Circulating Natural Killer Cells as Prognostic Value for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Correlation with Sarcopenia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Blood Sample Processing and Immunophenotyping by Flow Cytometry
2.3. Serum Cytokines Quantification
2.4. Body Composition Assessment
2.5. Response and Survival Outcome Assessment
2.6. Statistical Analyses
3. Results
3.1. Characteristics of the Cohort
3.2. Baseline Evaluation (T0)
3.3. T1 Evaluation
3.4. Longitudinal Evaluation (T1 vs. T0)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, G.; Zhang, H.; Zhao, H.; Wang, J.; Wu, N.; Li, L.; Wu, J.; Zhang, D. Emerging Immune Checkpoints in the Tumor Microenvironment: Implications for Cancer Immunotherapy. Cancer Lett. 2021, 511, 68–76. [Google Scholar] [CrossRef]
- Liu, C.; Yang, M.; Zhang, D.; Chen, M.; Zhu, D. Clinical Cancer Immunotherapy: Current Progress and Prospects. Front. Immunol. 2022, 13, 961805. [Google Scholar] [CrossRef]
- Robert, C. A Decade of Immune-Checkpoint Inhibitors in Cancer Therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef]
- Carbone, D.P.; Reck, M.; Paz-Ares, L.; Creelan, B.; Horn, L.; Steins, M.; Felip, E.; van den Heuvel, M.M.; Ciuleanu, T.-E.; Badin, F.; et al. First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2415–2426. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, P.T.; Bhatia, S.; Lipson, E.J.; Kudchadkar, R.R.; Miller, N.J.; Annamalai, L.; Berry, S.; Chartash, E.K.; Daud, A.; Fling, S.P.; et al. PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 2542–2552. [Google Scholar] [CrossRef] [PubMed]
- Botticelli, A.; Pomati, G.; Cirillo, A.; Scagnoli, S.; Pisegna, S.; Chiavassa, A.; Rossi, E.; Schinzari, G.; Tortora, G.; Di Pietro, F.R.; et al. The Role of Immune Profile in Predicting Outcomes in Cancer Patients Treated with Immunotherapy. Front. Immunol. 2022, 13, 974087. [Google Scholar] [CrossRef] [PubMed]
- Pilard, C.; Ancion, M.; Delvenne, P.; Jerusalem, G.; Hubert, P.; Herfs, M. Cancer Immunotherapy: It’s Time to Better Predict Patients’ Response. Br. J. Cancer 2021, 125, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.-J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.W.; Weber, J.S.; et al. Safety and Tumor Responses with Lambrolizumab (anti-PD-1) in Melanoma. N. Engl. J. Med. 2013, 369, 134–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, A.; Kose, K.; Kraehenbuehl, L.; Byers, C.; Holland, A.; Tembo, T.; Santella, A.; Alfonso, A.; Li, M.; Cordova, M.; et al. In Vivo Tumor Immune Microenvironment Phenotypes Correlate with Inflammation and Vasculature to Predict Immunotherapy Response. Nat. Commun. 2022, 13, 5312. [Google Scholar] [CrossRef]
- Martinez-Usatorre, A.; Kadioglu, E.; Boivin, G.; Cianciaruso, C.; Guichard, A.; Torchia, B.; Zangger, N.; Nassiri, S.; Keklikoglou, I.; Schmittnaegel, M.; et al. Overcoming Microenvironmental Resistance to PD-1 Blockade in Genetically Engineered Lung Cancer Models. Sci. Transl. Med. 2021, 13, eabd1616. [Google Scholar] [CrossRef]
- Screpanti, V.; Wallin, R.P.A.; Grandien, A.; Ljunggren, H.-G. Impact of FASL-Induced Apoptosis in the Elimination of Tumor Cells by NK Cells. Mol. Immunol. 2005, 42, 495–499. [Google Scholar] [CrossRef]
- Fauriat, C.; Long, E.O.; Ljunggren, H.-G.; Bryceson, Y.T. Regulation of Human NK-Cell Cytokine and Chemokine Production by Target Cell Recognition. Blood 2010, 115, 2167–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voskoboinik, I.; Smyth, M.J.; Trapani, J.A. Perforin-Mediated Target-Cell Death and Immune Homeostasis. Nat. Rev. Immunol. 2006, 6, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Gascón-Ruiz, M.; Ramírez-Labrada, A.; Lastra, R.; Martínez-Lostao, L.; Paño-Pardo, J.R.; Sesma, A.; Zapata-García, M.; Moratiel, A.; Quílez, E.; Torres-Ramón, I.; et al. A Subset of PD-1-Expressing CD56 NK Cells Identifies Patients with Good Response to Immune Checkpoint Inhibitors in Lung Cancer. Cancers 2023, 15, 329. [Google Scholar] [CrossRef] [PubMed]
- Tenuta, M.; Gelibter, A.; Pandozzi, C.; Sirgiovanni, G.; Campolo, F.; Venneri, M.A.; Caponnetto, S.; Cortesi, E.; Marchetti, P.; Isidori, A.M.; et al. Impact of Sarcopenia and Inflammation on Patients with Advanced Non-Small Cell Lung Cancer (NCSCL) Treated with Immune Checkpoint Inhibitors (ICIs): A Prospective Study. Cancers 2021, 13, 6355. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Pellegatta, S.; Eoli, M.; Cuccarini, V.; Anghileri, E.; Pollo, B.; Pessina, S.; Frigerio, S.; Servida, M.; Cuppini, L.; Antozzi, C.; et al. Survival Gain in Glioblastoma Patients Treated with Dendritic Cell Immunotherapy Is Associated with Increased NK but Not CD8 T Cell Activation in the Presence of Adjuvant Temozolomide. Oncoimmunology 2018, 7, e1412901. [Google Scholar] [CrossRef] [Green Version]
- Fregni, G.; Perier, A.; Pittari, G.; Jacobelli, S.; Sastre, X.; Gervois, N.; Allard, M.; Bercovici, N.; Avril, M.F.; Caignard, A. Unique Functional Status of Natural Killer Cells in Metastatic Stage IV Melanoma Patients and Its Modulation by Chemotherapy. Clin. Cancer Res. 2011, 17, 2628–2637. [Google Scholar] [CrossRef]
- Zingoni, A.; Fionda, C.; Borrelli, C.; Cippitelli, M.; Santoni, A.; Soriani, A. Natural Killer Cell Response to Chemotherapy-Stressed Cancer Cells: Role in Tumor Immunosurveillance. Front. Immunol. 2017, 8, 1194. [Google Scholar] [CrossRef] [Green Version]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.-C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade. J. Clin. Investig. 2018, 128, 4654–4668. [Google Scholar] [CrossRef] [PubMed]
- Davis, Z.B.; Felices, M.; Verneris, M.R.; Miller, J.S. Natural Killer Cell Adoptive Transfer Therapy: Exploiting the First Line of Defense Against Cancer. Cancer J. 2015, 21, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sottile, R.; Pangigadde, P.N.; Tan, T.; Anichini, A.; Sabbatino, F.; Trecroci, F.; Favoino, E.; Orgiano, L.; Roberts, J.; Ferrone, S.; et al. HLA Class I Downregulation Is Associated with Enhanced NK-Cell Killing of Melanoma Cells with Acquired Drug Resistance to BRAF Inhibitors. Eur. J. Immunol. 2016, 46, 409–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsten, M.; Järås, M. Natural Killer Cells in Myeloid Malignancies: Immune Surveillance, NK Cell Dysfunction, and Pharmacological Opportunities to Bolster the Endogenous NK Cells. Front. Immunol. 2019, 10, 2357. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.-H.; Choi, M.G.; Kim, D.H.; Choi, Y.J.; Kim, S.Y.; Sung, K.J.; Lee, J.C.; Kim, S.-Y.; Rho, J.K.; Choi, C.-M. Natural Killer Cells as a Potential Biomarker for Predicting Immunotherapy Efficacy in Patients with Non-Small Cell Lung Cancer. Target. Oncol. 2020, 15, 241–247. [Google Scholar] [CrossRef]
- Mazzaschi, G.; Minari, R.; Zecca, A.; Cavazzoni, A.; Ferri, V.; Mori, C.; Squadrilli, A.; Bordi, P.; Buti, S.; Bersanelli, M.; et al. Soluble PD-L1 and Circulating CD8+PD-1+ and NK Cells Enclose a Prognostic and Predictive Immune Effector Score in Immunotherapy Treated NSCLC Patients. Lung Cancer 2020, 148, 1–11. [Google Scholar] [CrossRef]
- Youn, J.-I.; Park, S.-M.; Park, S.; Kim, G.; Lee, H.-J.; Son, J.; Hong, M.H.; Ghaderpour, A.; Baik, B.; Islam, J.; et al. Peripheral Natural Killer Cells and Myeloid-Derived Suppressor Cells Correlate with Anti-PD-1 Responses in Non-Small Cell Lung Cancer. Sci. Rep. 2020, 10, 9050. [Google Scholar] [CrossRef]
- Lo Russo, G.; Sgambelluri, F.; Prelaj, A.; Galli, F.; Manglaviti, S.; Bottiglieri, A.; Di Mauro, R.M.; Ferrara, R.; Galli, G.; Signorelli, D.; et al. PEOPLE (NCT03447678), a First-Line Phase II Pembrolizumab Trial, in Negative and Low PD-L1 Advanced NSCLC: Clinical Outcomes and Association with Circulating Immune Biomarkers. ESMO Open 2022, 7, 100645. [Google Scholar] [CrossRef]
- Mazzaschi, G.; Facchinetti, F.; Missale, G.; Canetti, D.; Madeddu, D.; Zecca, A.; Veneziani, M.; Gelsomino, F.; Goldoni, M.; Buti, S.; et al. The Circulating Pool of Functionally Competent NK and CD8+ Cells Predicts the Outcome of Anti-PD1 Treatment in Advanced NSCLC. Lung Cancer 2019, 127, 153–163. [Google Scholar] [CrossRef]
- Li, P.; Qin, P.; Fu, X.; Zhang, G.; Yan, X.; Zhang, M.; Zhang, X.; Yang, J.; Wang, H.; Ma, Z. Associations between Peripheral Blood Lymphocyte Subsets and Clinical Outcomes in Patients with Lung Cancer Treated with Immune Checkpoint Inhibitor. Ann. Palliat. Med. 2021, 10, 3039–3049. [Google Scholar] [CrossRef]
- Riemann, D.; Turzer, S.; Ganchev, G.; Schütte, W.; Seliger, B.; Möller, M. Monitoring Blood Immune Cells in Patients with Advanced Small Cell Lung Cancer Undergoing a Combined Immune Checkpoint Inhibitor/Chemotherapy. Biomolecules 2023, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Rochigneux, P.; Lisberg, A.; Garcia, A.; Granjeaud, S.; Madroszyk, A.; Fattori, S.; Gonçalves, A.; Devillier, R.; Maby, P.; Salem, N.; et al. Mass Cytometry Reveals Classical Monocytes, NK Cells, and ICOS+ CD4+ T Cells Associated with Pembrolizumab Efficacy in Patients with Lung Cancer. Clin. Cancer Res. 2022, 28, 5136–5148. [Google Scholar] [CrossRef] [PubMed]
- Nelli, F.; Panichi, V.; Fabbri, A.; Natoni, F.; Giannarelli, D.; Topini, G.; Virtuoso, A.; Giron Berrios, J.R.; Marrucci, E.; Pessina, G.; et al. Dynamic Changes of Peripheral NK Cells Predict Outcome in Patients with PD-L1 Positive Non-Small-Cell Lung Cancer Undergoing Immune Checkpoint Inhibitors as Second-Line Therapy. Cancer Investig. 2022, 40, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Pesce, S.; Greppi, M.; Tabellini, G.; Rampinelli, F.; Parolini, S.; Olive, D.; Moretta, L.; Moretta, A.; Marcenaro, E. Identification of a Subset of Human Natural Killer Cells Expressing High Levels of Programmed Death 1: A Phenotypic and Functional Characterization. J. Allergy Clin. Immunol. 2017, 139, 335–346.e3. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cheng, Y.; Xu, Y.; Wang, Z.; Du, X.; Li, C.; Peng, J.; Gao, L.; Liang, X.; Ma, C. Increased Expression of Programmed Cell Death Protein 1 on NK Cells Inhibits NK-Cell-Mediated Anti-Tumor Function and Indicates Poor Prognosis in Digestive Cancers. Oncogene 2017, 36, 6143–6153. [Google Scholar] [CrossRef] [Green Version]
- Grottoli, M.; Carrega, P.; Zullo, L.; Dellepiane, C.; Rossi, G.; Parisi, F.; Barletta, G.; Zinoli, L.; Coco, S.; Alama, A.; et al. Immune Checkpoint Blockade: A Strategy to Unleash the Potential of Natural Killer Cells in the Anti-Cancer Therapy. Cancers 2022, 14, 5046. [Google Scholar] [CrossRef]
- Isidori, A.M.; Venneri, M.A.; Graziadio, C.; Simeoli, C.; Fiore, D.; Hasenmajer, V.; Sbardella, E.; Gianfrilli, D.; Pozza, C.; Pasqualetti, P.; et al. Effect of Once-Daily, Modified-Release Hydrocortisone versus Standard Glucocorticoid Therapy on Metabolism and Innate Immunity in Patients with Adrenal Insufficiency (DREAM): A Single-Blind, Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2018, 6, 173–185. [Google Scholar] [CrossRef]
- Puliani, G.; Hasenmajer, V.; Sciarra, F.; Barbagallo, F.; Sbardella, E.; Pofi, R.; Gianfrilli, D.; Romagnoli, E.; Venneri, M.A.; Isidori, A.M. Impaired Immune Function in Patients With Chronic Postsurgical Hypoparathyroidism: Results of the EMPATHY Study. J. Clin. Endocrinol. Metab. 2021, 106, e2215–e2227. [Google Scholar] [CrossRef]
- Sesti, F.; Puliani, G.; Feola, T.; Campolo, F.; Sciarra, F.; Hasenmajer, V.; Lenzi, A.; Faggiano, A.; Isidori, A.M.; Venneri, M.A.; et al. Characterization of Circulating Immune Cells and Correlation with Tie2/Angiopoietins Level in Well Differentiated Neuroendocrine Gastroenteropancreatic Tumors: A Cross-Sectional Analysis. Endocrine 2023, 80, 221–230. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, L.; Liu, X. Natural Killer Cells: The next Wave in Cancer Immunotherapy. Front. Immunol. 2022, 13, 954804. [Google Scholar] [CrossRef]
- Imai, K.; Matsuyama, S.; Miyake, S.; Suga, K.; Nakachi, K. Natural Cytotoxic Activity of Peripheral-Blood Lymphocytes and Cancer Incidence: An 11-Year Follow-up Study of a General Population. Lancet 2000, 356, 1795–1799. [Google Scholar] [CrossRef]
- Pross, H.F.; Lotzová, E. Role of Natural Killer Cells in Cancer. Nat. Immun. 1993, 12, 279–292. [Google Scholar] [PubMed]
- Asano, Y.; Yamamoto, N.; Demura, S.; Hayashi, K.; Takeuchi, A.; Kato, S.; Miwa, S.; Igarashi, K.; Higuchi, T.; Taniguchi, Y.; et al. Novel Predictors of Immune Checkpoint Inhibitor Response and Prognosis in Advanced Non-Small-Cell Lung Cancer with Bone Metastasis. Cancer Med. 2023, 12, 12425–12437. [Google Scholar] [CrossRef]
- Tanizaki, J.; Haratani, K.; Hayashi, H.; Chiba, Y.; Nakamura, Y.; Yonesaka, K.; Kudo, K.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; et al. Peripheral Blood Biomarkers Associated with Clinical Outcome in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. J. Thorac. Oncol. 2018, 13, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Riedl, J.M.; Barth, D.A.; Brueckl, W.M.; Zeitler, G.; Foris, V.; Mollnar, S.; Stotz, M.; Rossmann, C.H.; Terbuch, A.; Balic, M.; et al. C-Reactive Protein (CRP) Levels in Immune Checkpoint Inhibitor Response and Progression in Advanced Non-Small Cell Lung Cancer: A Bi-Center Study. Cancers 2020, 12, 2319. [Google Scholar] [CrossRef] [PubMed]
- Valenti, R.; Huber, V.; Filipazzi, P.; Pilla, L.; Sovena, G.; Villa, A.; Corbelli, A.; Fais, S.; Parmiani, G.; Rivoltini, L. Human Tumor-Released Microvesicles Promote the Differentiation of Myeloid Cells with Transforming Growth Factor-Beta-Mediated Suppressive Activity on T Lymphocytes. Cancer Res. 2006, 66, 9290–9298. [Google Scholar] [CrossRef] [Green Version]
- Batlle, E.; Massagué, J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019, 50, 924–940. [Google Scholar] [CrossRef]
- Yang, L.; Moses, H.L. Transforming Growth Factor Beta: Tumor Suppressor or Promoter? Are Host Immune Cells the Answer? Cancer Res. 2008, 68, 9107–9111. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Gao, N.; Yang, Z.; Zhang, L.; Wang, Y.; Zhang, S.; Fan, T. Characteristics, Polarization and Targeted Therapy of Mononuclear Macrophages in Rheumatoid Arthritis. Am. J. Transl. Res. 2023, 15, 2109–2121. [Google Scholar] [PubMed]
- Hanna, R.N.; Cekic, C.; Sag, D.; Tacke, R.; Thomas, G.D.; Nowyhed, H.; Herrley, E.; Rasquinha, N.; McArdle, S.; Wu, R.; et al. Patrolling Monocytes Control Tumor Metastasis to the Lung. Science 2015, 350, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Olingy, C.E.; Dinh, H.Q.; Hedrick, C.C. Monocyte Heterogeneity and Functions in Cancer. J. Leukoc. Biol. 2019, 106, 309–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubzick, C.V.; Randolph, G.J.; Henson, P.M. Monocyte Differentiation and Antigen-Presenting Functions. Nat. Rev. Immunol. 2017, 17, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Yang, J.; Ronchese, F. Monocyte-Derived Dendritic Cells Are Essential for CD8(+) T Cell Activation and Antitumor Responses After Local Immunotherapy. Front. Immunol. 2015, 6, 584. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Shen, J.; Qian, Y.; Zhou, T. Sarcopenia as a Determinant of the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: A Meta-Analysis. Nutr. Cancer 2023, 75, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Trinkner, P.; Günther, S.; Monsef, I.; Kerschbaum, E.; von Bergwelt-Baildon, M.; Cordas Dos Santos, D.M.; Theurich, S. Survival and Immunotoxicities in Association with Sex-Specific Body Composition Patterns of Cancer Patients Undergoing Immune-Checkpoint Inhibitor Therapy—A Systematic Review and Meta-Analysis. Eur. J. Cancer 2023, 184, 151–171. [Google Scholar] [CrossRef]
- Solana, R.; Mariani, E. NK and NK/T Cells in Human Senescence. Vaccine 2000, 18, 1613–1620. [Google Scholar] [CrossRef]
- Woods, J.L.; Iuliano-Burns, S.; Walker, K.Z. Immunological and Nutritional Factors in Elderly People in Low-Level Care and Their Association with Mortality. Immun. Ageing 2013, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in Aging: Between Immune Cells Depletion and Cytokines up-Regulation. Clin. Mol. Allergy 2017, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Afzali, A.M.; Müntefering, T.; Wiendl, H.; Meuth, S.G.; Ruck, T. Skeletal Muscle Cells Actively Shape (auto)immune Responses. Autoimmun. Rev. 2018, 17, 518–529. [Google Scholar] [CrossRef]
- Lutz, C.T.; Quinn, L.S. Sarcopenia, Obesity, and Natural Killer Cell Immune Senescence in Aging: Altered Cytokine Levels as a Common Mechanism. Aging 2012, 4, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuster, G.; Almendro, V.; Fontes-Oliveira, C.C.; Toledo, M.; Costelli, P.; Busquets, S.; López-Soriano, F.J.; Argilés, J.M. Interleukin-15 Affects Differentiation and Apoptosis in Adipocytes: Implications in Obesity. Lipids 2011, 46, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Quinn, L.S. Interleukin-15: A Muscle-Derived Cytokine Regulating Fat-to-Lean Body Composition. J. Anim. Sci. 2008, 86, E75–E83. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Jones, M.; Liu, B.; Zhu, X.; Johnson, C.B.; Edwards, A.C.; Kong, L.; Jeng, E.K.; Han, K.; Marcus, W.D.; et al. Efficacy and Mechanism-of-Action of a Novel Superagonist Interleukin-15: Interleukin-15 Receptor αSu/Fc Fusion Complex in Syngeneic Murine Models of Multiple Myeloma. Cancer Res. 2013, 73, 3075–3086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosario, M.; Liu, B.; Kong, L.; Collins, L.I.; Schneider, S.E.; Chen, X.; Han, K.; Jeng, E.K.; Rhode, P.R.; Leong, J.W.; et al. The IL-15-Based ALT-803 Complex Enhances FcγRIIIa-Triggered NK Cell Responses and In Vivo Clearance of B Cell Lymphomas. Clin. Cancer Res. 2016, 22, 596–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romee, R.; Cooley, S.; Berrien-Elliott, M.M.; Westervelt, P.; Verneris, M.R.; Wagner, J.E.; Weisdorf, D.J.; Blazar, B.R.; Ustun, C.; DeFor, T.E.; et al. First-in-Human Phase 1 Clinical Study of the IL-15 Superagonist Complex ALT-803 to Treat Relapse after Transplantation. Blood 2018, 131, 2515–2527. [Google Scholar] [CrossRef] [Green Version]
- Margolin, K.; Morishima, C.; Velcheti, V.; Miller, J.S.; Lee, S.M.; Silk, A.W.; Holtan, S.G.; Lacroix, A.M.; Fling, S.P.; Kaiser, J.C.; et al. Phase I Trial of ALT-803, A Novel Recombinant IL15 Complex, in Patients with Advanced Solid Tumors. Clin. Cancer Res. 2018, 24, 5552–5561. [Google Scholar] [CrossRef] [Green Version]
- Wrangle, J.M.; Velcheti, V.; Patel, M.R.; Garrett-Mayer, E.; Hill, E.G.; Ravenel, J.G.; Miller, J.S.; Farhad, M.; Anderton, K.; Lindsey, K.; et al. ALT-803, an IL-15 Superagonist, in Combination with Nivolumab in Patients with Metastatic Non-Small Cell Lung Cancer: A Non-Randomised, Open-Label, Phase 1b Trial. Lancet Oncol. 2018, 19, 694–704. [Google Scholar] [CrossRef]
- Björkström, N.K.; Ljunggren, H.-G.; Michaëlsson, J. Emerging Insights into Natural Killer Cells in Human Peripheral Tissues. Nat. Rev. Immunol. 2016, 16, 310–320. [Google Scholar] [CrossRef]
Overall, N | 47 |
---|---|
Age, years, median (IQR) | 67 (61;74) |
Sex
| 27 (57.4) 20 (42.6) |
BMI, Kg/m2, median (IQR) | 23.9 (20.7; 27.8) |
Smoking status
| 16 (34) 29 (61.7) 2 (4.2) |
PS
| 33 (70.2) 14 (29.8) |
Histotype NSCLC
| 30 (63.8) 9 (19.1) 5 (10.6) 3 (6.4) |
Line of treatment | |
| 18 (38.3) 21 (44.7) 8 (17) |
Type of ICI
| 22 (46.8) 18 (38.3) 7 (14.9) |
PD-L1 expression
| 10 (21.3) 10 (21.3) 19 (40.4) 8 (17) |
Best response
| 3 (6.4) 9 (19.1) 18 (38.3) 17 (36.2) |
Survival data | |
| 38 (80.8) 12 (25) 30 (63.8) 8 (2.2–13.8) 14 (8.4–19.5) 20 (14–25.9) |
Sarcopenia, N (%) | 19 (40.4) |
Corticosteroid, N (%) | 13 (27.6) |
T0 | T1 | |||||||
---|---|---|---|---|---|---|---|---|
Overall (n = 47) | PD (n = 17) | DC (n = 30) | p | Overall (n = 30) | PD (n = 5) | DC (n = 25) | p | |
White blood cells ×103/µL | 8.0 (6.6; 9.2) | 8.6 (7.2; 9.2) | 7.8 (6.2; 10.1) | 0.569 | 7.4 (6.5; 8.6) | 6.6 (5.3; 7.9) | 7.5 (6.6; 8.9) | 0.284 |
Neutrophils ×103/µL | 5.5 (4.4; 6.7) | 6.3 (5.2; 6.7) | 5.0 (3.9; 7.1) | 0.198 | 4.9 (4.0; 5.5) | 4.9 (3.7; 6.0) | 4.8 (4.2; 5.4) | 0.928 |
Lymphocytes ×103/µL | 1.6 (1.1; 2.0) | 1.5 (0.9; 2.1) | 1.6 (1.3; 1.9) | 0.328 | 1.6 (1.3; 2.0) | 1.1 (0.9; 1.3) | 1.7 (1.6; 2.1) | <0.001 |
Monocytes ×103/µL | 0.5 (0.4; 0.7) | 0.5 (0.3; 0.6) | 0.6 (0.4; 0.7) | 0.306 | 0.5 (0.4; 0.6) | 0.4 (0.3; 0.5) | 0.5 (0.4; 0.7) | 0.099 |
Eosinophils ×103/µL | 0.11 (0.08; 0.27) | 0.08 (0.04; 0.13) | 0.17 (0.1; 0.31) | 0.005 | 0.14 (0.09; 0.3) | 0.15 (0.05; 0.24) | 0.14 (0.09; 0.3) | 0.694 |
Basophils ×103/µL | 0.03 (0.02; 0.04) | 0.03 (0.02; 0.04) | 0.03 (0.02; 0.04) | 0.543 | 0.03 (0.02; 0.04) | 0.02 (0.01; 0.04) | 0.03 (0.02; 0.04) | 0.129 |
NLR | 3.5 (2.5; 5.2) | 4.4 (2.6; 6.6) | 2.9 (2.1; 4.5) | 0.111 | 2.7 (2.1; 4.2) | 4.2 (3.6; 5.7) | 2.7 (2.1; 3.2) | 0.008 |
LLR | 4.8 (3.8; 6.8) | 6.1 (4; 7.8) | 4.6 (3.7; 5.9) | 0.213 | 4.5 (3.6; 5.6) | 5.7 (5.2; 7.5) | 4.2 (3.6; 4.9) | 0.004 |
Inflammatory and iron markers | ||||||||
ESR, mm/h | 56 (24; 86) | 59 (35; 107.5) | 43 (19.7; 77.5) | 0.132 | 32 (16.5; 70) | 75 (40.5; 94.5) | 27 (12.2; 60.2) | 0.06 |
CRP, mg/L | 14.1 (3.6; 42.6) | 19.8 (8.9; 55.1) | 10.2 (3.1; 31) | 0.088 | 5.30 (17; 29.4) | 30.8 (19; 55.3) | 3.2 (1.3; 10.5) | 0.01 |
Fibrinogen, g/L | 4.9 (4.0; 6.1) | 5.9 (4.3; 6.3) | 4.7 (3.8; 5.8) | 0.112 | 3.9 (3.3; 5.6) * | 5.8 (4.7; 6.8) | 3.7 (3.3; 4.9) * | 0.015 |
Ferritin, µg/L | 243 (166; 394) | 262 (189.5; 409.7) | 240 (146.2; 388.7) | 0.782 | 184.5 (77.2; 364.5) * | 254 (59.5; 346.5) | 182 (86.5; 367) | 0.705 |
Transferrin, g/L | 2.3 (2.0; 2.6) | 2.2 (2.0; 2.5) | 2.3 (2.0; 2.6) | 0.784 | 2.3 (2; 2.5) | 1.9 (1.5; 2.2) | 2.4 (2.2; 2.6) | 0.015 |
Cytokines | ||||||||
IL-6, pg/mL | 5.8 (3.2; 17.0) | 12.7 (3.0; 20) | 5.8 (3.5; 12.9) | 0.344 | 5.4 (2.3; 7.9) | 5.0 (2.8; 14.8) | 5.6 (2.3; 7.6) | 0.933 |
TNF-α, pg/mL | 4.3 (2.6; 6.0) | 5.2 (3.5; 6.0) | 3.5 (2.1; 5.6) | 0.276 | 4.3 (2.6; 6.4) | 4.3 (2.1; 5.2) | 4.3 (2.8; 6.8) | 0.414 |
TGF-β, pg/mL | 6.1 (4.0; 7.6) | 5.3 (3.8; 8.1) | 6.3 (4.2; 7.6) | 0.654 | 4.1 (3.5; 5.1) ** | 3.7 (3.2; 6) * | 4.1 (3.5; 5) * | 0.880 |
TGF-α, pg/mL | 6.1 (3.6; 15.3) | 6.9 (4.0; 16.8) | 5.3 (3.2; 13.9) | 0.511 | 6.1 (3.6; 13.0) | 2.7 (1.7; 5.7) | 9.2 (4.0; 15) | 0.034 |
IL-15, pg/mL | 1.4 (0.6; 2.5) | 2.3 (0.6; 3.1) | 1.2 (0.4; 2.4) | 0.253 | 4.9 (3.6; 9.5) ** | 4.9 (2.2; 8.4) | 4.9 (3.6;10) ** | 0.358 |
T0 | T1 | |||||||
---|---|---|---|---|---|---|---|---|
Overall (n = 47) | PD (n = 17) | DC (n = 30) | p | Overall (n = 30) | PD (n = 5) | DC (n = 25) | p | |
Total Monocytes CD14+, cells/μL | 427.6 (280.7; 620.3) | 354.6 (247.1; 585.5) | 436.2 (291.6; 716.0) | 0.501 | 331.5 (179.2; 536.2) | 392.2 (211.2; 573.8) | 325.8 (176.8; 567.6) * | 0.629 |
CD14++ CD16−, cells/μL | 308.8 (168.9; 510.0) | 299.9 (113.3; 438.0) | 314.0 (168.9; 629.4) | 0.453 | 268.4 (144.4; 396.6) | 326.3 (170.7; 483.0) | 253.5 (141.1; 407.9) * | 0.581 |
CD14+ CD16+, cells/μL | 7.0 (2.9; 22.4) | 6.4 (3.9;16.9) | 7.8 (1.9;25.3) | 0.959 | 5.5 (3.1;15.3) | 11.5 (3.1;16.2) | 5.2 (3.1;15.8) | 0.783 |
CD14+ CD16++, cells/μL | 20.8 (14.6; 53.2) | 18.9 (16.0; 67.3) | 23.4 (13.9; 53.2) | 1.000 | 25.9 (19.5; 43.8) | 27.5 (10.7; 31.0) | 24.4 (19.5; 45.8) | 0.446 |
T lymphocytes CD3+ CD56−, cells/μL | 822.4 (526.8; 1194.4) | 773.4 (455.7; 1147.8) | 911.6 (587.3; 1345.1) | 0.437 | 741.6 (509.6; 833.8) | 370.4 (234.3; 926.1) | 744.6 (636.0; 841.8) | 0.265 |
CD4+, cells/μL | 284.8 (151; 551) | 215.6 (138.1; 612.9) | 320.6 (156.9; 543.7) | 0.445 | 264.8 (160.4; 307.8) | 167.6 (61.0; 289.1) | 265.3 (177.3; 312.3) | 0.275 |
CD8+, cells/μL | 234.6 (105.2; 316.9) | 153.5 (96.4; 298.3) | 273.9 (132.9; 334.5) | 0.133 | 179.4 (91.6; 288.7) | 125.5 (54.5; 251.5) | 184.0 (98.6; 323.9) | 0.406 |
NK cells CD3−CD56+, cells/μL | 63.6 (17.5; 151.7) | 27.8 (4.6; 57.6) | 127.0 (58; 210) | <0.001 | 108.6 (53.6; 205.9) | 30.4 (15.3; 53.8) | 138.1 (94.5; 223.6) * | < 0.001 |
CD56dim, cells/μL | 45.5 (13; 129) | 16.8 (2.1; 49.0) | 85.9 (20.1; 146.7) | 0.003 | 89.2 (29.4; 129.0) | 29.0 (9.0; 41.1) * | 100.3 (64.2;145.2) | 0.009 |
CD56bright, cells/μL | 12.0 (3.6; 31.2) | 6.7 (1.5; 17.6) | 18.1 (4.2; 49.0) | 0.047 | 17.9 (10.5; 69.8) * | 12.0 (10.0; 48.5) | 27.4 (10.4; 85.7) * | 0.357 |
Ratio CD56bright/CD56dim | 0.20 (0.09; 1.13) | 0.49 (0.11; 1.27) | 0.16 (0.06; 0.77) | 0.239 | 0.24 (0.07;0.89) | 0.99 (0.78;1.12) | 0.17 (0.06; 0.77) | 0.462 |
B lymphocytes CD19+, cells/μL | 92.6 (39.5;135.4) | 106.0 (44.4;203.6) | 61.6 (39.0;125.8) | 0.468 | 69.2 (40.9;93.4) | 41.4 (7.0;65.5) | 78.9 (42.1;96.4) | 0.044 |
B | SE | Wald | df | p | OR | 95% CI for OR | |||
---|---|---|---|---|---|---|---|---|---|
Lower | Upper | ||||||||
ECOG | 0.508 | 0.399 | 1.623 | 1 | 0.203 | 1.662 | 0.761 | 3.634 | |
PFS | High-dosage corticosteroid | 0.938 | 0.465 | 4.060 | 1 | 0.044 | 2.554 | 1.026 | 6.361 |
NK CD3−CD56+ (cells per μL) | −0.012 | 0.003 | 13.673 | 1 | <0.001 | 0.988 | 0.981 | 0.994 | |
ECOG | 0.465 | 0.358 | 1.685 | 1 | 0.194 | 1.592 | 0.789 | 3.215 | |
OS | High-dosage corticosteroid | 0.884 | 0.450 | 3.865 | 1 | 0.049 | 2.420 | 1.002 | 5.843 |
NK CD3−CD56+ (cells per μL) | −0.008 | 0.003 | 11.082 | 1 | <0.001 | 0.992 | 0.987 | 0.997 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tenuta, M.; Pandozzi, C.; Sciarra, F.; Campolo, F.; Gelibter, A.J.; Sirgiovanni, G.; Cortesi, E.; Lenzi, A.; Isidori, A.M.; Sbardella, E.; et al. Circulating Natural Killer Cells as Prognostic Value for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Correlation with Sarcopenia. Cancers 2023, 15, 3592. https://doi.org/10.3390/cancers15143592
Tenuta M, Pandozzi C, Sciarra F, Campolo F, Gelibter AJ, Sirgiovanni G, Cortesi E, Lenzi A, Isidori AM, Sbardella E, et al. Circulating Natural Killer Cells as Prognostic Value for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Correlation with Sarcopenia. Cancers. 2023; 15(14):3592. https://doi.org/10.3390/cancers15143592
Chicago/Turabian StyleTenuta, Marta, Carla Pandozzi, Francesca Sciarra, Federica Campolo, Alain J. Gelibter, Grazia Sirgiovanni, Enrico Cortesi, Andrea Lenzi, Andrea M. Isidori, Emilia Sbardella, and et al. 2023. "Circulating Natural Killer Cells as Prognostic Value for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Correlation with Sarcopenia" Cancers 15, no. 14: 3592. https://doi.org/10.3390/cancers15143592
APA StyleTenuta, M., Pandozzi, C., Sciarra, F., Campolo, F., Gelibter, A. J., Sirgiovanni, G., Cortesi, E., Lenzi, A., Isidori, A. M., Sbardella, E., & Venneri, M. A. (2023). Circulating Natural Killer Cells as Prognostic Value for Non-Small-Cell Lung Cancer Patients Treated with Immune Checkpoint Inhibitors: Correlation with Sarcopenia. Cancers, 15(14), 3592. https://doi.org/10.3390/cancers15143592