Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images
Abstract
:Simple Summary
Abstract
1. Introduction
2. Related Works
3. Dataset
4. Methodology
4.1. Basic Convolutional Neural Network (CNN) Based Feature Extraction
4.2. Transfer Learning (VGG16) Based Feature Extraction
Steps: Feature Extraction from Input Images Using the VGG16 Model. | |
Input: | BreakHis 400× training image data |
Preprocessing: | Resizing the images to 512 × 512 |
Normalizing pixel values to between 0 and 1 | |
Output: | Initialize the VGG16 model. |
Import VGG16 model | |
Remove the fully connected layers. | |
Load the VGG16 model for feature extraction by removing the FC layers as they were designed for ImageNet classification tasks. | |
VGG_model = VGG16 (weights = ’Imagenet’, include_top = False, | |
input_shape = (512, 512, 3) | |
3-is the RGB channel since we are using color images | |
Pass the input images through the model: | |
Forward pass the preprocessed images through the VGG16 model to obtain the output feature maps. | |
Retrieve the output of the last convolutional layer as they capture the high-level abstract features. | |
Flatten the features. | |
Flatten(img): Convert the 3-D extracted features to the 1-D feature vector | |
Store the extracted features with corresponding image labels for classification tasks | |
Features(img) = Flatten(img) |
4.3. Knowledge-Based Feature Extraction
4.3.1. Geometrical Features
4.3.2. Directional Features
4.3.3. Intensity-Based Features
5. Classification and Performance Evaluation
5.1. Neural Network (NN)
5.2. Multilayer Perceptron (MLP)
5.3. Random Forest (RF)
5.4. Decision Tree
5.5. Support Vector Machines (SVM)
5.6. KNN
5.7. Narrow Neural Networks (NNN)
5.8. BreakHist Dataset and Evaluation Metrics
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef] [PubMed]
- Uhlén, M.; Björling, E.; Agaton, C.; Szigyarto, C.A.-K.; Amini, B.; Andersen, E.; Andersson, A.-C.; Angelidou, P.; Asplund, A.; Asplund, C.; et al. A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Mol. Cell. Proteom. MCP 2005, 4, 1920–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://v15.proteinatlas.org/learn/dictionary/cancer/breast+cancer+1 (accessed on 17 May 2023).
- Yan, R.; Ren, F.; Wang, Z.; Wang, L.; Zhang, T.; Liu, Y.; Rao, X.; Zheng, C.; Zhang, F. Breast cancer histopathological image classification using a hybrid deep neural network. Methods 2020, 173, 52–60. [Google Scholar] [CrossRef]
- Zeng, Z.; Xie, W.; Zhang, Y.; Lu, Y. RIC-Unet: An Improved Neural Network Based on Unet for Nuclei Segmentation in Histology Images. IEEE Access 2019, 7, 21420–21428. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, X.; Tang, K.; Zhao, Y.; Lu, Z.; Feng, Q. DDTNet: A dense dual-task network for tumor-infiltrating lymphocyte detection and segmentation in histopathological images of breast cancer. Med. Image Anal. 2022, 78, 102415. [Google Scholar] [CrossRef]
- Barkana, B.D.; El-Sayed, A.; Khaled, R.H.; Helal, M.; Khaled, H.; Deeb, R.; Pitcher, M.; Pfeiffer, R.; Roubidoux, M.; Schairer, C.; et al. Imaging Modalities in Inflammatory Breast Cancer (IBC) Diagnosis: A Computer-Aided Diagnosis System Using Bilateral Mammography Images. Sensors 2023, 23, 64. [Google Scholar] [CrossRef]
- Barkana, B.D.; Sariçiçek, I. Classification of Breast Masses in Mammograms Using 2D Homomorphic Transform Features and Supervised Classifiers. J. Med. Imaging Health Inform. 2017, 7, 1566–1571. [Google Scholar] [CrossRef]
- Labrada, A.; Barkana, B.D. Breast cancer diagnosis from histopathology images using supervised algorithms. In Proceedings of the IEEE Symposium on Computer-Based Medical Systems, Shenzen, China, 21–23 July 2022; pp. 102–107. [Google Scholar] [CrossRef]
- Sharma, S.; Mehra, R. Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images—A Comparative Insight. J. Digit. Imaging 2020, 33, 632–654. [Google Scholar] [CrossRef]
- Gupta, K.; Chawla, N. Analysis of Histopathological Images for Prediction of Breast Cancer Using Traditional Classifiers with Pre-Trained CNN. In Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2020; Volume 167, pp. 878–889. [Google Scholar] [CrossRef]
- Liu, M.; He, Y.; Wu, M.; Zeng, C. Breast Histopathological Image Classification Method Based on Autoencoder and Siamese Framework. Information 2022, 13, 107. [Google Scholar] [CrossRef]
- Liu, M.; Hu, L.; Tang, Y.; Wang, C.; He, Y.; Zeng, C.; Lin, K.; He, Z.; Huo, W. A Deep Learning Method for Breast Cancer Classification in the Pathology Images. IEEE J. Biomed. Health Inform. 2022, 26, 5025–5032. [Google Scholar] [CrossRef]
- Shallu; Mehra, R. Breast cancer histology images classification: Training from scratch or transfer learning? ICT Express 2018, 4, 247–254. [Google Scholar] [CrossRef]
- Deniz, E.; Şengür, A.; Kadiroğlu, Z.; Guo, Y.; Bajaj, V.; Budak, Ü. Transfer learning based histopathologic image classification for breast cancer detection. Health Inf. Sci. Syst. 2018, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Bayramoglu, N.; Kannala, J.; Heikkila, J. Deep learning for magnification independent breast cancer histopathology image classification. In Proceedings of the 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2440–2445. [Google Scholar] [CrossRef] [Green Version]
- Albashish, D.; Al-Sayyed, R.; Abdullah, A.; Ryalat, M.H.; Almansour, N.A. Deep CNN model based on VGG16 for breast cancer classification. In Proceedings of the International Conference on Information Technology, ICIT 2021, Amman, Jordan, 14–15 July 2021; pp. 805–810. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, S.; Che, C.; Zhang, J.; Zhang, Q. Breast cancer histopathology image classification based on dual-stream high-order network. Biomed. Signal Process. Control. 2022, 78, 104007. [Google Scholar] [CrossRef]
- Li, G.; Wu, G.; Xu, G.; Li, C.; Zhu, Z.; Ye, Y.; Zhang, H. Pathological image classification via embedded fusion mutual learning. Biomed. Signal Process. Control. 2023, 79, 104181. [Google Scholar] [CrossRef]
- Atban, F.; Ekinci, E.; Garip, Z. Traditional machine learning algorithms for breast cancer image classification with optimized deep features. Biomed. Signal Process. Control. 2023, 81, 104534. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Joseph, A.A.; Abdullahi, M.; Junaidu, S.B.; Ibrahim, H.; Chiroma, H. Improved multi-classification of breast cancer histo-pathological images using handcrafted features and deep neural network (dense layer). Intell. Syst. Appl. 2022, 14, 66. [Google Scholar] [CrossRef]
- Ahmad, N.; Asghar, S.; Gillani, S.A. Transfer learning-assisted multi-resolution breast cancer histopathological images classification. Vis. Comput. 2022, 38, 2751–2770. [Google Scholar] [CrossRef]
- Egriboz, E.; Gokcen, B.; Bilgin, G. Classification of Breast Cancer Histopathology Images by Cell-Centered Deep Learning Approach. In Proceedings of the 28th Signal Processing and Communications Applications Conference, Gaziantep, Turkey, 5–7 October 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef] [Green Version]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans. Biomed. Eng. 2016, 63, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Bardou, D.; Zhang, K.; Ahmad, S.M. Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks. IEEE Access 2018, 6, 24680–24693. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Cavalin, P.R.; Petitjean, C.; Heutte, L. Deep features for breast cancer histopathological image classification. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 1868–1873. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. Breast cancer histopathological image classification using Convolutional Neural Networks. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 2560–2567. [Google Scholar]
- Adeshina, S.A.; Adedigba, A.P.; Adeniyi, A.A.; Aibinu, A.M. Breast Cancer Histopathology Image Classification with Deep Convolutional Neural Networks. In Proceedings of the 14th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 29 November–1 December 2018; pp. 206–212. [Google Scholar] [CrossRef]
- Gour, M.; Jain, S.; Kumar, T.S. Residual learning based CNN for breast cancer histopathological image classification. Int. J. Imaging Syst. Technol. 2020, 30, 621–635. [Google Scholar] [CrossRef]
- Toğaçar, M.; Özkurt, K.B.; Ergen, B.; Cömert, Z. BreastNet: A novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Phys. A: Stat. Mech. its Appl. 2020, 545, 123592. [Google Scholar] [CrossRef]
- Zhu, C.; Song, F.; Wang, Y.; Dong, H.; Guo, Y.; Liu, J. Breast cancer histopathology image classification through assembling multiple compact CNNs. BMC Med. Inform. Decis. Mak. 2019, 19, 198. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Zhang, J.; Huang, S.; Liu, B. Breast cancer histopathological image classification using attention high-order deep network. Int. J. Imaging Syst. Technol. 2022, 32, 266–279. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Alzubaidi, L.; Santamaría, J.; Manoufali, M.; Mohammed, B.; Fadhel, M.A.; Zhang, J.; Al-Timemy, A.H.; Al-Shamma, O.; Duan, Y. MedNet: Pre-trained Convolutional Neural Network Model for the Medical Imaging Tasks. arXiv 2021, arXiv:2110.06512. [Google Scholar]
Feature Extractor | Classifier | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|
Basic CNN | Neural Network (64 units) | 0.85 | 0.84 | 0.82 | 0.83 |
MLP | 0.84 | 0.84 | 0.79 | 0.81 | |
RF | 0.85 | 0.85 | 0.79 | 0.81 | |
Tree | 0.75 | 0.72 | 0.73 | 0.73 | |
SVM | 0.79 | 0.76 | 0.75 | 0.76 | |
KNN | 0.79 | 0.77 | 0.73 | 0.75 | |
NNN (10 units) | 0.84 | 0.83 | 0.79 | 0.8 | |
VGG16 | Neural Network (64 units) | 0.86 | 0.87 | 0.81 | 0.83 |
MLP | 0.82 | 0.83 | 0.76 | 0.88 | |
RF | 0.74 | 0.84 | 0.62 | 0.61 | |
Tree | 0.73 | 0.7 | 0.7 | 0.7 | |
SVM | 0.87 | 0.86 | 0.83 | 0.84 | |
KNN | 0.73 | 0.71 | 0.63 | 0.64 | |
NNN (10 units) | 0.8 | 0.86 | 0.67 | 0.69 | |
Knowledge-based extraction | Neural Network (64 units) | 0.98 | 0.98 | 0.96 | 0.97 |
MLP | 0.98 | 0.98 | 0.97 | 0.98 | |
RF | 0.98 | 0.98 | 0.96 | 0.98 | |
Tree [9] | 0.85 | 0.9 | 0.88 | 0.89 | |
SVM [9] | 0.96 | 0.9 | 0.88 | 0.89 | |
KNN [9] | 0.94 | 0.98 | 0.94 | 0.96 | |
NNN [9] | 0.97 | 0.98 | 0.98 | 0.98 |
Method | Feature Extraction | Classifier | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
Labrada et al., 2022 [9] | Knowledge-based [9] | Decision Tree | 0.85 | 0.9 | 0.88 | 0.89 |
SVM | 0.96 | 0.9 | 0.88 | 0.89 | ||
KNN | 0.94 | 0.98 | 0.94 | 0.96 | ||
NNN | 0.97 | 0.98 | 0.97 | 0.98 | ||
Sharma and Mehra 2020 [10] | VGG16 | RF | 0.69 | 0.7 | 0.69 | 0.69 |
SVM | 0.92 | 0.92 | 0.91 | 0.91 | ||
LR | 0.85 | 0.86 | 0.86 | 0.86 | ||
Sharma and Mehra, 2020 [10] | Hu moment, Colored histogram, and Haralick texture | RF | 0.86 | - | - | - |
SVM | 0.83 | |||||
Gupta et al., 2020 [11] | ResNet50 | Linear Regression | 0.93 | - | - | - |
SVM | 0.93 | |||||
Deniz et al., 2018 [15] | VGG16+Alexnet | Fully connected layers (FC6) | 0.87 | - | - | - |
Albashish et al., 2021 [17] | VGG16 | RBF-SVM | 0.96 | - | - | - |
NN | 0.9 | |||||
Zou et al., 2022 [18] | DsHoNet | - | 0.98 | 0.98 | 0.98 | 0.98 |
Li et al., 2023 [19] | EFML | - | 0.99 | 0.99 | 0.99 | 0.99 |
Atban et al., 2023 [20] | ResNet18 | KNN | 0.9 | 0.9 | 0.9 | 0.9 |
SVM | 0.95 | 0.95 | 0.95 | 0.95 | ||
Decision Tree | 0.75 | 0.75 | 0.77 | 0.76 | ||
Spanhol et al., 2016 [29] | PFTAS | SVM | 0.82 | - | - | - |
RF | 0.81 | |||||
Zhang et al., 2018 [30] | CNN | SVM | 0.78 | - | - | - |
RF | 0.75 | |||||
KNN | 0.75 | |||||
Spanhol et al., 2017 [31] | CaffeNet | Neural network (Fully connected layers (fc7)) | 0.82 | - | - | 0.87 |
Fabio Alexandre Spanhol et al., 2016 [32] | CNN | Neural network (Fully connected layers) | 0.8 | - | - | - |
Adeshina et al. nd. [33] | Deep CNN | Neural network (Fully connected layers | 0.91 | 0.63 | 0.77 | - |
Gour et al., 2020 [34] | ResHist features | RF | 0.86 | - | - | - |
SVM | 0.86 | |||||
Gour et al., 2020 [34] | VGG16 | Simple Neural network (with fully connected layers) | 0.81 | - | - | - |
Togacar et al., 2020 [35] | BreastNet | ML classifier | 0.96 | 0.95 | 0.95 | 0.95 |
Zhu et al., 2019 [36] | Hybrid CNN model | - | 0.81 | 0.82 | 0.93 | 0.87 |
Zou et al., 2021 [37] | AHoNet | - | 0.96 | 0.95 | 0.96 | 0.95 |
This work | CNN | Neural network with FC layers | 0.85 | 0.84 | 0.82 | 0.83 |
VGG16 | 0.86 | 0.87 | 0.81 | 0.83 | ||
This work | Knowledge-based | Neural Network | 0.98 | 0.98 | 0.96 | 0.97 |
MLP | 0.98 | 0.98 | 0.97 | 0.98 | ||
Random forest | 0.98 | 0.98 | 0.96 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kode, H.; Barkana, B.D. Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images. Cancers 2023, 15, 3075. https://doi.org/10.3390/cancers15123075
Kode H, Barkana BD. Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images. Cancers. 2023; 15(12):3075. https://doi.org/10.3390/cancers15123075
Chicago/Turabian StyleKode, Hepseeba, and Buket D. Barkana. 2023. "Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images" Cancers 15, no. 12: 3075. https://doi.org/10.3390/cancers15123075
APA StyleKode, H., & Barkana, B. D. (2023). Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images. Cancers, 15(12), 3075. https://doi.org/10.3390/cancers15123075