumps and Bumps of the Gingiva: A Pathological Miscellany. Head Neck Pathol. 2019, 13, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Turek, D.; Haefliger, S.; Ameline, B.; Alborelli, I.; Calgua, B.; Hartmann, W.; Harder, D. Brown Tumors Belong to the Spectrum of KRAS-driven Neoplasms. Am. J. Surg. Pathol. 2022, 46, 1577. [Google Scholar] [CrossRef]
- Hartmann, W.; Harder, D.; Baumhoer, D. Giant Cell-Rich Tumors of Bone. Surg. Pathol. Clin. 2021, 14, 695–706. [Google Scholar] [CrossRef]
- Romeo, S.; Bovée, J.; Jadnanansing, N.; Taminiau, A.; Hogendoorn, P. Expression of cartilage growth plate signalling molecules in chondroblastoma. J. Pathol. 2004, 202, 113–120. [Google Scholar] [CrossRef]
- Baumhoer, D.; Kovac, M.; Sperveslage, J.; Ameline, B.; Strobl, A.; Krause, A.; Trautmann, M.; Wardelmann, E.; Nathrath, M.; Höller, S.; et al. Activating mutations in the MAP-kinase pathway define non-ossifying fibroma of bone. J. Pathol. 2019, 248, 116. [Google Scholar] [CrossRef]
- Geldyyev, A.; Koleganova, N.; Piecha, G.; Sueltmann, H.; Finis, K.; Ruschaupt, M.; Poustka, A.; Gross, M.; Berger, I. High expression level of bone degrading proteins as a possible inducer of osteolytic features in pigmented villonodular synovitis. Cancer Lett. 2007, 255, 275–283. [Google Scholar] [CrossRef]
- Sharma, A.; Mcafee, J.; Wang, L.; Cook, E.; Ababneh, E.; Bergfeld, W.F. Utility of Cyclin D1 Immunostaining in Cutaneous Xanthogranuloma. Am. J. Dermatopathol. 2021, 43, e141. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2020.
- Cresswell, P. Assembly, Transport, and Function of MHC Class II Molecules. Annu. Rev. Immunol. 1994, 12, 259–291. [Google Scholar] [CrossRef]
- Fu, M.; Wang, C.; Li, Z.; Sakamaki, T.; Pestell, R.G. Minireview: Cyclin D1: Normal and Abnormal Functions. Endocrinology 2004, 145, 5439–5447. [Google Scholar] [CrossRef] [Green Version]
- Koff, A.; Giordano, A.; Desai, D.; Yamashita, K.; Harper, J.W.; Elledge, S.; Nishimoto, T.; Morgan, D.O.; Franza, B.R.; Roberts, J.M. Formation and Activation of Cyclin E-cdk2 Complex During the G1 Phase of the Human Cell Cycle. Science 1992, 257, 5077. [Google Scholar] [CrossRef]
- Serrano, M.; Hannon, G.J.; Beach, D. A new regulatory motif in cell· cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993, 366, 704–707. [Google Scholar] [CrossRef]
- Xiong, Y.; Hannon, G.J.; Zhang, H.; Casso, D.; Kobayashi, R.; Beach, D. p21 is a universal inhibitor of cyclin kinases. Nature 1993, 366, 701–704. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Walter, T.S.; Huang, P.; Zhang, S.; Zhu, X.; Wu, Y.; Wedderburn, L.R.; Tang, P.; Owens, R.J.; Stuart, D.I.; et al. Structural and Functional Insights of RANKL–RANK Interaction and Signaling. J. Immunol. 2010, 184, 6910–6919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theill, L.E.; Boyle, W.J.; Penninger, J.M. RANK-L AND RANK: T Cells, Bone Loss, and Mammalian Evolution. Annu. Rev. Immunol. 2002, 20, 795–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef]
- Yan, Q.; Sage, E.H. SPARC, a Matricellular Glycoprotein with Important Biological Functions. J. Histochem. Cytochem. 1999, 47, 1495–1505. [Google Scholar] [CrossRef] [Green Version]
- Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in Bone Metabolism and Bone Diseases. Med. Sci. Monit. 2020, 26, e919159-1–e919159-9. [Google Scholar] [CrossRef] [PubMed]
- Janckila, A.J.; Yam, L.T. Biology and Clinical Significance of Tartrate-Resistant Acid Phosphatases: New Perspectives on an Old Enzyme. Calcif. Tissue Int. 2009, 85, 465–483. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochem. Cell Biol. 2018, 149, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Holness, C.L.; Da Silva, R.P.; Fawcett, J.; Gordon, S.; Simmons, D.L. Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J. Biol. Chem. 1993, 268, 9661. [Google Scholar] [CrossRef]
- Lau, S.K.; Chu, P.G.; Weiss, L.M. CD163. Am. J. Clin. Pathol. 2004, 122, 794. [Google Scholar] [CrossRef]
- Merad, M.; Ginhoux, F.; Collin, M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat. Rev. Immunol. 2008, 8, 935–947. [Google Scholar] [CrossRef]
- Erokhina, S.A.; Streltsova, M.A.; Kanevskiy, L.M.; Grechikhina, M.V.; Sapozhnikov, A.M.; Kovalenko, E.I. HLA-DR-expressing NK cells: Effective killers suspected for antigen presentation. J. Leukoc. Biol. 2021, 109, 327–337. [Google Scholar] [CrossRef]
- Collins, T.; Korman, A.J.; Wake, C.T.; Boss, J.M.; Kappes, D.J.; Fiers, W.; Ault, K.A.; Gimbrone, M.A.; Strominger, J.L.; Pober, J.S. Immune Interferon Activates Multiple Class II Major Histocompatibility Complex Genes and the Associated Invariant Chain Gene in Human Endothelial Cells and Dermal Fibroblasts. Proc. Natl. Acad. Sci. USA 1984, 81, 4917–4921. [Google Scholar] [CrossRef]
- Mahendra, G.; Kliskey, K.; Athanasou, N.A. Immunophenotypic distinction between pigmented villonodular synovitis and haemosiderotic synovitis. J. Clin. Pathol. 2010, 63, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Misery, L.; Boucheron, S.; Claudy, A.L. Factor XIIIa expression in juvenile xanthogranuloma. Acta Derm.-Venereol. 1994, 74, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Matsubayashi, S.; Nakashima, M.; Kumagai, K.; Egashira, M.; Naruke, Y.; Kondo, H.; Hayashi, T.; Shindo, H. Immunohistochemical analyses of β-catenin and cyclin D1 expression in giant cell tumor of bone (GCTB): A possible role of Wnt pathway in GCTB tumorigenesis. Pathol. Res. Pract. 2009, 205, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qie, S.; Diehl, J.A. Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. 2016, 94, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Kandel, R.; Li, S.-Q.; Bell, R.; Wunder, J.; Ferguson, P.; Kauzman, A.; Diehl, J.A.; Werier, J. Cyclin D1 and p21 is elevated in the giant cells of giant cell tumors. J. Orthop. Res. 2006, 24, 428–437. [Google Scholar] [CrossRef]
- Maros, M.E.; Balla, P.; Micsik, T.; Sapi, Z.; Szendroi, M.; Wenz, H.; Groden, C.; Forsyth, R.G.; Picci, P.; Krenacs, T. Cell Cycle Regulatory Protein Expression in Multinucleated Giant Cells of Giant Cell Tumor of Bone: Do They Proliferate? Pathol. Oncol. Res. 2021, 27, 643146. [Google Scholar] [CrossRef]
- Kauzman, A.; Li, S.Q.; Bradley, G.; Bell, R.S.; Wunder, J.S.; Kandel, R. Cyclin Alterations in Giant Cell Tumor of Bone. Mod. Pathol. 2003, 16, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Lujic, N.; Sopta, J.; Kovacevic, R.; Stevanovic, V.; Davidovic, R. Recurrence of giant cell tumour of bone: Role of p53, cyclin D1, β-catenin and Ki67. Int. Orthop. SICOT 2016, 40, 2393–2399. [Google Scholar] [CrossRef]
- Hwang, H.C.; Clurman, B.E. Cyclin E in normal and neoplastic cell cycles. Oncogene 2005, 24, 2776–2786. [Google Scholar] [CrossRef] [Green Version]
- Barbacid, M.; Prieto, I.; Ortega, S.; Dubus, P.; Odajima, J.; Sotillo, R.; Martín, A.; Malumbres, M.; Barbero, J.L. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 2003, 35, 25–31. [Google Scholar] [CrossRef]
- Geng, Y.; Michowski, W.; Chick, J.M.; Wang, Y.E.; Jecrois, M.E.; Sweeney, K.E.; Liu, L.; Han, R.C.; Ke, N.; Zagozdzon, A.; et al. Kinase-independent function of E-type cyclins in liver cancer. Proc. Natl. Acad. Sci. USA 2018, 115, 1015. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Yu, Q.; Whoriskey, W.; Dick, F.; Tsai, K.Y.; Ford, H.L.; Biswas, D.K.; Pardee, A.B.; Amati, B.; Jacks, T.; et al. Expression of Cyclins E1 and E2 during Mouse Development and in Neoplasia. Proc. Natl. Acad. Sci. USA 2001, 98, 13138–13143. [Google Scholar] [CrossRef] [PubMed]
- Stamatakos, M.; Palla, V.; Karaiskos, I.; Xiromeritis, K.; Alexiou, I.; Pateras, I.; Kontzoglou, K. Cell cyclins: Triggering elements of cancer or not? World J. Surg. Oncol. 2010, 8, 111. [Google Scholar] [CrossRef] [PubMed]
- Jackman, M.; Kubota, Y.; den Elzen, N.; Hagting, A.; Pines, J. Cyclin A- and Cyclin E-Cdk Complexes Shuttle between the Nucleus and the Cytoplasm. Mol. Biol. Cell 2002, 13, 1030–1045. [Google Scholar] [CrossRef] [Green Version]
- Karst, A.M.; Jones, P.M.; Vena, N.; Ligon, A.H.; Liu, J.F.; Hirsch, M.S.; Etemadmoghadam, D.; Bowtell, D.D.L.; Drapkin, R. Cyclin E1 Deregulation Occurs Early in Secretory Cell Transformation to Promote Formation of Fallopian Tube–Derived High-Grade Serous Ovarian Cancers. Cancer Res. 2014, 74, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möröy, T.; Geisen, C. Cyclin E. Int. J. Biochem. Cell Biol. 2004, 36, 1424–1439. [Google Scholar] [CrossRef]
- Rayess, H.; Wang, M.B.; Srivatsan, E.S. Cellular senescence and tumor suppressor gene p16. Int. J. Cancer 2012, 130, 1715–1725. [Google Scholar] [CrossRef] [Green Version]
- Serra, S.; Chetty, R. p16. J. Clin. Pathol 2018, 71, 853. [Google Scholar] [CrossRef] [Green Version]
- Coryell, P.R.; Goraya, S.K.; Griffin, K.A.; Redick, M.A.; Sisk, S.R.; Purvis, J.E. Autophagy regulates the localization and degradation of p16 INK4a. Aging Cell 2020, 19, e13171. [Google Scholar] [CrossRef]
- Smith, E.H.; Lowe, L.; Harms, P.W.; Fullen, D.R.; Chan, M.P. Immunohistochemical evaluation of p16 expression in cutaneous histiocytic, fibrohistiocytic and undifferentiated lesions. J. Cutan. Pathol. 2016, 43, 671–678. [Google Scholar] [CrossRef]
- Giesche, J.; Mellert, K.; Geißler, S.; Arndt, S.; Seeling, C.; Von Baer, A.; Schultheiss, M.; Marienfeld, R.; Möller, P.; Barth, T.F. Epigenetic lockdown of CDKN1A (p21) and CDKN2A (p16) characterises the neoplastic spindle cell component of giant cell tumours of bone. J. Pathol. 2022, 257, 687. [Google Scholar] [CrossRef] [PubMed]
- Leinauer, B.; Wolf, E.; Werner, M.; Baumhoer, D.; Breining, T.; Luebke, A.M.; Maas, R.; Schultheiß, M.; Baer, A.; Sufi-siavach, A.; et al. H3F3A-mutated giant cell tumour of bone without giant cells—Clinical presentation, radiology and histology of three cases. Histopathology 2021, 79, 720. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, W.; Uzuki, M.; Kurose, A.; Yoshida, M.; Nishida, J.; Shimamura, T.; Sawai, T. Cell characterization of mononuclear and giant cells constituting pigmented villonodular synovitis. Hum. Pathol. 2003, 34, 65–73. [Google Scholar] [CrossRef]
- Warfel, N.; El-Deiry, W. p21WAF1 and tumourigenesis: 20 years after. Curr. Opin. Oncol. 2013, 25, 52–58. [Google Scholar] [CrossRef]
- El-Deiry, W.S.; Tokino, T.; Velculescu, V.E.; Levy, D.B.; Parsons, R.; Trent, J.M.; Lin, D.; Mercer, W.E.; Kinzler, K.W.; Vogelstein, B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993, 75, 817. [Google Scholar] [CrossRef] [PubMed]
- Sankar, U.; Patel, K.; Rosol, T.J.; Ostrowski, M.C. RANKL Coordinates Cell Cycle Withdrawal and Differentiation in Osteoclasts Through the Cyclin-Dependent Kinase Inhibitors p27KIP1 and p21CIP1. J. Bone Miner. Res. 2004, 19, 1339–1348. [Google Scholar] [CrossRef]
- Nakajima, A.; Shimizu, S.; Moriya, H.; Yamazaki, M. Expression of Fibroblast Growth Factor Receptor-3 (FGFR3), Signal Transducer and Activator of Transcription-1, and Cyclin-Dependent Kinase Inhibitor p21 during Endochondral Ossification: Differential Role of FGFR3 in Skeletal Development and Fracture Repair. Endocrinology 2003, 144, 4659–4668. [Google Scholar] [CrossRef] [Green Version]
- Xaus, J.; Besalduch, N.; Comalada, M.; Marcoval, J.; Pujol, R.; Mañá, J.; Celada, A. High expression of p21Waf1 in sarcoid granulomas: A putative role for long-lasting inflammation. J. Leukoc. Biol. 2003, 74, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Drosten, M.; Barbacid, M. Targeting the MAPK Pathway in KRAS-Driven Tumors. Cancer Cell 2020, 37, 543–550. [Google Scholar] [CrossRef]
- Hu, P.P.; Shen, X.; Huang, D.; Liu, Y.; Counter, C.; Wang, X.F. The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-beta. J. Biol. Chem. 1999, 274, 35381–35387. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, N.; Kinosaki, M.; Yamaguchi, K.; Shima, N.; Yasuda, H.; Yano, K.; Morinaga, T.; Higashio, K. RANK Is the Essential Signaling Receptor for Osteoclast Differentiation Factor in Osteoclastogenesis. Biochem. Biophys. Res. Commun. 1998, 253, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Udagawa, N.; Akatsu, T.; Tanaka, H.; Isogai, Y.; Suda, T. Deficiency of Osteoclasts in Osteopetrotic Mice Is Due to a Defect in the Local Microenvironment Provided by Osteoblastic Cells. Endocrinology 1991, 128, 1792–1796. [Google Scholar] [CrossRef] [PubMed]
- Josien, R.; Wong, B.R.; Li, H.; Steinman, R.M.; Choi, Y. TRANCE, a TNF Family Member, Is Differentially Expressed on T Cell Subsets and Induces Cytokine Production in Dendritic Cells. J. Immunol. 1999, 162, 2562–2568. [Google Scholar] [CrossRef]
- Ikebuchi, Y. Coupling of bone Resorption and Formation by RANKL reverse signaling. Nature 2018, 561, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hanada, R.; Hanada, T.; Sigl, V.; Schramek, D.; Penninger, J.M. RANKL/RANK—Beyond bones. J. Mol. Med. 2011, 89, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, S.; Fiorino, C.; Naik, U.; Sun, H.S.; Harrison, R.E. Modulation of Osteoclastogenesis with Macrophage M1- and M2-Inducing Stimuli. PLoS ONE 2014, 9, e104498. [Google Scholar] [CrossRef] [Green Version]
- Koivu, H.; Mackiewicz, Z.; Takakubo, Y.; Trokovic, N.; Pajarinen, J.; Konttinen, Y.T. RANKL in the osteolysis of AES total ankle replacement implants. Bone 2012, 51, 546–552. [Google Scholar] [CrossRef]
- Roux, S.; Amazit, L.; Meduri, G.; Guichon-Mantel, A.; Milgrom, E.; Mariette, X. RANK (Receptor Activator of Nuclear Factor kappa B) and RANK Ligand Are Expressed in Giant Cell Tumors of Bone. Am. J. Clin. Pathol. 2002, 117, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Pelle, D.W.; Ringler, J.W.; Peacock, J.D.; Kampfschulte, K.; Scholten, D.J.; Davis, M.M.; Mitchell, D.S.; Steensma, M.R. Targeting receptor-activator of nuclear kappaB ligand in aneurysmal bone cysts: Verification of target and therapeutic response. Transl. Res. J. Lab. Clin. Med. 2014, 164, 139–148. [Google Scholar] [CrossRef]
- Won, K.Y.; Kalil, R.K.; Kim, Y.W.; Park, Y. RANK signalling in bone lesions with osteoclast-like giant cells. Pathology 2011, 43, 318–321. [Google Scholar] [CrossRef]
- Fałek, A.; Niemunis-Sawicka, J.; Wrona, K.; Szczypiór, G.; Rzepecka-Wejs, L.; Cięszczyk, K.; Burdan, M.; Puderecki, M.; Burzec, P.; Marzec-Kotarska, B.; et al. Pigmented villonodular synovitis. Folia Medica Cracoviensia 2018, 58, 93–104. [Google Scholar] [CrossRef]
- Yamagishi, T.; Kawashima, H.; Ogose, A.; Ariizumi, T.; Oike, N.; Sasaki, T.; Hatano, H.; Ohashi, R.; Umezu, H.; Ajioka, Y.; et al. Expression Profiling of Receptor-Activator of Nuclear Factor-Kappa B Ligand in Soft Tissue Tumors. Tohoku J. Exp. Med. 2019, 248, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kurata, K.; Oh-Hora, M.; Feng, J.Q.; Bonewald, L.F.; Kodama, T.; Wutz, A.; Wagner, E.F.; et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011, 17, 1231–1234. [Google Scholar] [CrossRef]
- Kong, Y.-Y.; Feige, U.; Wong, T.; Campagnuolo, G.; Moran, E.; Bogoch, E.R.; Van, G.; Nguyen, L.T.; Ohashi, P.; Lacey, D.L.; et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nat. Med. 1999, 402, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Kartsogiannis, V.; Zhou, H.; Horwood, N.J.; Thomas, R.J.; Hards, D.K.; Quinn, J.M.W.; Niforas, P.; Ng, K.W.; Martin, T.J.; Gillespie, M.T. Localization of RANKL (receptor activator of NFκB ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 1999, 25, 525. [Google Scholar] [CrossRef]
- Huang, L.; Xu, J.; Wood, D.J.; Zheng, M.H. Gene Expression of Osteoprotegerin Ligand, Osteoprotegerin, and Receptor Activator of NF-κB in Giant Cell Tumor of Bone. Am. J. Pathol. 2000, 156, 761. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Odgren, P.R.; Kim, D.; Marks, S.C.; Choi, Y. Diverse Roles of the Tumor Necrosis Factor Family Member TRANCE in Skeletal Physiology Revealed by TRANCE Deficiency and Partial Rescue by a Lymphocyte-Expressed TRANCE Transgene. Proc. Natl. Acad. Sci. USA 2000, 97, 10905–10910. [Google Scholar] [CrossRef]
- Kon, T.; Cho, T.; Aizawa, T.; Yamazaki, M.; Nooh, N.; Graves, D.; Gerstenfeld, L.C.; Einhorn, T.A. Expression of Osteoprotegerin, Receptor Activator of NF-κB Ligand (Osteoprotegerin Ligand) and Related Proinflammatory Cytokines During Fracture Healing. J. Bone Miner. Res. 2001, 16, 1004–1014. [Google Scholar] [CrossRef]
- Izawa, K. Histological Analysis of Bone Destruction in Spinal Tuberculosis. Kekkaku 2015, 90, 415–420. [Google Scholar] [CrossRef]
- Li, H.; Gao, J.; Gao, Y.; Lin, N.; Zheng, M.; Ye, Z. Denosumab in Giant Cell Tumor of Bone: Current Status and Pitfalls. Front. Oncol. 2020, 10, 580605. [Google Scholar] [CrossRef]
- Huang, L.; Cheng, Y.Y.; Chow, L.T.C.; Zheng, M.H. Receptor activator of NF-kappaB ligand (RANKL) is expressed in chondroblastoma: Possible involvement in osteoclastic giant cell recruitment. Mol. Pathol. 2003, 56, 116. [Google Scholar] [CrossRef] [PubMed]
- Bucay, N.; Sarosi, I.; Dunstan, C.R.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12, 1260–1268. [Google Scholar] [CrossRef] [PubMed]
- Kramer, I.; Halleux, C.; Keller, H.; Pegurri, M.; Gooi, J.H.; Weber, P.B.; Feng, J.Q.; Bonewald, L.F.; Kneissel, M. Osteocyte Wnt/β-Catenin Signaling Is Required for Normal Bone Homeostasis. Mol. Cell. Biol. 2010, 30, 3071–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Jin, W.; He, X.; Sun, Y.; Yin, H.; Wang, Z.; Shi, S. Mycobacterium tuberculosis Induced Osteoblast Dysregulation Involved in Bone Destruction in Spinal Tuberculosis. Front. Cell. Infect. Microbiol. 2022, 12, 780272. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yu, S.; Li, T. Multinucleated giant cells in various forms of giant cell containing lesions of the jaws express features of osteoclasts. J. Oral Pathol. Med. 2003, 32, 367–375. [Google Scholar] [CrossRef]
- Holland, P.W.; Harper, S.J.; McVey, J.H.; Hogan, B.L. In vivo Expression of mRNA for the Ca++-Binding Protein SPARC (Osteonectin) Revealed by in situ Hybridization. J. Cell Biol. 1987, 105, 473–482. [Google Scholar] [CrossRef]
- Delany, A.M.; Kalajzic, I.; Bradshaw, A.D.; Sage, E.H.; Canalis, E. Osteonectin-Null Mutation Compromises Osteoblast Formation, Maturation, and Survival. Endocrinology 2003, 144, 2588–2596. [Google Scholar] [CrossRef] [Green Version]
- Sangaletti, S.; Di Carlo, E.; Gariboldi, S.; Miotti, S.; Cappetti, B.; Parenza, M.; Rumio, C.; Brekken, R.A.; Chiodoni, C.; Colombo, M.P. Macrophage-Derived SPARC Bridges Tumor Cell-Extracellular Matrix Interactions toward Metastasis. Cancer Res. 2008, 68, 9050–9059. [Google Scholar] [CrossRef] [Green Version]
- Rosset, E.M.; Bradshaw, A.D. SPARC/osteonectin in mineralized tissue. Matrix Biol. 2016, 52–54, 78. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Clark, J.I.; Wight, T.N.; Sage, E.H. Alterations in the lens capsule contribute to cataractogenesis in SPARC-null mice. J. Cell Sci. 2002, 115, 2747–2756. [Google Scholar] [CrossRef]
- Bradshaw, A.D.; Baicu, C.F.; Rentz, T.J.; Van Laer, A.O.; Boggs, J.; Lacy, J.M.; Zile, M.R. Pressure Overload-Induced Alterations in Fibrillar Collagen Content and Myocardial Diastolic Function: Role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in Post-Synthetic Procollagen Processing. Circulation 2009, 119, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Rentz, T.J.; Poobalarahi, F.; Bornstein, P.; Sage, E.H.; Bradshaw, A.D. SPARC Regulates Processing of Procollagen I and Collagen Fibrillogenesis in Dermal Fibroblasts. J. Biol. Chem. 2007, 282, 22062–22071. [Google Scholar] [CrossRef] [Green Version]
- Delany, A.; Amling, M.; Priemel, M.; Howe, C.; Baron, R.; Canalis, E. Osteopenia and decreased bone formation in osteonectin-deficient mice. J. Clin. Investig. 2000, 105, 1325. [Google Scholar] [CrossRef] [Green Version]
- Fedarko, N.S.; Sponseller, P.D.; Shapiro, J.R. Long-term extracellular matrix metabolism by cultured human osteogenesis imperfecta osteoblasts. J. Bone Miner. Res. 1996, 11, 800–805. [Google Scholar] [CrossRef]
- Mendoza-Londono, R.; Fahiminiya, S.; Majewski, J.; Tétreault, M.; Nadaf, J.; Kannu, P.; Sochett, E.; Howard, A.; Stimec, J.; Dupuis, L.; et al. Recessive Osteogenesis Imperfecta Caused by Missense Mutations in SPARC. Am. J. Hum. Genet. 2015, 96, 979–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, U.; Park, S.; Seong, W.; Heo, J.; Hwang, D.; Kim, Y.; Shin, S.; Kim, G. Expression of TGF-β1, Osteonectin, and BMP-4 in Mandibular Distraction Osteogenesis With Compression Stimulation: Reverse Transcriptase-Polymerase Chain Reaction Study and Biomechanical Test. J. Oral Maxillofac. Surg. 2010, 68, 2076–2084. [Google Scholar] [CrossRef]
- Puolakkainen, P.; Bradshaw, A.D.; Kyriakides, T.R.; Reed, M.; Brekken, R.; Wight, T.; Bornstein, P.; Ratner, B.; Sage, E.H. Compromised Production of Extracellular Matrix in Mice Lacking Secreted Protein, Acidic and Rich in Cysteine (SPARC) Leads to a Reduced Foreign Body Reaction to Implanted Biomaterials. Am. J. Pathol. 2003, 162, 627. [Google Scholar] [CrossRef] [Green Version]
- Serra, M.; Cristina Morini, M.; Scotlandi, K.; Fisher, L.W.; Zini, N.; Colombo, M.P.; Campanacci, M.; Maraldi, N.M.; Olivari, S.; Baldini, N. Evaluation of osteonectin as a diagnostic marker of osteogenic bone tumors. Hum. Pathol. 1992, 23, 1326. [Google Scholar] [CrossRef] [PubMed]
- Ghert, M.; Simunovic, N.; Cowan, R.W.; Colterjohn, N.; Singh, G. Properties of the Stromal Cell in Giant Cell Tumor of Bone; Springer: Berlin/Heidelberg, Germany, 2007; Volume 459, pp. 8–13. [Google Scholar]
- Šekoranja, D.; Boštjančič, E.; Salapura, V.; Mavčič, B.; Pižem, J. Primary aneurysmal bone cyst with a novel SPARC-USP6 translocation identified by next-generation sequencing. Cancer Genet. 2018, 228–229, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Ullrich, J.E.; Sage, E.H. Revisiting the matricellular concept. Matrix Biol. 2014, 37, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Denhardt, D.T.; Giachelli, C.M.; Rittling, S.R. Role of Osteopontin in Cellular Signaling and Toxicant Injury. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 723–749. [Google Scholar] [CrossRef]
- Zohar, R.; Cheifetz, S.; McCulloch, C.A.G.; Sodek, J. Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration. Eur. J. Oral Sci. 1998, 106, 401–407. [Google Scholar] [CrossRef]
- Yamate, T.; Mocharla, H.; Taguchi, Y.; Igietseme, J.U.; Manolagas, S.C.; Abe, E. Osteopontin Expression by Osteoclast and Osteoblast Progenitors in the Murine Bone Marrow: Demonstration of Its Requirement for Osteoclastogenesis and Its Increase After Ovariectomy. Endocrinology 1997, 138, 3047–3055. [Google Scholar] [CrossRef]
- Malyankar, U.M.; Scatena, M.; Suchland, K.L.; Yun, T.J.; Clark, E.A.; Giachelli, C.M. Osteoprotegerin Is an αvβ3-induced, NF-κB-dependent Survival Factor for Endothelial Cells. J. Biol. Chem. 2000, 275, 20959–20962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkar, S.; Weber, G.F.; Panoutsakopoulou, V.; Sanchirico, M.E.; Jansson, M.; Zawaideh, S.; Rittling, S.R.; Denhardt, D.T.; Glimcher, M.J.; Cantor, H. Eta-1 (Osteopontin): An Early Component of Type-1 (Cell-Mediated) Immunity. Science 2000, 287, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, H.; Rittling, S.R.; Denhardt, D.T.; Noda, M. Osteopontin-Deficient Mice are Resistant to Ovariectomy-Induced Bone Resorption. Proc. Natl. Acad. Sci. USA 1999, 96, 8156–8160. [Google Scholar] [CrossRef]
- Crawford, H.C.; Matrisian, L.M.; Liaw, L. Distinct Roles of Osteopontin in Host Defense Activity and Tumor Survival during Squamous Cell Carcinoma Progression in Vivo. Cancer Res. 1998, 58, 5206–5215. [Google Scholar]
- Yamazaki, M.; Nakajima, F.; Ogasawara, A.; Moriya, H.; Majeska, R.J.; Einhorn, T.A. Spatial and temporal distribution of CD44 and osteopontin in fracture callus. J. Bone Jt. Surg. Br. Vol. 1999, 81, 508–515. [Google Scholar] [CrossRef]
- Duvall, C.L.; Taylor, W.R.; Weiss, D.; Wojtowicz, A.M.; Guldberg, R.E. Impaired Angiogenesis, Early Callus Formation, and Late Stage Remodeling in Fracture Healing of Osteopontin-Deficient Mice. J. Bone Miner. Res. 2007, 22, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Lavi, H.; Assayag, M.; Schwartz, A.; Arish, N.; Fridlender, Z.G.; Berkman, N. The association between osteopontin gene polymorphisms, osteopontin expression and sarcoidosis. PLoS ONE 2017, 12, e0171945. [Google Scholar] [CrossRef]
- O’Regan, A.W.; Chupp, G.L.; Lowry, J.A.; Goetschkes, M.; Mulligan, N.; Berman, J.S. Osteopontin Is Associated with T Cells in Sarcoid Granulomas and Has T Cell Adhesive and Cytokine-Like Properties In Vitro. J. Immunol. 1999, 162, 1024–1031. [Google Scholar] [CrossRef]
- Sevtekin, M.; Ozmen, O. Immunohistochemical examination of osteopontin and sirtuin-1 expression in cattle tuberculosis. Biotech. Histochem. 2018, 93, 405–410. [Google Scholar] [CrossRef]
- Nau, G.J.; Guilfoile, P.; Chupp, G.L.; Berman, J.S.; Kim, S.J.; Kornfeld, H.; Young, R.A. A Chemoattractant Cytokine Associated with Granulomas in Tuberculosis and Silicosis. Proc. Natl. Acad. Sci. USA 1997, 94, 6414–6419. [Google Scholar] [CrossRef]
- Carlson, I.; Tognazzi, K.; Manseau, E.J.; Dvorak, H.F.; Brown, L.F. Osteopontin is strongly expressed by histiocytes in granulomas of diverse etiology. Lab. Investig. 1997, 77, 103–108. [Google Scholar] [PubMed]
- Elanagai, R.; Veeravarmal, V.; Nirmal, R.M. Osteopontin expression in reactive lesions of gingiva. J. Appl. Oral Sci. 2015, 23, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taguchi, T.; Iwasaki, Y.; Asaba, K.; Yoshida, T.; Takao, T.; Ikeno, F.; Nakajima, H.; Kodama, H.; Hashimoto, K. Erdheim-Chester Disease: Report of a Case with PCR-based Analysis of the Expression of Osteopontin and Survivin in Xanthogranulomas Following Glucocorticoid Treatment. Endocr. J. 2008, 55, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, F.; Yamashita, S.; Hirano, K.; Ishigami, M.; Hiraoka, H.; Tamura, R.; Nakagawa, T.; Nishida, M.; Sakai, N.; Nakamura, T.; et al. Activation of monocytes in vivo causes intracellular accumulation of lipoprotein-derived lipids and marked hypocholesterolemia—A possible pathogenesis of necrobiotic xanthogranuloma. Atherosclerosis 1999, 142, 355. [Google Scholar] [CrossRef] [PubMed]
- Hayman, A.R.; Macary, P.; Lehner, P.J.; Cox, T.M. Tartrate-resistant Acid Phosphatase (Acp 5): Identification in Diverse Human Tissues and Dendritic Cells. J. Histochem. Cytochem. 2001, 49, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Fleckenstein, E.; Drexler, H.G. Tartrate-resistant acid phosphatase: Gene structure and function. Leukemia 1997, 11, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Burstone, M.S. Histochemical Demonstration of Acid Phosphatase Activity In Osteoclasts. J. Histochem. Cytochem. 1959, 7, 39–41. [Google Scholar] [CrossRef] [Green Version]
- Kirstein, B.; Chambers, T.J.; Fuller, K. Secretion of tartrate-resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J. Cell. Biochem. 2006, 98, 1085–1094. [Google Scholar] [CrossRef]
- Ek-Rylander, B.; Flores, M.; Wendel, M.; Heinegård, D.; Andersson, G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J. Biol. Chem. 1994, 269, 14853. [Google Scholar] [CrossRef] [PubMed]
- Hayman, A.R. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 2008, 41, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Hayman, A.R.; Jones, S.J.; Boyde, A.; Foster, D.; Colledge, W.H.; Carlton, M.B.; Evans, M.J.; Cox, T.M. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development 1996, 122, 3151–3162. [Google Scholar] [CrossRef] [PubMed]
- Sheu, T.; Schwarz, E.M.; Martinez, D.A.; O’Keefe, R.J.; Rosier, R.N.; Zuscik, M.J. A Phage Display Technique Identifies a Novel Regulator of Cell Differentiation. J. Biol. Chem. 2003, 278, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Capeller, B.; Caffier, H.; Sütterlin, M.W.; Dietl, J. Evaluation of tartrate-resistant acid phosphatase (TRAP) 5b as serum marker of bone metastases in human breast cancer. Anticancer Res. 2003, 23, 1011–1015. [Google Scholar]
- Walia, B.; Lingenheld, E.; Duong, L.; Sanjay, A.; Drissi, H. A novel role for cathepsin K in periosteal osteoclast precursors during fracture repair. Ann. N. Y. Acad. Sci. 2018, 1415, 57–68. [Google Scholar] [CrossRef]
- Wu, Y.; Janckila, A.J.; Slone, S.P.; Perng, W.; Chao, T. Tartrate-resistant acid phosphatase 5a in sarcoidosis: Further evidence for a novel macrophage biomarker in chronic inflammation. J. Formos. Med. Assoc. 2012, 113, 364–370. [Google Scholar] [CrossRef]
- Park, J.K.; Rosen, A.; Saffitz, J.E.; Asimaki, A.; Litovsky, S.H.; Mackey-Bojack, S.M.; Halushka, M.K. Expression of cathepsin K and tartrate-resistant acid phosphatase is not confined to osteoclasts but is a general feature of multinucleated giant cells: Systematic analysis. Rheumatology 2013, 52, 1529–1533. [Google Scholar] [CrossRef] [Green Version]
- Kadoya, Y.; Al-Saffar, N.; Kobayashi, A.; Revell, P.A. The expression of osteoclast markers on foreign body giant cells. Bone Miner. 1994, 27, 85. [Google Scholar] [CrossRef]
- Toriu, N.; Ueno, T.; Mizuno, H.; Sekine, A.; Hayami, N.; Hiramatsu, R.; Sumida, K.; Yamanouchi, M.; Hasegawa, E.; Suwabe, T.; et al. Brown tumor diagnosed three years after parathyroidectomy in a patient with nail-patella syndrome: A case report. Bone Rep. 2019, 10, 100187. [Google Scholar] [CrossRef]
- Toyosawa, S.; Ogawa, Y.; Chang, C.-K.; Hong, S.-S.; Yagi, T.; Kuwahara, H.; Wakasa, K.-I.; Sakurai, M. Histochemistry of tartrate-resistant acid phosphatase and carbonic anhydrase isoenzyme II in osteoclast-like giant cells in bone tumours. Virchows Arch. A Pathol. Anat. Histopathol. 1991, 418, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Otto, F.; Zabel, B.; Mundlos, S. Regulation of chondrocyte differentiation by Cbfa1. Mech. Dev. 1999, 80, 159. [Google Scholar] [CrossRef] [PubMed]
- Inada, M.; Yasui, T.; Nomura, S.; Miyake, S.; Deguchi, K.; Himeno, M.; Sato, M.; Yamagiwa, H.; Kimura, T.; Yasui, N.; et al. Maturational disturbance of chondrocytes inCbfa1-deficient mice. Dev. Dyn. 1999, 214, 279. [Google Scholar] [CrossRef]
- Komori, T. Regulation of osteoblast differentiation by transcription factors. J. Cell. Biochem. 2006, 99, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Liu, Y.; Liu, D.; Li, J.; Zhang, C.; Wang, Y.; Zheng, S. New Function of RUNX2 in Regulating Osteoclast Differentiation via the AKT/NFATc1/CTSK Axis. Calcif. Tissue Int. 2020, 106, 553–566. [Google Scholar] [CrossRef]
- Otto, F.; Thornell, A.P.; Crompton, T.; Denzel, A.; Gilmour, K.C.; Rosewell, I.R.; Stamp, G.W.H.; Beddington, R.S.P.; Mundlos, S.; Olsen, B.R.; et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 1997, 89, 765. [Google Scholar] [CrossRef] [Green Version]
- Hirata, M.; Kugimiya, F.; Fukai, A.; Saito, T.; Yano, F.; Ikeda, T.; Mabuchi, A.; Sapkota, B.R.; Akune, T.; Nishida, N.; et al. C/EBPβ and RUNX2 cooperate to degrade cartilage with MMP-13 as the target and HIF-2α as the inducer in chondrocytes. Hum. Mol. Genet. 2012, 21, 1111–1123. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, H.; Chai, J.; Xing, L. RUNX2 as a promising therapeutic target for malignant tumors. CMAR 2021, 13, 2539. [Google Scholar] [CrossRef]
- Ling, Z.; Wu, L.; Shi, G.; Chen, L.; Dong, Q. Increased Runx2 expression associated with enhanced Wnt signaling in PDLLA internal fixation for fracture treatment. Exp. Ther. Med. 2017, 13, 2085. [Google Scholar] [CrossRef] [Green Version]
- Tu, Q.; Zhang, J.; James, L.; Dickson, J.; Tang, J.; Yang, P.; Chen, J. Cbfa1/Runx2-deficiency delays bone wound healing and locally delivered Cbfa1/Runx2 promotes bone repair in animal models. Wound Repair Regen. 2007, 15, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Chai, Q.; Lu, Z.; Liu, Z.; Zhong, Y.; Zhang, F.; Qiu, C.; Li, B.; Wang, J.; Zhang, L.; Pang, Y.; et al. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Commun. Biol. 2020, 3, 604. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Zhang, J.; Zhu, H.; Fan, G.; Zhou, G. Functions of Exogenous RUNX2 in Giant Cell Tumor of Bone In Vitro. Orthop. Surg. 2020, 12, 668. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jiang, Z.; Meng, T.; Yin, H.; Wang, J.; Wan, W.; Cheng, M.; Yan, W.; Liu, T.; Song, D.; et al. MiR-30a inhibits osteolysis by targeting RunX2 in giant cell tumor of bone. Biochem. Biophys. Res. Commun. 2014, 453, 160–165. [Google Scholar] [CrossRef]
- Warren, M.; Xu, D.; Li, X. Gene fusions PAFAH1B1—USP6 and RUNX2—USP6 in aneurysmal bone cysts identified by next generation sequencing. Cancer Genet. 2017, 212, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Toda, Y.; Yamamoto, H.; Iwasaki, T.; Ishihara, S.; Ito, Y.; Susuki, Y.; Kawaguchi, K.; Kinoshita, I.; Kiyozawa, D.; Yamada, Y.; et al. Expression of SATB2, RUNX2, and SOX9 and possible osteoblastic and chondroblastic differentiation in chondroblastoma. Pathol.-Res. Pract. 2023, 241, 154239. [Google Scholar] [CrossRef] [PubMed]
- Gottfried, E.; Kunz-Schughart, L.A.; Weber, A.; Rehli, M.; Peuker, A.; Müller, A.; Kastenberger, M.; Brockhoff, G.; Andreesen, R.; Kreutz, M. Expression of CD68 in Non-Myeloid Cell Types. Scand. J. Immunol. 2008, 67, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Sansom, D.M. CD28, CTLA-4 and their ligands: Who does what and to whom? Immunology 2000, 101, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.W.; Shi, Z.; Zhao, H.; Li, X.; Kesterson, R.A.; Feng, X. Genetic Ablation of CD68 Results in Mice with Increased Bone and Dysfunctional Osteoclasts. PLoS ONE 2011, 6, e25838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liang, Y.; Wei, S. M2 macrophages are closely associated with accelerated clavicle fracture healing in patients with traumatic brain injury: A retrospective cohort study. J. Orthop. Surg. Res. 2018, 13, 213. [Google Scholar] [CrossRef] [Green Version]
- Foss, C.A.; Kulik, L.; Ordonez, A.A.; Jain, S.K.; Michael Holers, V.; Thurman, J.M.; Pomper, M.G. SPECT/CT Imaging of Mycobacterium tuberculosis Infection with [125I]anti-C3d mAb. Mol. Imaging Biol. 2019, 21, 473–481. [Google Scholar] [CrossRef]
- Sakai, K.; Nakano, K.; Matsuda, S.; Tsujigiwa, H.; Ochiai, T.; Shoumura, M.; Osuga, N.; Hasegawa, H.; Kawakami, T. Pathological Analysis of Cell Differentiation in Cholesterol Granulomas Experimentally Induced in Mice. Int. J. Med. Sci. 2016, 13, 220–224. [Google Scholar] [CrossRef]
- Salerno, M.; Avnet, S.; Alberghini, M.; Giunti, A.; Baldini, N. Histogenetic Characterization of Giant Cell Tumor of Bone. Clin. Orthop. Relat. Res. 2008, 466, 2081–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masai, F.; Ushigome, S.; Fujli, K. Giant cell tumor of bone: An immunohistochemical comparative study. Pathol. Int. 1998, 48, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Fornasier, V.L.; Protzner, K.; Zhang, I.; Mason, L. The prognostic significance of histomorphometry and immunohistochemistry in giant cell tumors of bone. Hum. Pathol. 1996, 27, 754. [Google Scholar] [CrossRef] [PubMed]
- Edel, G.; Ueda, Y.; Nakanishi, J.; Brinker, K.H.; Roessner, A.; Blasius, S.; Vestring, T.; Müller-Miny, H.; Erlemann, R.; Wuisman, P. Chondroblastoma of bone. A clinical, radiological, light and immunohistochemical study. Virchows Arch. A Pathol. Anat. Histopathol. 1992, 421, 355–366. [Google Scholar] [CrossRef]
- Oda, Y.; Izumi, T.; Harimaya, K.; Segawa, Y.; Ishihara, S.; Komune, S.; Iwamoto, Y.; Tsuneyoshi, M. Pigmented villonodular synovitis with chondroid metaplasia, resembling chondroblastoma of the bone: A report of three cases. Mod. Pathol. 2007, 20, 545–551. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Wang, F.; Xiang, L.; Zhu, W.; Liang, C. Diffuse giant cell tumors of the tendon sheath in temporomandibular joint. Medicine 2018, 97, e11101. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Zhang, C.; Meng, F.; Cai, R.; Bi, Y.; Wang, Y.; Xu, J. Ocular Juvenile Xanthogranuloma. Optom. Vis. Sci. 2015, 92, e126–e133. [Google Scholar] [CrossRef]
- Kristiansen, M.; Graversen, J.; Jacobsen, C.; Sonne, O.; Hoffman, H.-J.; Lawk, S.K.A.; Moestrup, S.K. Identification of the haemoglobin scavenger receptor. Nature 2001, 409, 198–201. [Google Scholar] [CrossRef]
- Bover, L.C.; Cardo-Vila, M.; Kuniyasu, A.; Sun, J.; Rangel, R.; Takeya, M.; Aggarwal, B.B.; Arap, W.; Pasqualini, R. A Previously Unrecognized Protein-Protein Interaction between TWEAK and CD163: Potential Biological Implications. J. Immunol. 2007, 178, 8183–8194. [Google Scholar] [CrossRef] [Green Version]
- Margo, C.E.; Goldman, D.R. Langerhans Cell Histiocytosis. Surv. Ophthalmol. 2008, 53, 332–358. [Google Scholar] [CrossRef] [PubMed]
- Dudziak, D.; Kamphorst, A.O.; Heidkamp, G.F.; Buchholz, V.R.; Trumpfheller, C.; Yamazaki, S.; Cheong, C.; Liu, K.; Lee, H.; Park, C.G.; et al. Differential Antigen Processing by Dendritic Cell Subsets in Vivo. Science 2007, 315, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; et al. Langerin, a Novel C-Type Lectin Specific to Langerhans Cells, Is an Endocytic Receptor that Induces the Formation of Birbeck Granules. Immunity 2000, 12, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkins, G.J.; Kostakis, P.; Vincent, C.; Farrugia, A.N.; Houchins, J.P.; Findlay, D.M.; Evdokiou, A.; Zannettino, A.C. RANK Expression as a Cell Surface Marker of Human Osteoclast Precursors in Peripheral Blood, Bone Marrow, and Giant Cell Tumors of Bone. J. Bone Miner. Res. 2006, 21, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
- Takeshita, S.; Kaji, K.; Kudo, A. Identification and Characterization of the New Osteoclast Progenitor with Macrophage Phenotypes Being Able to Differentiate into Mature Osteoclasts. J. Bone Miner. Res. 2000, 15, 1477–1488. [Google Scholar] [CrossRef]
- Ravaglia, C.; Gurioli, C.; Casoni, G.L.; Romagnoli, M.; Tomassetti, S.; Gurioli, C.; Dubini, A.; Poletti, V. Sarcoid-like lesion is a frequent benign cause of lymphadenopathy in neoplastic patients. Eur. Respir. J. 2013, 41, 754–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, R.M.; Kashima, T.G.; Knowles, H.J.; Athanasou, N.A. VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: Implications for giant cell tumour pathobiology. Lab. Investig. 2012, 92, 1398–1406. [Google Scholar] [CrossRef] [Green Version]
- Kumta, S.M.; Huang, L.; Cheng, Y.Y.; Chow, L.T.C.; Lee, K.M.; Zheng, M.H. Expression of VEGF and MMP-9 in giant cell tumor of bone andother osteolytic lesions. Life Sci. 2003, 73, 1427–1436. [Google Scholar] [CrossRef]
- De Vita, A.; Vanni, S.; Miserocchi, G.; Fausti, V.; Pieri, F.; Spadazzi, C.; Cocchi, C.; Liverani, C.; Calabrese, C.; Casadei, R.; et al. A Rationale for the Activity of Bone Target Therapy and Tyrosine Kinase Inhibitor Combination in Giant Cell Tumor of Bone and Desmoplastic Fibroma: Translational Evidences. Biomedicines 2022, 10, 372. [Google Scholar] [CrossRef]
Lesion | Description | Type of GC | Function |
---|---|---|---|
Bony callus [15] | Primary bone formation in fracture healing | Osteoclast | Bone remodelling |
Sarcoidosis [4] | Systemic granulomatous disorder with noncaseous epithelioid cell granulomas | Langhans GC | Unknown |
Sarcoid-like lesion [16] | Malignancy-associated granulomatous reaction commonly found at cancer site or in regional lymph nodes | Macrophage polykaryon | Unknown |
Tuberculosis [4] | Infectious disease caused by Mycobacterium tuberculosis with caseous granulomas | Langhans GC | Pathogen phagocytosis |
Foreign body granuloma [9] | Local reaction to a foreign object or substance within the tissue that cannot be phagocytised | Foreign body GC | Resorption of foreign material |
Fibroid epulis [17] | Fibrous hyperplasia of the gingiva | Macrophage polykaryon | Unknown |
Brown tumour [18] | Bone tumour that develops in response to long-lasting hyperparathyroidism coupled with KRAS-mutation and activated MAPK-pathway signalling | Osteoclast-like GC | Bone resorption |
Giant cell tumour of the bone [19] | Locally aggressive bone tumour driven by H3F3A-mutatoin | Osteoclast-like GC | Bone resorption |
Aneurysmal bone cyst [19] | Benign bone tumour driven by USP6-rearrangement | Osteoclast-like GC | Bone resorption |
Chondroblastoma [20] | Benign bone tumour with cartilage features, driven by H3F3B-mutation | Osteoclast-like GC | Bone and cartilage resorption |
Non-ossifying fibroma [21] | Benign bone tumour driven by KRAS-mutation and activated MAPK-pathway signalling | Osteoclast-like GC | Bone resorption |
Tenosynovial giant cell tumour [22] | Group of lesions derived from tendon sheaths, synovia or bursae | Macrophage polykaryon | Unknown |
Xanthogranuloma [23] | Benign cutaneous non-Langerhans cell histiocytosis | Touton GC | Lipid phagocytosis |
Sample No. | Age | Sex | Localisation | Dimensions in cm | |
---|---|---|---|---|---|
Reactive lesions | |||||
Bony callus (n = 4) | |||||
1 | 15 | Male | Left elbow joint | 2.5 × 1.5 × 0.4 | |
2 | 44 | Male | left tibia | 1.2 × 1.2 × 0.5 | |
3 | 52 | Male | Proximal radius | 3 × 2.5 × 0.5 | |
4 | 14 | Female | Right deltoid muscle (ossificated) | 6 × 6 × 2.5 | |
Sarcoidosis (n = 3) | |||||
5 | 66 | Female | Liver | Core biopsy (0.3 × 1.4) | |
6 | 28 | Male | Epididymis | 2.2 × 1.6 × 1.4 | |
7 | 36 | Male | Lymph node | 2.2 × 1.5 × 0.5 | |
Sarcoid like lesion in rectal cancer (n = 1) | |||||
8 | 62 | Male | Paracardial lymph node | 1.5 × 1.2 × 0.5 | |
Sarcoid like lesion in pancreatic corpus carcinoma (n = 1) | |||||
9 | 63 | Female | Lymph node common hepatic artery | 2.5 × 2.5 × 1 | |
Tuberculosis (n = 3) | |||||
10 | 88 | Male | Thoracic vertebra 5 | 1.3 × 0.3 × 0.3 | |
11 | 86 | Female | Soft tissue distal forearm | 3.5 × 3 × 1 | |
12 | 80 | Female | Trabecular bone | 2.7 × 2.8 × 1.9 | |
Foreign body granuloma (n = 3) | |||||
13 | 31 | Female | Left parasternal cutaneous and subcutaneous tissue | 4.6 × 1 × 1.1 | |
14 | 94 | Female | Adnexa of uterus | 3 × 3 × 2 | |
15 | 79 | Female | Scar tissue of right mastectomy | Three core biopsies 1 × 1.6 | |
Fibroid epulis (n = 2) | |||||
16 | 25 | Female | Left auricle | 2.5 × 1.7 × 0.7 | |
17 | 61 | Male | Gingiva | 1.1 × 0.5 × 0.5 | |
Brown tumour (n = 2) | |||||
18a | 20 | Male | Tumour right femur | 2.2 × 1.9 × 0.6 | |
18b | 20 | Male | Tumour right mandible | 1.6 × 1.2 × 0.4 | |
Neoplastic lesions | |||||
Giant cell tumour of the bone (ICD-O 9250/1) (n = 11) | |||||
19 | 17 | Male | Left head of the fibula | 7 × 7 × 3 | |
20 | 38 | Male | Left distal femur | 3 × 2.5 × 1 | |
21 | 38 | Male | Left distal femur | 5 × 5.2 × 1.4 | |
22 | 30 | Female | Lateral condyle of right femur | 2.2 × 2 × 0.4 | |
23 | 31 | Male | Right proximal fibula | 2 × 2 × 0.5 | |
24a | 20 | Male | Core biopsy right proximal tibia | Four core biopsies, 2 cm | |
24b | 20 | Male | Resected tissue right proximal tibia | 4 × 4 × 2.5 | |
25a | 18 | Female | Incision biopsy right head of the tibia | 1.4 × 1.6 × 0.4 | |
25b | 18 | Female | Resected tissue right head of the tibia | 7 × 4 × 2 | |
26a | 42 | Male | Right head of the fibula | 1.9 × 0.8 × 0.3 | |
26b | 46 | Male | Local recurrence in right head of the fibula | 2.5 × 2.5 × 0.5 | |
Aneurysmal bone cyst (ICD-O 9260/0) (n = 7) | |||||
27 | 9 | Male | Rib | 2.2 × 1.4 × 1.4 | |
28 | 19 | Male | Fibula | 0.5 × 0.3 × 0.2 | |
29 | 25 | Female | Left proximal tibia | 4.5 × 3.4 × 0.8 | |
30 | 27 | Male | Lower thoracic spine | 3.5 × 2.7 × 1.4 | |
31 | 22 | Male | Metacarpal bone of left hand | 1.3 × 0.6 × 0.5 | |
32a | 45 | Female | Incision biopsy left thumb | 0.9 × 0.6 × 0.2 | |
32b | 45 | Female | Left thumb | 1.5 × 1.7 × 0.3 | |
Chondroblastoma (ICD-O 9230/0) (n = 3) | |||||
33 | 15 | Male | Medial condyle of left femur | 1.5 × 0.9 × 0.8 | |
34 | 13 | Female | Right tibia | 1 × 0.7 × 0.4 | |
35 | 21 | Male | Right fifth rib | 1 × 0.7 × 0.5 | |
Non-ossifying fibroma (8830/0) (n = 3) | |||||
36 | 10 | Female | Right distal femur | 3.5 × 2.5 × 1.7 | |
37 | 12 | Male | Cancellous bone | 2.5 × 2 × 0.5 | |
38 | 16 | Male | Left distal tibia | 4.5 × 4.4 × 0.6 | |
Tenosynovial giant cell tumour (ICD-O 9252/0) (n = 3) | |||||
39 | 45 | Male | Toe | 2.9 × 1.5 × 1.1 | |
40 | 53 | Male | Left knee | 3.5 × 1.5 × 0.4 | |
41 | 20 | Female | Cervical vertebra | 1.5 × 0.5 × 0.5 | |
Xanthogranuloma (n = 1) | |||||
42 | 52 | Male | Eyelid cyst | 0.5 × 0.3 × 0.2 |
Antibody | Clone | Cat# | Dilution | Pretreatment | Manufacturer | Location |
---|---|---|---|---|---|---|
Anti-human leukocyte antigen (HLA)-DR (mouse) | 1B5 | - | 1:1000 | Microwave | Moldenhauer Heidelberg | Heidelberg, Germany |
Anti-Cyclin D1 (rabbit) | EP12 | M3642 | 1:25 | Steamer pH9 | Dako/Agilent Technologies, Inc. | Santa Clara, California, USA |
Anti-Cyclin E (mouse) | HE12 | sc-247 | 1:75 | Steamer pH 8 | Santa Cruz Biotechnology, Inc. | Dallas, Texas, USA |
Anti-p16 (mouse) | 1D7D2 | MA5-17054 | 1:400 | Microwave | Thermo Fisher Scientific | Waltham, Massachusetts, USA |
Anti-p21 (WAF1/Cip1) (mouse) | SX118 | M7202 | 1:25 | Steamer pH8 | Dako/Agilent Technologies, Inc. | Santa Clara, California, USA |
Anti-receptor activator of nuclear factor κB (RANK) (rabbit poly) | TNFRSF 11A | NBP1-85771 | 1:100 | Steamer pH 9 | Novus Biologicals, LLC | Centennial, Colorado, USA |
Anti-receptor activator of nuclear factor κB ligand (RANK-L) (mouse) | 12A668 | NB100-56512 | 1:300 | Steamer pH8 | Novus Biologicals, LLC | Centennial, Colorado, USA |
Anti-Osteoprotegerin (OPG) (mouse) | 98A1071 | NB100-56505 | 1:400 | Steamer pH 8 | Novus Biologicals, LLC | Centennial, Colorado, USA |
Anti-Osteonectin (mouse) | OST1 | MU387-UC | 1:400 | Pressure cooker | BioGenex Laboratories | Fremont, California, USA |
Anti-Osteopontin (mouse) | AKm2A1 | sc-21741 | 1:300 | Steamer pH 9 | Santa Cruz Biotechnology, Inc. | Dallas, Texas, USA |
Anti-tartrate resistant acid phosphatase (TRAP)(mouse) | 9C5 | EUL001 | 1:3000 | Steamer pH 8 | Kerafast, Inc. | Boston, Massachusetts, USA |
Anti-runt-related transcription factor 2 (RUNX2) (mouse) | 27-K | sc101145 | 1:50 | Steamer pH 9 | Santa Cruz Biotechnology, Inc. | Dallas, Texas, USA |
Anti-CD68(mouse) | PG-M1 | M0876 | 1:100 | Steamer pH 6,1 | Dako/Agilent Technologies, Inc. | Santa Clara, California, USA |
Anti-CD163 (mouse) | 10D6 | NCL-L-CD163 | 1:50 | Steamer pH 6,1 | Leica Biosystems Newcastle Ltd. | Newcastle Upon Tyne, United Kingdom |
Anti-Langerin (mouse) | 12D6 | 392M-16 | 1:100 | Pressure cooker | Cell Marque Tissue Diagnostics | Rocklin, California, USA |
Sample No. | HLA Class II | Cell Cycle | Bone Metabolism | Lineage | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HLA-DR | Cyclin D1 | Cyclin E | p16 | p21 | RANK | RANK-L | Osteoprotegerin | Osteonectin | Osteopontin | TRAP | RUNX2 | CD68 | CD163 | Langerin | ||
Reactive lesions | ||||||||||||||||
Bony callus (n = 4) | 1–4 | |||||||||||||||
Sarcoidosis (n = 3) | 5–7 | |||||||||||||||
Sarcoid-like lesion (n = 2) | 8–9 | |||||||||||||||
Tuberculosis (n = 3) | 10–12 | |||||||||||||||
Foreign body granuloma (n = 3) | 13–15 | |||||||||||||||
Fibroid epulis (n = 2) | 16–17 | |||||||||||||||
Brown tumour (n = 2) | 18a | |||||||||||||||
18b | ||||||||||||||||
Neoplastic lesions | ||||||||||||||||
Giant cell tumour of bone (n = 11) | 19–23 | |||||||||||||||
24a | ||||||||||||||||
24b | ||||||||||||||||
25a | ||||||||||||||||
25b | ||||||||||||||||
26a | ||||||||||||||||
26b | ||||||||||||||||
Aneurysmal bone cyst (n = 7) | 27–31 | |||||||||||||||
32a | ||||||||||||||||
32b | ||||||||||||||||
Chondroblastoma (n = 3) | 33–35 | |||||||||||||||
Non-ossifying fibroma (n = 3) | 36–38 | |||||||||||||||
Tenosynovial giant cell tumour (n = 3) | 39–41 | |||||||||||||||
Xanthogranuloma (n = 1) | 42 | |||||||||||||||
0% | ||||||||||||||||
up to 30% | ||||||||||||||||
30–70% | ||||||||||||||||
more than 70% |
Subgroup | Antigen | Short Description of Main Function |
---|---|---|
HLA class II | HLA-DR [25] | MHC 1 class II, expressed on antigen-presenting cells, B-cells, and T-cells, present exogenously derived antigens to T-lymphocytes. |
Cell cycle | Cyclin D1 [26] | Forms a complex with CDK 2 4 and 6, phosphorylates retinoblastoma protein, leading to cell cycle transition of G1- to S-phase. |
Cyclin E [27] | Forms a complex with CDK 2, allowing cell cycle transition from G1- to S-phase. | |
p16 [28] | Inhibits cell cycle progression from G1- to S-phase, thereby slowing down cell division. The p16 gene constitutes the second most common tumour suppressor gene. | |
p21 [29] | Universal CDK-inhibitor that inhibits CDK 2 and other CDKs, thus regulating the cell cycle progression in G1- and S-phase. | |
Bone Metabolism | RANK [30] | Receptor activator of nuclear factor κB, expressed in osteoclasts, takes part in their regulation, activated by RANK-L. |
RANK-L [31] | Receptor activator of nuclear factor κB ligand, released by osteoblast lineage cells, mediates osteoclastogenesis, activates mature osteoclasts and increases their survival time. | |
Osteoprotegerin [32] | Secreted protein, decoy receptor of RANK-L, therefore blocking osteoclast production, also expressed on osteoblasts. | |
Osteonectin [33] | Secreted glycoprotein, that binds calcium and mediates cell-matrix-interactions in bone and other tissues, is associated with tissue remodelling and mineralisation of collagen. | |
Osteopontin [34] | Acidic extracellular matrix protein expressed in many different tissues. Is relevant for bone remodelling. | |
TRAP [35] | Tartrate-resistant acid phosphatase, expressed in osteoclasts, activated macrophages, and dendritic cells. Biomarker for hairy cell leukaemia and increased bone metabolism. A natural substrate of TRAP is osteopontin. | |
RUNX2 [36] | Master transcription factor that regulates cell differentiation into and proliferation of osteoblasts and chondrocytes. | |
Lineage | CD 3 68 [37] | Membrane protein expressed on antigen-presenting cells like macrophages and dendritic cells |
CD163 [38] | Haemoglobin scavenger receptor present on resident macrophages and monocytes in normal and neoplastic conditions. | |
Langerin [39] | CD 207, transmembrane protein expressed on Langerhans cells (immature dendritic cells) present in the epidermis and mucosa. Binds carbohydrates and pathogens. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hild, V.; Mellert, K.; Möller, P.; Barth, T.F.E. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers 2023, 15, 3702. https://doi.org/10.3390/cancers15143702
Hild V, Mellert K, Möller P, Barth TFE. Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers. 2023; 15(14):3702. https://doi.org/10.3390/cancers15143702
Chicago/Turabian StyleHild, Vivien, Kevin Mellert, Peter Möller, and Thomas F. E. Barth. 2023. "Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature" Cancers 15, no. 14: 3702. https://doi.org/10.3390/cancers15143702
APA StyleHild, V., Mellert, K., Möller, P., & Barth, T. F. E. (2023). Giant Cells of Various Lesions Are Characterised by Different Expression Patterns of HLA-Molecules and Molecules Involved in the Cell Cycle, Bone Metabolism, and Lineage Affiliation: An Immunohistochemical Study with a Review of the Literature. Cancers, 15(14), 3702. https://doi.org/10.3390/cancers15143702