Targeted Therapies and Developing Precision Medicine in Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune Checkpoint Inhibitors
2.1. PD-L1 Positivity
Chemorefractory | |||||||
---|---|---|---|---|---|---|---|
Trial | Phase | Population | n | Trial arms | Response rate | PFS | OS |
ATTRACTION-2 [12] | III | GOJ or gastric; Asian | 493 | Nivolumab vs. placebo | 11% (8–16%) (DCR: 40% vs. 25%) | 1.61 vs. 1.45 m (HR 0.6, p < 0.0001) | 5·26 vs. 4.14 m (HR 0.63, p < 0.0001) |
KEYNOTE-059 [16] | II | GOJ or gastric | 259 | Pembrolizumab | All patients: 11.6% PD-L1 CPS ≥ 1: 16% PD-L1 CPS < 1: 6% | 2.0 m | 5.5 m |
CheckMate 032 [26] | I/II | Oesophageal adenocarcinoma, GOJ or gastric | 160 | Nivolumab 3 mg/kg (NIVO3) vs. nivolumab 1 mg/kg + ipilimumab 3 mg/kg (NIVO1 + IPI3) vs. nivolumab 3 mg/kg + ipilimumab 1 mg/kg (NIVO3 + IPI1) | 12% vs. 24% vs. 8% | 12 months: 8% vs. 17% vs. 10% | 12 months: 39% vs. 35% vs. 24% |
JAVELIN Gastric 300 [27] | III | GOJ or gastric | 371 | Avelumab vs. physician’s choice of weekly paclitaxel or two-weekly irinotecan or BSC | 2.2% vs. 4.3% | 1.4 vs. 2.7 m | 4.6 vs. 5.0 m (HR 1.1) |
Second-line setting | |||||||
Trial | Phase | Population | n | Trial arms | Response rate | PFS | OS |
KEYNOTE-061 [14] | III | Gastric or GOJ | 592 | Pembrolizumab vs. weekly paclitaxel | CPS ≥ 1: 16% vs. 14% CPS ≥ 10: 24.5% vs. 9.1% CPS < 1: 2% vs. 10.4% | CPS ≥ 1: 1.5 vs. 4.1 m (HR 1.27) | CPS ≥ 1: 9.1 vs. 8.3 m (HR 0.82; p = 0.04) CPS ≥ 10: 10.4 vs. 8.0 m (HR 0.64) |
KEYNOTE-181 [28] | III | Oesophageal adenocarcinoma and SCC | 628 n = 227 ACC | Pembrolizumab vs. physician’s choice of taxane or irinotecan | - | - | ITT: 7.1 vs. 7.1 m (HR 0.89; p = 0.056) PD-L1 CPS ≥ 10: 9.3 vs. 6.7 m (HR 0.69, p = 0.0074) ACC: 6.3 vs. 6.9 m |
Maintenance post first-line therapy | |||||||
JAVELIN Gastric 100 [17] | III | GOJ or gastric | 499 | Avelumab vs. continuation of chemotherapy or BSC | 13.3% vs. 14.4% | 3.2 vs. 4.4 m (HR 1.04) | 10.4 vs. 10.9 m (HR 0.91; p = 0.18) |
First-line setting | |||||||
Trial | Phase | Population | n | Trial arms | Response rate | PFS | OS |
KEYNOTE-062 [15] | III | GOJ or gastric PD-L1 CPS ≥ 1 | 763 | Pembrolizumab vs. chemotherapy + pembrolizumab vs. chemotherapy+ placebo | P vs. CTx CPS ≥ 1: 14.8% vs. 37.2% CPS ≥ 10: 25.0% vs. 37.8% | P vs. CTx CPS ≥ 1: 2.0 vs. 6.4 m (HR 1.66) CPS ≥ 10: 2.9 vs. 6.1 m (HR 1.10) | P vs. CTx CPS ≥ 1: 10.6 vs. 11.1 m (HR 0.91; p = 0.162) CPS ≥ 10: 17.4 vs. 10.8 m (HR 0.69) |
P vs. CTx + P CPS ≥ 1: 48.6 % vs. 37.2% | P vs. CTX + P CPS ≥ 1: 6.9 vs. 6.4 m (HR 0.84; p = 0.039) CPS ≥ 10: 5.7 vs. 6.1 m (HR 0.73) | P vs. CTX + P CPS ≥ 1: 12.5 vs. 11.1 m (HR 0.85; p = 0.046) CPS ≥ 10: 12.3 vs. 10.8 m (HR 0.85; p = 0.158) | |||||
CheckMate 649 [2] | III | Oesophageal adenocarcinoma, GOJ and gastric | 1581 | Nivolumab + chemotherapy vs. chemotherapy | CPS ≥ 5: 60% vs. 45% | CPS ≥ 5: 7.7 vs.6.0 m (HR 0.68, p = 0.0001) CPS ≥ 1: 7.5 vs. 6.9 m (HR 0.74) All patients: 7.7 vs. 6.9 m (HR 0.77) | CPS ≥ 5: 14.4 vs. 11.1 m (HR 0.91, p < 0.0001) CPS ≥ 1: 14.0 vs. 11.3 (HR 0.77, p = 0.0001) All patients: 13.8 vs. 11.6 (HR 0.80, p = 0.0002) |
ATTRACTION-4 [19] | II/III | GOJ or gastric; Asian | 724 | Nivolumab + chemotherapy vs. chemotherapy + placebo | 57.5% vs. 47.8% | 10.45 vs. 8.34 m (HR 0.68; p = 0.0007) | 17.45 vs. 17.15 m (HR 0.90; p = 0.257) |
KEYNOTE-590 [29] | III | Oesophageal adenocarcinoma and SCC or Type 1 GOJ (n = 201 oesophageal ACC and Type 1 GOJ) | 749 | Pembrolizumab + chemotherapy vs. chemotherapy + placebo | All patients: 45% vs. 29.3% | SCC: 6.3 vs. 5.8 m (HR 0.65; p < 0.0001) CPS ≥ 10: 7.5 vs. 5.5 m (HR 0.51; p < 0.0001) All patients: 6.3 vs. 5.8 m (HR 0.65; p < 0.0001) | SCC CPS ≥ 10: 13.9 vs. 8.8 m (HR 0.57; p < 0.0001) SCC: 12.6 vs. 9.8 m (HR 0.72; p = 0.0006) CPS ≥ 10: 13.5 vs. 9.4 m (HR 0.62, p < 0.0001) All patients: 12.4 vs. 9.8 m (HR 0.73; p < 0.0001) |
ORIENT-16 [20] | III | GOJ or gastric; Asian | 650 | Chemotherapy + sintilimab vs. chemotherapy + placebo | All patients: 58.2% vs. 48.4% | CPS ≥ 5: 7.7 vs. 5.8 m (HR 0.628; p = 0.0002) All patients: 7.1 vs. 5.7 m (HR 0.636; p < 0.0001) | CPS ≥ 5: 18.4 vs. 12.9 m (HR 0.66; p = 0.0023) All patients: 15.2 vs. 12.3 m (HR 0.766; p = 0.009) |
KEYNOTE-859 [21] | III | GOJ or gastric | 1579 | Pembrolizumab + chemotherapy vs. chemotherapy + placebo (cisplatin and 5-FU or CAPOX) | All patients: 51.3% vs. 42.0% | All patients: 6.9 m vs. 5.6 m (HR 0.76; p < 0.0001) | All patients: OS = 12.9 m vs. 11.5 m (HR 0.78; p < 0.0001) |
2.2. MMR Deficiency
2.3. EBV Positivity
2.4. TMB High
3. HER2-Targeted Therapies
Trial | Phase | N | HER2 Definition | Trial Arms | Results |
---|---|---|---|---|---|
First-line therapy | |||||
ToGA [43] | III | 594 | IHC 3+ and/or ISH-positive | Capecitabine or 5-FU, cisplatin +/− trastuzumab | mOS: 13.8 vs. 11.1 months (HR 0.74, p = 0.0046) |
TRIO-013/LOGiC [68] | III | 545 | IHC3+ and/or ISH-positive | Capecitabine, oxaliplatin +/− lapatinib | mOS: 12.2 vs. 10.5 months (HR 0.91, p = 0.32) |
JACOB [59] | III | 780 | IHC 3+ or IHC 2+ ISH-positive | Capecitabine or 5-FU, cisplatin, trastuzumab +/− pertuzumab | mOS: 17.5 vs. 14.2 months (HR 0.84, p = 0.057) |
HELOISE [69] | IIIb | 248 | IHC 3+ or IHC 2+ ISH-positive | Cisplatin, capecitabine, trastuzumab 8 mg/kg loading dose + 6 mg/kg or 10 mg/kg maintenance dose | mOS: 12.5 vs. 10.6 months (HR 1.24, p = 0.2401) |
Second-line therapy | |||||
TyTan [70] | III | 261 | ISH-positive | Paclitaxel +/− lapatinib | mOS: 11.0 vs. 8.9 months (HR 0.84, p = 0.10) |
GATSBY [71] | II/III | 302 | IHC 3+ or IHC 2+ ISH-positive | Trastuzumab emtansine vs. taxane | mOS: 7.9 vs. 8.6 months (HR 1.15, p = 0.86) |
T-ACT [72] | II | 91 | IHC 3+ or IHC 2+ ISH-positive | Paclitaxel +/− trastuzumab | mPFS: 3.2 vs. 3.7 months (HR 0.91, p = 0.33) |
Third-line therapy | |||||
DESTINY-Gastric01 [54] | II | 187 | IHC 3+ or IHC 2+ ISH-positive | Trastuzumab deruxtecan vs. physician’s choice chemotherapy (irinotecan or paclitaxel) | ORR: 42.8% vs. 12.3% |
4. CLDN 18.2
5. FGFR
6. Homologous Recombination Deficiency (HRD)
7. Tumour Agnostic Targets
7.1. KRASG12C Mutation
7.2. BRAFV600E
7.3. NTRK Fusion
8. Challenges for Precision Medicine in Gastric Cancer
8.1. Heterogeneity of Targets in Gastric Cancers
8.2. Sequence and Combining Targeted Therapies in Gastric Cancer
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Research UK. Cancer Stats Stomach Cancer Survival Trends Over Time; Cancer Research UK: London, UK, 2022. [Google Scholar]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 3, 27–40. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.; Kang, Y.-K.; Saeed, A.; Yamaguchi, K.; Qin, S.; Lee, K.-W.; Kim, I.-H.; Oh, S.C.; Li, J.; Turk, H.M.; et al. FIGHT: A randomized, double-blind, placebo-controlled, phase II study of bemarituzumab (bema) combined with modified FOLFOX6 in 1L FGFR2b+ advanced gastric/gastroesophageal junction adenocarcinoma (GC). J. Clin. Oncol. 2021, 39, 4010. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Bang, Y.-J.; Feng-Yi, F.; Xu, J.M.; Lee, K.-W.; Jiao, S.-C.; Chong, J.L.; Lopez-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015, 18, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Fan, E.A.Y.; Ying, H.; Wu, X.; Chen, H.; Hu, Y.; Zhang, H.; Wu, L.; Yang, Y.; Mao, B.; Zheng, L. The mutational pattern of homologous recombination (HR)-associated genes and its relevance to the immunotherapeutic response in gastric cancer. Cancer Biol. Med. 2020, 17, 1002–1013. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, B.; Kang, S.Y.; Heo, Y.J.; Park, S.H.; Kim, S.T.; Kang, W.K.; Lee, J.; Kim, K.-M. Tumor Mutational Burden Determined by Panel Sequencing Predicts Survival After Immunotherapy in Patients with Advanced Gastric Cancer. Front. Oncol. 2020, 10, 314. [Google Scholar] [CrossRef] [Green Version]
- Bonneville, R.; Krook, M.A.; Kautto, E.A.; Miya, J.; Wing, M.R.; Chen, H.-Z.; Reeser, J.W.; Yu, L.; Roychowdhury, S. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis. Oncol. 2017, 2017, PO.17.00073. [Google Scholar] [CrossRef]
- Salem, M.; El-Refai, S.; Sha, W.; Grothey, A.; Puccini, A.; George, T.; Hwang, J.; Kadakia, K.; Musselwhite, L.; Van Cutsem, E.; et al. O-3 Characterization of KRAS mutation variants and prevalence of KRAS-G12C in gastrointestinal malignancies. Ann. Oncol. 2021, 32, S218. [Google Scholar] [CrossRef]
- van Grieken, N.C.T.; Aoyma, T.; Chambers, P.A.; Bottomley, D.; Ward, L.C.; Inam, I.; Buffart, T.E.; Das, K.; Lim, T.; Pang, B.; et al. KRAS and BRAF mutations are rare and related to DNA mismatch repair deficiency in gastric cancer from the East and the West: Results from a large international multicentre study. Br. J. Cancer 2013, 108, 1495–1501. [Google Scholar] [CrossRef] [Green Version]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Boku, N.; Satoh, T.; Ryu, M.-H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.-S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical keynote-059 trial. JAMA Oncol. 2018, 4, e180013. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Fornaro, L.; Olesiński, T.; Caglevic, C.; Muro, K.; et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet 2018, 392, 123–133. [Google Scholar] [CrossRef]
- Shitara, K.; Van Cutsem, E.; Bang, Y.-J.; Fuchs, C.; Wyrwicz, L.; Lee, K.-W.; Kudaba, I.; Garrido, M.; Chung, H.C.; Lee, J.; et al. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs. Chemotherapy Alone for Patients with First-line, Advanced Gastric Cancer: The KEYNOTE-062 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1571–1580. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Fuchs, C.S.; Tabernero, J.; Shitara, K.; Muro, K.; Van Cutsem, E.; Bang, Y.-J.; Chung, H.C.; Yamaguchi, K.; Varga, E.; et al. Efficacy of pembrolizumab (pembro) monotherapy versus chemotherapy for PD-L1–positive (CPS ≥ 10) advanced G/GEJ cancer in the phase II KEYNOTE-059 (cohort 1) and phase III KEYNOTE-061 and KEYNOTE-062 studies. J. Clin. Oncol. 2020, 38, 427. [Google Scholar] [CrossRef]
- Moehler, M.; Dvorkin, M.; Boku, N.; Özgüroğlu, M.; Ryu, M.-H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coşkun, H.S.; et al. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. J. Clin. Oncol. 2021, 39, 966–977. [Google Scholar] [CrossRef]
- Fong, C.; Patel, B.; Peckitt, C.; Bourmpaki, E.; von Loga, K.; Begum, R.; Davidson, M.; Anandappa, G.; Cafferkey, C.; Watkins, D.J.; et al. Maintenance durvalumab after first-line platinum-based chemotherapy in advanced oesophago-gastric (OG) adenocarcinoma: Results from the PLATFORM trial. J. Clin. Oncol. 2021, 39, 4015. [Google Scholar] [CrossRef]
- Kang, Y.-K.; Chen, L.-T.; Ryu, M.-H.; Oh, D.-Y.; Oh, S.C.; Chung, H.C.; Lee, K.-W.; Omori, T.; Shitara, K.; Sakuramoto, S.; et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 234–247. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, H.; Pan, Y.; Gu, K.; Cang, S.; Han, L.; Shu, Y.; Li, J.; Zhao, J.; Pan, H.; et al. LBA53 Sintilimab plus chemotherapy (chemo) versus chemo as first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16): First results of a randomized, double-blind, phase III study. Ann. Oncol. 2021, 32, S1331. [Google Scholar] [CrossRef]
- Rha, S.; Wyrwicz, L.; Weber, P.; Bai, Y.; Ryu, M.; Lee, J.; Rivera, F.; Alves, G.; Garrido, M.; Shiu, K.-K.; et al. VP1-2023: Pembrolizumab (pembro) plus chemotherapy (chemo) as first-line therapy for advanced HER2-negative gastric or gastroesophageal junction (G/GEJ) cancer: Phase III KEYNOTE-859 study. Ann. Oncol. 2023, 34, 319–320. [Google Scholar] [CrossRef]
- Yoon, H.H.; Jin, Z.; Kour, O.; Kankeu Fonkoua, L.A.; Shitara, K.; Gibson, M.K.; Prokop, L.J.; Moehler, M.; Kang, Y.K.; Shi, Q.; et al. Association of pd-l1 expression and other variables with benefit from immune checkpoint inhibition in advanced gastroesophageal cancer: Systematic review and meta-analysis of 17 phase 3 randomized clinical trials. JAMA Oncol. 2022, 8, 1456–1465. [Google Scholar] [CrossRef]
- Park, Y.; Koh, J.; Na, H.Y.; Kwak, Y.; Lee, K.-W.; Ahn, S.-H.; Park, D.J.; Kim, H.-H.; Lee, H.S. PD-L1 Testing in Gastric Cancer by the Combined Positive Score of the 22C3 PharmDx and SP263 Assay with Clinically Relevant Cut-offs. Cancer Res. Treat. 2020, 52, 661–670. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, K.-M. PD-L1 expression in gastric cancer: Interchangeability of 22C3 and 28-8 pharmDx assays for responses to immunotherapy. Mod. Pathol. 2021, 34, 1719–1727. [Google Scholar] [CrossRef]
- Yeong, J.; Lum, H.Y.J.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; Tay, R.Y.K.; Choo, J.R.-E.; Jeyasekharan, A.D.; Miow, Q.H.; Loo, L.-H.; et al. Choice of PD-L1 immunohistochemistry assay influences clinical eligibility for gastric cancer immunotherapy. Gastric Cancer 2022, 25, 741–750. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Bendell, J.; Calvo, E.; Kim, J.W.; Ascierto, P.A.; Sharma, P.; Ott, P.A.; Peltola, K.; Jaeger, D.; Evans, J.; et al. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer. J. Clin. Oncol. 2018, 36, 2836–2844, Erratum in J. Clin. Oncol. 2019, 37, 443. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Ruiz, E.; Van Cutsem, E.; Lee, K.-W.; Wyrwicz, L.; Schenker, M.; Alsina, M.; Ryu, M.-H.; Chung, H.-C.; Evesque, L.; et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann. Oncol. 2018, 29, 2052–2060. [Google Scholar] [CrossRef]
- Kojima, T.; Shah, M.A.; Muro, K.; Francois, E.; Adenis, A.; Hsu, C.-H.; Doi, T.; Moriwaki, T.; Kim, S.-B.; Lee, S.-H.; et al. Randomized Phase III KEYNOTE-181 Study of Pembrolizumab Versus Chemotherapy in Advanced Esophageal Cancer. J. Clin. Oncol. 2020, 38, 4138–4148. [Google Scholar] [CrossRef]
- Kato, K.; Sun, J.-M.; Shah, M.; Enzinger, P.; Adenis, A.; Doi, T.; Kojima, T.; Metges, J.-P.; Li, Z.; Kim, S.-B.; et al. LBA8_PR Pembrolizumab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced esophageal cancer: The phase 3 KEYNOTE-590 study. Ann. Oncol. 2020, 31, S1192–S1193. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D. Pd-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, L.; Inam, I.; Saito, Y.; Yoshikawa, T.; Quaas, A.; Hoelscher, A.; Bollschweiler, E.; Fazzi, G.; Melotte, V.; Langley, R.; et al. Epstein-Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: A large multi-centre study. Eur. J. Cancer 2018, 94, 104–114. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Randon, G.; Di Bartolomeo, M.; Luciani, A.; Chao, J.; Smyth, E.; Petrelli, F. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: A meta-analysis of randomized clinical trials. ESMO Open 2021, 6, 100036. [Google Scholar] [CrossRef]
- Yoon, H.H.; Jin, Z.; Kour, O.; Shitara, K.; Gibson, M.K.; Prokop, L.; Kang, Y.-K.; Shi, Q.; Ajani, J.A. Association of magnitude and consistency of PD-L1 expression and other variables associated with benefit from immune checkpoint inhibition (ICI): Systematic review and meta-analysis of 14 phase 3 trials in advanced gastroesophageal cancer (GEC). J. Clin. Oncol. 2022, 40, 344. [Google Scholar] [CrossRef]
- Kwon, M.; An, M.; Klempner, S.J.; Lee, H.; Kim, K.-M.; Sa, J.K.; Cho, H.J.; Hong, J.Y.; Lee, T.; Min, Y.W.; et al. Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability–High Gastric Cancer. Cancer Discov. 2021, 11, 2168–2185. [Google Scholar] [CrossRef]
- Kawakami, H.; Hironaka, S.; Esaki, T.; Chayama, K.; Tsuda, M.; Sugimoto, N.; Kadowaki, S.; Makiyama, A.; Machida, N.; Hirano, H.; et al. An Investigator-Initiated Phase 2 Study of Nivolumab Plus Low-Dose Ipilimumab as First-Line Therapy for Microsatellite Instability—High Advanced Gastric or Esophagogastric Junction Cancer (NO LIMIT, WJOG13320G/CA209-7W7). Cancers 2021, 13, 805. [Google Scholar] [CrossRef]
- Murphy, G.; Pfeiffer, R.; Camargo, M.C.; Rabkin, C.S. Meta-analysis Shows That Prevalence of Epstein–Barr Virus-Positive Gastric Cancer Differs Based on Sex and Anatomic Location. Gastroenterology 2009, 137, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; Shen, H.; et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar]
- Kim, S.T.; Cristescu, R.; Bass, A.J.; Kim, K.-M.; Odegaard, J.I.; Kim, K.; Liu, X.Q.; Sher, X.; Jung, H.; Lee, M.; et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat. Med. 2018, 24, 1449–1458. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Sanchez-Vega, F.; Jonsson, P.; Chatila, W.K.; Hechtman, J.F.; Ku, G.Y.; Riches, J.C.; Tuvy, Y.; Kundra, R.; Bouvier, N.; et al. Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discov. 2018, 8, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Marabelle, A.; Fakih, M.G.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.; et al. 1192o—Association of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in keynote-158. Ann. Oncol. 2019, 30, v477–v478. [Google Scholar] [CrossRef]
- Shitara, K.; Özgüroğlu, M.; Bang, Y.-J.; Di Bartolomeo, M.; Mandalà, M.; Ryu, M.-H.; Caglevic, C.; Chung, H.; Muro, K.; Van Cutsem, E.; et al. Molecular determinants of clinical outcomes with pembrolizumab versus paclitaxel in a randomized, open-label, phase III trial in patients with gastroesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 1127–1136. [Google Scholar] [CrossRef]
- Van Der Geer, P.; Hunter, T.; Lindberg, R.A. Receptor Protein-Tyrosine Kinases and Their Signal Transduction Pathways. Annu. Rev. Cell Biol. 1994, 10, 251–337. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Lee, H.E.; Park, K.U.; Yoo, S.B.; Nam, S.K.; Park, D.J.; Kim, H.-H.; Lee, H.S. Clinical significance of intratumoral HER2 heterogeneity in gastric cancer. Eur. J. Cancer 2012, 49, 1448–1457. [Google Scholar] [CrossRef]
- Hofmann, M.; Stoss, O.; Shi, D.; Büttner, R.; van de Vijver, M.; Kim, W.; Ochiai, A.; Rüschoff, J.; Henkel, T. Assessment of a HER2 scoring system for gastric cancer: Results from a validation study. Histopathology 2008, 52, 797–805. [Google Scholar] [CrossRef]
- Seo, S.; Ryu, M.-H.; Park, Y.S.; Ahn, J.Y.; Park, Y.; Park, S.R.; Ryoo, B.-Y.; Lee, G.H.; Jung, H.-Y.; Kang, Y.-K. Loss of HER2 positivity after anti-HER2 chemotherapy in HER2-positive gastric cancer patients: Results of the GASTric cancer HER2 reassessment study 3 (GASTHER3). Gastric Cancer 2018, 22, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, S.; Kim, P.; Liu, X.; Lee, T.; Kim, K.-M.; Do, I.-G.; Park, J.O.; Park, S.H.; Jang, J.; et al. A Novel Proteomics-Based Clinical Diagnostics Technology Identifies Heterogeneity in Activated Signaling Pathways in Gastric Cancers. PLoS ONE 2013, 8, e54644. [Google Scholar] [CrossRef]
- Piro, G.; Carbone, C.; Cataldo, I.; Di Nicolantonio, F.; Giacopuzzi, S.; Aprile, G.; Simionato, F.; Boschi, F.; Zanotto, M.; Mina, M.M.; et al. An FGFR3 Autocrine Loop Sustains Acquired Resistance to Trastuzumab in Gastric Cancer Patients. Clin. Cancer Res. 2016, 22, 6164–6175. [Google Scholar] [CrossRef] [Green Version]
- Sampera, A.; Sánchez-Martín, F.J.; Arpí, O.; Visa, L.; Iglesias, M.; Menéndez, S.; Gaye, É.; Dalmases, A.; Clavé, S.; Gelabert-Baldrich, M.; et al. HER-Family Ligands Promote Acquired Resistance to Trastuzumab in Gastric Cancer. Mol. Cancer Ther. 2019, 18, 2135–2145. [Google Scholar] [CrossRef] [Green Version]
- Koganemaru, S.; Shitara, K. Antibody–drug conjugates to treat gastric cancer. Expert Opin. Biol. Ther. 2020, 21, 923–930. [Google Scholar] [CrossRef]
- Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; et al. Ds-8201a, a novel her2-targeting adc with a novel DNA topoisomerase i inhibitor, demonstrates a promising antitumor efficacy with differentiation from t-dm1. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 5097–5108. [Google Scholar] [CrossRef] [Green Version]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- van Cutsem, E.; Di Bartolomeo, M.; Smyth, E.; Chau, I.; Park, H.; Siena, S.; Lonardi, S.; Wainberg, Z.; Ajani, J.; Chao, J.; et al. LBA55 Primary analysis of a phase II single-arm trial of trastuzumab deruxtecan (T-DXd) in western patients (Pts) with HER2-positive (HER2+) unresectable or metastatic gastric or gastroesophageal junction (GEJ) cancer who progressed on or after a trastuzumab-containing regimen. Ann. Oncol. 2021, 32, S1332. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. 1422MO Trastuzumab deruxtecan (T-DXd; DS-8201) in patients with HER2-low, advanced gastric or gastroesophageal junction (GEJ) adenocarcinoma: Results of the exploratory cohorts in the phase II, multicenter, open-label DESTINY-Gastric01 study. Ann. Oncol. 2020, 31, S899–S900. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- A Phase 1b/2 Multicenter, Open-Label, Dose-Escalation and Dose-Expansion Study to Evaluate the Safety, Tolerability, Pharmacokinetics, Immunogenicity, and Antitumor Activity of Trastuzumab Deruxtecan (t-dxd) Monotherapy and Combinations in Adult Participants with her2 Overexpressing Gastric Cancer (Destiny-Gastric03). In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct04379596 (accessed on 26 February 2023).
- Catenacci, D.V.T.; Kang, Y.-K.; Park, H.; Uronis, H.E.; Lee, K.-W.; Ng, M.C.H.; Enzinger, P.C.; Park, S.H.; Gold, P.J.; Lacy, J.; et al. Margetuximab plus pembrolizumab in patients with previously treated, her2-positive gastro-oesophageal adenocarcinoma (cp-mgah22–05): A single-arm, phase 1b–2 trial. Lancet Oncol. 2020, 21, 1066–1076. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Kang, Y.K.; Yoon, H.H.; Shim, B.Y.; Kim, S.T.; Oh, D.Y.; Spira, A.I.; Ulahannan, S.V.; Avery, E.J.; Boland, P.M.; et al. Margetuximab with retifanlimab as first-line therapy in her2+/pd-l1+ unresectable or metastatic gastroesophageal adenocarcinoma: Mahogany cohort a. ESMO Open 2022, 7, 100563. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Cheng, K.; Song, C.; Wu, H.; Eng-Wong, J.; Kim, K.; et al. Pertuzumab plus trastuzumab and chemotherapy for HER2-positive metastatic gastric or gastro-oesophageal junction cancer (JACOB): Final analysis of a double-blind, randomised, placebo-controlled phase 3 study. Lancet Oncol. 2018, 19, 1372–1384. [Google Scholar] [CrossRef]
- Zw25 effective in her2-positive cancers. Cancer Discov. 2019, 9, 8. [CrossRef] [Green Version]
- Meric-Bernstam, F.; Beeram, M.; Mayordomo, J.I.; Hanna, D.L.; Ajani, J.A.; Murphy, M.A.B.; Murthy, R.K.; Piha-Paul, S.A.; Bauer, T.M.; Bendell, J.C.; et al. Single agent activity of ZW25, a HER2-targeted bispecific antibody, in heavily pretreated HER2-expressing cancers. J. Clin. Oncol. 2018, 36, 2500. [Google Scholar] [CrossRef]
- Ku, G.; Elimova, E.; Denlinger, C.; Mehta, R.; Lee, K.-W.; Iqbal, S.; Kang, Y.-K.; Oh, D.-Y.; Rha, S.; Kim, Y.; et al. 1380P Phase (Ph) II study of zanidatamab + chemotherapy (chemo) in first-line (1L) HER2 expressing gastroesophageal adenocarcinoma (GEA). Ann. Oncol. 2021, 32, S1044–S1045. [Google Scholar] [CrossRef]
- Lee, K.W.; Bai, L.-Y.; Jung, M.; Ying, J.; Im, Y.H.; Oh, D.-Y.; Cho, J.Y.; Oh, S.C.; Chao, Y.; Li, H.; et al. Zanidatamab (zani), a HER2-targeted bispecific antibody, in combination with chemotherapy (chemo) and tislelizumab (TIS) as first-line (1L) therapy for patients (pts) with advanced HER2-positive gastric/gastroesophageal junction adenocarcinoma (G/GEJC): Preliminary results from a phase 1b/2 study. J. Clin. Oncol. 2022, 40, 4032. [Google Scholar] [CrossRef]
- Pheneger, T.; Bouhana, K.; Anderson, D.; Garrus, J.; Ahrendt, K.; Allen, S.; von Carlowitz, I.; Greschuk, J.; Gross, S.; Hoffman, K.; et al. Abstract #1795: In vitro and in vivo activity of arry-380: A potent, small molecule inhibitor of erbb2. Cancer Res. 2009, 69, 1795. [Google Scholar]
- Murthy, R.K.; Loi, S.; Okines, A.; Paplomata, E.; Hamilton, E.; Hurvitz, S.A.; Lin, N.U.; Borges, V.; Abramson, V.; Anders, C.; et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. N. Engl. J. Med. 2020, 382, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Strickler, J.; Cercek, A.; Siena, S.; André, T.; Ng, K.; Van Cutsem, E.; Wu, C.; Paulson, A.; Hubbard, J.; Coveler, A.; et al. LBA-2 Primary analysis of MOUNTAINEER: A phase 2 study of tucatinib and trastuzumab for HER2-positive mCRC. Ann. Oncol. 2022, 33, S375–S376. [Google Scholar] [CrossRef]
- Strickler, J.H.; Nakamura, Y.; Yoshino, T.; Catenacci, D.V.T.; Janjigian, Y.Y.; Barzi, A.; Bekaii-Saab, T.S.; Lenz, H.-J.; Lee, J.; Cutsem, E.V.; et al. Mountaineer-02: Phase ii/iii study of tucatinib, trastuzumab, ramucirumab, and paclitaxel in previously treated her2+ gastric or gastroesophageal junction adenocarcinoma—Trial in progress. J. Clin. Oncol. 2021, 39, TPS252. [Google Scholar] [CrossRef]
- Hecht, J.R.; Bang, Y.J.; Qin, S.K.; Chung, H.C.; Xu, J.M.; Park, J.O.; Jeziorski, K.; Shparyk, Y.; Hoff, P.M.; Sobrero, A.; et al. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: Trio-013/logic—A randomized phase iii trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.A.; Xu, R.-H.; Bang, Y.-J.; Hoff, P.M.; Liu, T.; Herráez-Baranda, L.A.; Xia, F.; Garg, A.; Shing, M.; Tabernero, J. HELOISE: Phase IIIb Randomized Multicenter Study Comparing Standard-of-Care and Higher-Dose Trastuzumab Regimens Combined With Chemotherapy as First-Line Therapy in Patients With Human Epidermal Growth Factor Receptor 2–Positive Metastatic Gastric or Gastroesophageal Junction Adenocarcinoma. J. Clin. Oncol. 2017, 35, 2558–2567. [Google Scholar] [CrossRef]
- Satoh, T.; Xu, R.H.; Chung, H.C.; Sun, G.P.; Doi, T.; Xu, J.M.; Tsuji, A.; Omuro, Y.; Li, J.; Wang, J.W.; et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of her2-amplified advanced gastric cancer in asian populations: Tytan—A randomized, phase iii study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 2039–2049. [Google Scholar] [CrossRef]
- Thuss-Patience, P.C.; Shah, M.A.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H.; Mansoor, W.; Chung, H.C.; Bodoky, G.; Shitara, K.; et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): An international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef]
- Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; et al. Randomized, Phase II Study of Trastuzumab Beyond Progression in Patients With HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol. 2020, 38, 1919–1927. [Google Scholar] [CrossRef]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, O. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 7624–7634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dottermusch, M.; Krüger, S.; Behrens, H.-M.; Halske, C.; Röcken, C. Expression of the potential therapeutic target claudin-18.2 is frequently decreased in gastric cancer: Results from a large Caucasian cohort study. Virchows Arch. 2019, 475, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Türeci, O.; Sahin, U.; Schulze-Bergkamen, H.; Zvirbule, Z.; Lordick, F.; Koeberle, D.; Thuss-Patience, P.; Ettrich, T.; Arnold, D.; Bassermann, F.; et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: The MONO study. Ann. Oncol. 2019, 30, 1487–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shitara, K.; Lordick, F.; Bang, Y.; Enzinger, P.; Ilson, D.; Shah, M.; Van Cutsem, E.; Xu, R.-H.; Aprile, G.; Xu, J.; et al. Zolbetuximab + mfolfox6 as first-line (1l) treatment for patients (pts) with claudin-18.2+ (cldn18.2+)/her2−locally advanced (la) unresectable or metastatic gastric or gastroesophageal junction (mg/gej) adenocarcinoma: Primary results from phase 3 spotlight study. J. Clin. Oncol. 2023, 401, 1655–1668. [Google Scholar]
- A Phase 3 Efficacy, Safety and Tolerability Study of Zolbetuximab (Experimental Drug) plus Mfolfox6 Chemotherapy Compared to Placebo Plus Mfolfox6 as Treatment for Gastric and Gastroesophageal Junction (gej) Cancer (Spotlight). In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct03504397 (accessed on 12 February 2022).
- Astellas Pharma Global Development, I.; Inc, A.P. A Study of Zolbetuximab (imab362) Plus Capox Compared with Placebo Plus Capox as First-Line Treatment of Subjects with Claudin (cldn) 18.2-Positive, her2-Negative, Locally Advanced Unresectable or Metastatic Gastric or Gastroesophageal Junction (gej) Adenocarcinoma (glow). In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.gov/show/nct03653507 (accessed on 12 February 2022).
- Kubota, Y.; Kawazoe, A.; Mishima, S.; Nakamura, Y.; Kotani, D.; Kuboki, Y.; Bando, H.; Kojima, T.; Doi, T.; Yoshino, T.; et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open 2023, 8, 100762. [Google Scholar] [CrossRef]
- Cao, W.; Xing, H.; Li, Y.; Tian, W.; Song, Y.; Jiang, Z.; Yu, J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark. Res. 2022, 10, 38. [Google Scholar] [CrossRef]
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Nagatsuma, A.K.; Aizawa, M.; Kuwata, T.; Doi, T.; Ohtsu, A.; Fujii, H.; Ochiai, A. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer 2014, 18, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Tokunaga, R.; Imamura, Y.; Nakamura, K.; Ishimoto, T.; Nakagawa, S.; Miyake, K.; Nakaji, Y.; Tsuda, Y.; Iwatsuki, M.; Baba, Y.; et al. Fibroblast growth factor receptor 2 expression, but not its genetic amplification, is associated with tumor growth and worse survival in esophagogastric junction adenocarcinoma. Oncotarget 2016, 7, 19748–19761. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Bang, Y.-J.; Mansoor, W.; Petty, R.D.; Chao, Y.; Cunningham, D.; Ferry, D.R.; Smith, N.R.; Frewer, P.; Ratnayake, J.; et al. A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Ann. Oncol. 2017, 28, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Pearson, A.; Smyth, E.; Babina, I.S.; Herrera-Abreu, M.T.; Tarazona, N.; Peckitt, C.; Kilgour, E.; Smith, N.R.; Geh, C.; Rooney, C.; et al. High-Level Clonal FGFR Amplification and Response to FGFR Inhibition in a Translational Clinical Trial. Cancer Discov. 2016, 6, 838–851. [Google Scholar] [CrossRef] [Green Version]
- Bemarituzumab Plus Chemotherapy and Nivolumab versus Chemotherapy and Nivolumab for fgfr2b Overexpressed Untreated Advanced Gastric and Gastroesophageal Junction Cancer (Fortitude-102). In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.gov/show/nct05111626 (accessed on 12 February 2022).
- Derazantinib Alone or in Combination with Paclitaxel, Ramucirumab or Atezolizumab in Gastric Adenocarcinoma (Fides-03). In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct04604132 (accessed on 12 February 2022).
- A First-In-Human Study of Highly Selective fgfr2 Inhibitor, Rly-4008, in Patients with Intrahepatic Cholangiocarcinoma (icc) and Other Advanced Solid Tumors. In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.gov/show/nct04526106 (accessed on 12 February 2022).
- A Phase iia of Infigratinib in Subjects with Locally Advanced or Metastatic Gastric Cancer or Gastroesophageal Junction Adenocarcinoma with fgfr2 Amplification or Other Advanced Solid Tumors with Other fgfr Alterations. In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct05019794 (accessed on 12 February 2022).
- Kim, H.S.; Kim, M.A.; Hodgson, D.; Harbron, C.; Wellings, R.; O’connor, M.J.; Womack, C.; Yin, X.; Bang, Y.-J.; Im, S.-A.; et al. Concordance of ATM (Ataxia Telangiectasia Mutated) Immunohistochemistry between Biopsy or Metastatic Tumor Samples and Primary Tumors in Gastric Cancer Patients. Pathobiology 2013, 80, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, L.B.; Nik-Zainal, S.; Siu, H.C.; Leung, S.Y.; Stratton, M.R. A mutational signature in gastric cancer suggests therapeutic strategies. Nat. Commun. 2015, 6, 8683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyth, E.C.; Cafferkey, C.; Loehr, A.; Waddell, T.; Begum, R.; Peckitt, C.; Harding, T.C.; Nguyen, M.; Okines, A.F.; Raponi, M.; et al. Genomic loss of heterozygosity and survival in the REAL3 trial. Oncotarget 2018, 9, 36654–36665. [Google Scholar] [CrossRef] [Green Version]
- Bang, Y.-J.; Xu, R.-H.; Chin, K.; Lee, K.-W.; Park, S.H.; Rha, S.Y.; Shen, L.; Qin, S.; Xu, N.; Im, S.-A.; et al. Olaparib in combination with paclitaxel in patients with advanced gastric cancer who have progressed following first-line therapy (GOLD): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2017, 18, 1637–1651. [Google Scholar] [CrossRef]
- Liu, Y.; Hodgson, D.; Locker, G.; Lai, Z.; Balcerzak, D.; Sharpe, A.; Barrett, J.C.; Orr, M.; Gutjahr, T.S.; Dougherty, B.; et al. 4062–olaparib plus paclitaxel sensitivity in biomarker subgroups of gastric cancer. Ann. Oncol. 2018, 29 (Suppl. S8), viii14–viii57. [Google Scholar] [CrossRef]
- A Phase i/ii Study of Medi4736 in Combination with Olaparib in Patients with Advanced Solid Tumors. In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct02734004 (accessed on 28 August 2021).
- Olaparib and Ramucirumab in Treating Patients with Metastatic or Locally Recurrent Gastric or Gastroesophageal Junction Cancer that Cannot be Removed by Surgery. In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct03008278 (accessed on 28 August 2021).
- A Translational Study of Single Agent Olaparib in the Treatment of Advanced Oesophagogastric Cancer (Solar). In Clinicaltrials.Gov [Internet]. Bethesda (md): National Library of Medicine (US). 2000. Available online: https://clinicaltrials.Gov/show/nct03829345 (accessed on 12 February 2022).
- Strickler, J.; Fakih, M.; Price, T.; Desai, J.; Durm, G.; Krauss, J.; Kuboki, Y.; Kim, T.; Sacher, A.; Henary, H.; et al. 83MO AMG 510, a novel small molecule inhibitor of KRAS(G12C), for patients (pts) with advanced gastrointestinal (GI) cancers: Results from the CodeBreaK100 phase I trial. Ann. Oncol. 2020, 31 (Suppl. S6), S1274–S1275. [Google Scholar] [CrossRef]
- Subbiah, V.; Puzanov, I.; Blay, J.-Y.; Chau, I.; Lockhart, A.C.; Raje, N.S.; Wolf, J.; Baselga, J.; Meric-Bernstam, F.; Roszik, J.; et al. Pan-cancer efficacy of vemurafenib in braf v600 mutant non-melanoma cancers. Cancer Discov. 2020, 10, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Kopetz, S.; Grothey, A.; Yaeger, R.; Van Cutsem, E.; Desai, J.; Yoshino, T.; Wasan, H.; Ciardiello, F.; Loupakis, F.; Hong, Y.S.; et al. Encorafenib, binimetinib, and cetuximab in braf v600e–mutated colorectal cancer. N. Engl. J. Med. 2019, 381, 1632–1643. [Google Scholar] [CrossRef] [Green Version]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of larotrectinib in trk fusion–positive cancers in adults and children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Pectasides, E.; Stachler, M.D.; Derks, S.; Liu, Y.; Maron, S.; Islam, M.; Alpert, L.; Kwak, H.; Kindler, H.; Polite, B.; et al. Genomic Heterogeneity as a Barrier to Precision Medicine in Gastroesophageal Adenocarcinoma. Cancer Discov. 2018, 8, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Chao, J.; Bedell, V.; Lee, J.; Li, M.S.; Chu, P.; Yuan, Y.-C.; Zhao, D.; Klempner, S.J.; Lin, R.-J. Association Between Spatial Heterogeneity Within Nonmetastatic Gastroesophageal Adenocarcinomas and Survival. JAMA Netw. Open 2020, 3, e203652. [Google Scholar] [CrossRef] [PubMed]
- Catenacci, D.V.T.; Moya, S.; Lomnicki, S.; Chase, L.M.; Peterson, B.F.; Reizine, N.; Alpert, L.; Setia, N.; Xiao, S.-Y.; Hart, J.; et al. Personalized Antibodies for Gastroesophageal Adenocarcinoma (PANGEA): A Phase II Study Evaluating an Individualized Treatment Strategy for Metastatic Disease. Cancer Discov. 2021, 11, 308–325. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.T. Tumor genomic profiling guides patients with metastatic gastric cancer to targeted treatment: The viktory umbrella trial. Cancer Discov. 2019, 9, 1388–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rha, S.Y.; Lee, C.-K.; Kim, H.S.; Jung, M.; Kim, H.; Kyun, B.W.; Koo, D.-H.; Jeung, H.-C.; Park, S.R.; Hwang, I.G.; et al. The first report of K-Umbrella Gastric Cancer Study: An open label, multi-center, randomized, biomarker-integrated trial for second-line treatment of advanced gastric cancer (AGC). J. Clin. Oncol. 2022, 40, 4001. [Google Scholar] [CrossRef]
- Nakamura, Y.; Taniguchi, H.; Ikeda, M.; Bando, H.; Kato, K.; Morizane, C.; Esaki, T.; Komatsu, Y.; Kawamoto, Y.; Takahashi, N.; et al. Clinical utility of circulating tumor DNA sequencing in advanced gastrointestinal cancer: SCRUM-Japan GI-SCREEN and GOZILA studies. Nat. Med. 2020, 26, 1859–1864. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Van Cutsem, E.; Moehler, M.H.; Kang, Y.-K.; Yen, P.; Finger, E.; Keegan, A.; Shitara, K. Trial in progress: Phase 1b/3 study of bemarituzumab + mFOLFOX6 + nivolumab versus mFOLFOX6 + nivolumab in previously untreated advanced gastric and gastroesophageal junction (GEJ) cancer with FGFR2b overexpression (FORTITUDE-102). J. Clin. Oncol. 2022, 40, TPS4165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pihlak, R.; Fong, C.; Starling, N. Targeted Therapies and Developing Precision Medicine in Gastric Cancer. Cancers 2023, 15, 3248. https://doi.org/10.3390/cancers15123248
Pihlak R, Fong C, Starling N. Targeted Therapies and Developing Precision Medicine in Gastric Cancer. Cancers. 2023; 15(12):3248. https://doi.org/10.3390/cancers15123248
Chicago/Turabian StylePihlak, Rille, Caroline Fong, and Naureen Starling. 2023. "Targeted Therapies and Developing Precision Medicine in Gastric Cancer" Cancers 15, no. 12: 3248. https://doi.org/10.3390/cancers15123248
APA StylePihlak, R., Fong, C., & Starling, N. (2023). Targeted Therapies and Developing Precision Medicine in Gastric Cancer. Cancers, 15(12), 3248. https://doi.org/10.3390/cancers15123248