The Role of Multimodal Imaging in Pathological Response Prediction of Locally Advanced Cervical Cancer Patients Treated by Chemoradiation Therapy Followed by Radical Surgery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ultrasound Methodology and Data Analysis
2.2. MRI Methodology and Data Analysis
2.3. PET/CT Methodology and Data Analysis
2.4. Statistical Analysis
2.5. Cost Analysis
3. Results
- At “baseline”: color score and tumor peak enhancement for TUS, none for MRI (none of these parameters was analyzed in the present study), and SUVmean for PET/CT;
- At “early” examination: maxTD and VI for TUS, maxTD for MRI, and MTV for PET/CT;
- At “final” examination: no parameters for TUS, maxTD and the combined parameter of high DWI SI plus ADC for MRI, and SUVmax for PET/CT;
- For Δ “baseline”–“early” parameters: ΔTumor volume (%) for TUS, ΔTumor volume (%) for MRI, ΔSUVmean (%), ΔMTV (%), and ΔTLG (%) for PET/CT;
- For Δ “baseline”–“final” parameters: none for TUS (parameters not evaluated); Δmaximum tumor diameter and ΔADCmean (%) for MRI, ΔSUVmax (%) for PET/CT.
- Model 1, at “baseline” examination: VFI and SUVmean;
- Model 2, at “early” examination: only one ultrasound parameter (vascularization index);
- Model 3, at “final” examination: high DWI SI plus ADC and SUVmax;
- Model 4, for Δ “baseline”–“early” parameters: ΔSUVmean (%), ΔMTV (%), ΔTLG (%);
- Model 5, for Δ “baseline”–“final” parameters: ΔSUVmax (%).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McNeil, C. New standard of care for cervical cancer sets stage for next questions. J. Natl. Cancer Inst. 1999, 91, 500–501. [Google Scholar] [CrossRef]
- Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration (CCCMAC). Reducing uncertainties about the effect of chemoradiotherapy for cervical cancer: Individual patient data meta-analysis. Cochrane Database Syst. Rev. 2010, 2010, CD008285. [Google Scholar] [CrossRef] [Green Version]
- Classe, J.M.; Rauch, P.; Rodier, J.F.; Morice, P.; Stoeckle, E.; Lasry, S.; Houvenaeghel, G.; Groupe des Chirurgiens de Centre de Lutte Contre le Cancer. Surgery after concurrent chemoradiotherapy and brachytherapy for the treatment of advanced cervical cancer: Morbidity and outcome: Results of a multicenter study of the GCCLCC (Groupe des Chirurgiens de Centre de Lutte Contre le Cancer). Gynecol. Oncol. 2006, 102, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Ferrandina, G.; Margariti, P.A.; Smaniotto, D.; Petrillo, M.; Salerno, M.G.; Fagotti, A.; Macchia, G.; Morganti, A.G.; Cellini, N.; Scambia, G. Long-term analysis of clinical outcome and complications in locally advanced cervical cancer patients administered concomitant chemoradiation followed by radical surgery. Gynecol. Oncol. 2010, 119, 404–410. [Google Scholar] [CrossRef]
- Motton, S.; Houvenaeghel, G.; Delannes, M.; Querleu, D.; Soulé-Tholy, M.; Hoff, J.; Lèguevaque, P. Results of surgery after concurrent chemoradiotherapy in advanced cervical cancer: Comparison of extended hysterectomy and extrafascial hysterectomy. Int. J. Gynecol. Cancer 2010, 20, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Touboul, C.; Uzan, C.; Mauguen, A.; Gouy, S.; Rey, A.; Pautier, P.; Lhommé, C.; Duvillard, P.; Haie-Meder, C.; Morice, P. Prognostic factors and morbidities after completion surgery in patients undergoing initial chemoradiation therapy for locally advanced cervical cancer. Oncologist 2010, 15, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Cetina, L.; González-Enciso, A.; Cantú, D.; Coronel, J.; Pérez-Montiel, D.; Hinojosa, J.; Serrano, A.; Rivera, L.; Poitevin, A.; Mota, A.; et al. Brachytherapy versus radical hysterectomy after external beam chemoradiation with gemcitabine plus cisplatin: A randomized, phase III study in IB2-IIB cervical cancer patients. Ann. Oncol. 2013, 24, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- Houvenaeghel, G.; Lelievre, L.; Gonzague-Casabianca, L.; Buttarelli, M.; Moutardier, V.; Goncalves, A.; Resbeut, M. Long-term survival after concomitant chemoradiotherapy prior to surgery in advanced cervical carcinoma. Gynecol. Oncol. 2006, 100, 338–343. [Google Scholar] [CrossRef]
- Ferrandina, G.; Gambacorta, A.; Gallotta, V.; Smaniotto, D.; Fagotti, A.; Tagliaferri, L.; Foti, E.; Fanfani, F.; Autorino, R.; Scambia, G.; et al. Chemoradiation with concomitant boosts followed by radical surgery in locally advanced cervical cancer: Long-term results of the ROMA-2 prospective phase 2 study. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 778–785. [Google Scholar] [CrossRef]
- Testa, A.C.; Ferrandina, G.; Moro, F.; Pasciuto, T.; Moruzzi, M.C.; De Blasis, I.; Mascilini, F.; Foti, E.; Autorino, R.; Collarino, A.; et al. PRospective Imaging of CErvical cancer and neoadjuvant treatment (PRICE) study: Role of ultrasound to predict partial response in locally advanced cervical cancer patients undergoing chemoradiation and radical surgery. Ultrasound Obstet. Gynecol. 2018, 51, 684–695. [Google Scholar] [CrossRef]
- Testa, A.C.; Moro, F.; Pasciuto, T.; Moruzzi, M.C.; Di Legge, A.; Fuoco, G.; Autorino, R.; Collarino, A.; Gui, B.; Zannoni, G.F.; et al. PRospective Imaging of CErvical cancer and neoadjuvant treatment (PRICE) study: Role of ultrasound to assess residual tumor in locally advanced cervical cancer patients undergoing chemoradiation and radical surgery. Ultrasound Obstet. Gynecol. 2018, 52, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentini, A.L.; Miccò, M.; Gui, B.; Giuliani, M.; Rodolfino, E.; Telesca, A.M.; Pasciuto, T.; Testa, A.; Gambacorta, M.A.; Zannoni, G.; et al. The PRICE study: The role of conventional and diffusion-weighted magnetic resonance imaging in assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery. Eur. Radiol. 2018, 28, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
- Gui, B.; Miccò, M.; Valentini, A.L.; Cambi, F.; Pasciuto, T.; Testa, A.; Autorino, R.; Zannoni, G.F.; Rufini, V.; Gambacorta, M.A.; et al. Prospective multimodal imaging assessment of locally advanced cervical cancer patients administered by chemoradiation followed by radical surgery-the “PRICE” study 2: Role of conventional and DW-MRI. Eur. Radiol. 2019, 29, 2045–2057. [Google Scholar] [CrossRef] [PubMed]
- Rufini, V.; Collarino, A.; Calcagni, M.L.; Meduri, G.M.; Fuoco, V.; Pasciuto, T.; Testa, A.C.; Ferrandina, G.; Gambacorta, M.A.; Campitelli, M.; et al. The role of (18)F-FDG-PET/CT in predicting the histopathological response in locally advanced cervical carcinoma treated by chemo-radiotherapy followed by radical surgery: A prospective study. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009, 105, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Zannoni, G.F.; Vellone, V.G.; Carbone, A. Morphological effects of radiochemotherapy on cervical carcinoma. Int. J. Gynecol. Pathol. 2008, 27, 274–281. [Google Scholar] [CrossRef]
- Timmerman, D.; Valentin, L.; Bourne, T.H.; Collins, W.P.; Verrelst, H.; Vergote, I.; International Ovarian Tumor Analysis (IOTA) Group. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: A consensus opinion from the International Ovarian Tumor Analysis (IOTA) Group. Ultrasound Obstet. Gynecol. 2000, 16, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Kuang, F.; Yan, Z.; Wang, J.; Rao, Z. The value of diffusion-weighted MRI to evaluate the response to radiochemotherapy for cervical cancer. Magn. Reason. Imaging 2014, 32, 342–349. [Google Scholar] [CrossRef]
- Werner-Wasik, M.; Nelson, A.D.; Choi, W.; Arai, Y.; Faulhaber, P.F.; Kang, P.; Almeida, F.D.; Xiao, Y.; Ohri, N.; Brockway, K.D.; et al. What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Pinto, L.N.; Venable, L.R.; Fahrenbach, J.; Churpek, M.M. Comparison of variable selection methods for clinical predictive modeling. Int. J. Med. Inform. 2018, 116, 10–17. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; John Wiley and Sons: New York, NY, USA, 2000; Chapter 5; pp. 160–164. [Google Scholar]
- Alcazar, J.L.; Arribas, S.; Martinez-Monge, R.; Jurado, M. Three-Dimensional Power Doppler Ultrasound for Predicting Response and Local Recurrence After Concomitant Chemoradiation Therapy for Locally Advanced Carcinoma of the Cervix. Int. J. Gynecol. Cancer 2016, 26, 534–538. [Google Scholar] [CrossRef]
- Qin, J.; Cheng, X.; Chen, X.; Zhang, X.; Lu, W.; Xie, X. Value of three-dimensional power Doppler to predict clinical and histological response to neoadjuvant chemotherapy in locally advanced cervical carcinoma. Ultrasound Obstet. Gynecol. 2012, 39, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Jalaguier-Coudray, A.; Villard-Mahjoub, R.; Delouche, A.; Delarbre, B.; Lambaudie, E.; Houvenaeghel, G.; Minsat, M.; Tallet, A.; Sabatier, R.; Thomassin-Naggara, I. Value of Dynamic Contrast-enhanced and Diffusion-weighted MR Imaging in the Detection of Pathologic Complete Response in Cervical Cancer after Neoadjuvant Therapy: A Retrospective Observational Study. Radiology 2017, 284, 432–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kidd, E.A.; Siegel, B.A.; Dehdashti, F.; Grigsby, P.W. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer 2007, 110, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, J.L.; Jurado, M. Transvaginal color Doppler for predicting pathological response to preoperative chemoradiation in locally advanced cervical carcinoma: A preliminary study. Ultrasound Med. Biol. 1999, 25, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Greco, P.; Cormio, G.; Vimercati, A.; Loverro, G.; Selvaggi, L. Transvaginal color Doppler sonography in predicting the response to chemotherapy in advanced cervical cancer. Ultrasound Obstet. Gynecol. 1997, 9, 49–52. [Google Scholar] [CrossRef]
- Chen, C.A.; Cheng, W.F.; Lee, C.N.; Su, Y.N.; Hsieh, C.Y.; Hsieh, F.J. Power Doppler vascularity index for predicting the response of neoadjuvant chemotherapy in cervical carcinoma. Acta Obstet. Gynecol. Scand. 2004, 83, 591–597. [Google Scholar] [CrossRef]
- Krhili, S.; Muratet, J.P.; Roche, S.; Pointreau, Y.; Yossi, S.; Septans, A.L.; Denis, F. Use of Metabolic Parameters as Prognostic Factors During Concomitant Chemoradiotherapy for Locally Advanced Cervical Cancer. Am. J. Clin. Oncol. 2017, 40, 250–255. [Google Scholar] [CrossRef]
- Miccò, M.; Vargas, H.A.; Burger, I.A.; Kollmeier, M.A.; Goldman, D.A.; Park, K.J.; Abu-Rustum, N.R.; Hricak, H.; Sala, E. Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur. J. Radiol. 2014, 83, 1169–1176. [Google Scholar] [CrossRef]
- Ueno, Y.; Lisbona, R.; Tamada, T.; Alaref, A.; Sugimura, K.; Reinhold, C. Comparison of FDG PET metabolic tumour volume versus ADC histogram: Prognostic value of tumour treatment response and survival in patients with locally advanced uterine cervical cancer. Br. J. Radiol. 2017, 90, 20170035. [Google Scholar] [CrossRef] [PubMed]
- Lima, G.M.; Matti, A.; Vara, G.; Dondi, G.; Naselli, N.; De Crescenzo, E.M.; Morganti, A.G.; Perrone, A.M.; De Iaco, P.; Nanni, C.; et al. Prognostic value of posttreatment (18)F-FDG PET/CT and predictors of metabolic response to therapy in patients with locally advanced cervical cancer treated with concomitant chemoradiation therapy: An analysis of intensity- and volume-based PET parameters. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2139–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grigsby, P.W.; Massad, L.S.; Mutch, D.G.; Powell, M.A.; Thaker, P.H.; McCourt, C.; Hagemann, A.; Fuh, K.; Kuroki, L.; Schwarz, J.K.; et al. FIGO 2018 staging criteria for cervical cancer: Impact on stage migration and survival. Gynecol. Oncol. 2020, 157, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Salib, M.Y.; Russell, J.H.B.; Stewart, V.R.; Sudderuddin, S.A.; Barwick, T.D.; Rockall, A.G.; Bharwani, N. 2018 FIGO Staging Classification for Cervical Cancer: Added Benefits of Imaging. Radiographics 2020, 40, 1807–1822. [Google Scholar] [CrossRef]
- Kido, A.; Nakamoto, Y. Implications of the new FIGO staging and the role of imaging in cervical cancer. Br. J. Radiol. 2021, 94, 20201342. [Google Scholar] [CrossRef]
Characteristic * | “Baseline” Examination | “Early” Examination | “Final” Examination | Δ “Baseline”–“Early” Evaluation | Δ “Baseline”–“Final” Evaluation |
---|---|---|---|---|---|
TUS | |||||
Tumor volume | evaluation not performed | ||||
Maximum tumor diameter | |||||
Echogenicity | not applicable | ||||
Color score | not applicable | ||||
Vascular indices | |||||
VI | |||||
FI | |||||
VFI | |||||
3D tumor volume | |||||
Tumor peak enhancement | |||||
Tumor rise time | |||||
Tumor wash-in rate | |||||
Tumor wash-in | |||||
Tumor wash-out | |||||
MRI | |||||
Tumor volume | |||||
Maximum tumor diameter | |||||
Intensity | not applicable | not applicable | |||
High DWI SI | not applicable | not applicable | |||
High DWI SI plus ADCmean ≤ 1.1 × 10−3 mm2/s or ΔADCmean | |||||
PET/CT | |||||
SUVmax | |||||
SUVmean | |||||
MTV | |||||
TLG |
Characteristics | All Cases n = 88 | Partial Response * n = 48 | Complete Response n = 40 | p Value |
---|---|---|---|---|
Age (years) | 49.5 (22–75) | 49 (22–75) | 50 (31–72) | 0.893 |
FIGO stage | 0.872 | |||
I B2 | 3 (3.4) | 2 (4.2) | 1 (2.5) | |
II A | 9 (10.2) | 5 (10.4) | 4 (10.0) | |
II B | 63 (71.6) | 34 (70.8) | 29 (72.5) | |
III A | 4 (4.5) | 3 (6.3) | 1 (2.5) | |
III B | 9 (10.2) | 4 (8.3) | 5 (12.5) | |
Pelvic lymph node involvement at imaging | 40 (45.5) | 21 (43.8) | 19 (47.5) | 0.725 |
Grading of differentiation at staging † | 0.026 | |||
G1 | 2/79 (2.5) | 0/43 (0) | 2/36 (5.6) | |
G2 | 56/79 (70.9) | 27/43 (62.8) | 29/36 (80.6) | |
G3 | 21/79 (26.6) | 16/43 (37.2) | 5/36 (13.9) | |
Histotype | 0.052 | |||
Adenocarcinoma | 11 (12.5) | 9 (18.8) | 2 (5.0) | |
Squamous | 77 (87.5) | 39 (81.2) | 38 (95.0) | |
SCC, ng/mL ‡ | 3.6 (0.3–44.3) | 3.2 (0.3–44.3) | 4.8 (0.5–21.8) | 0.336 |
Metastatic lymph nodes at histology | 10 (11.4) | 10 (20.8) | 0 (0.0) | 0.002 |
Characteristic | Univariable Analysis | Multivariable Analysis | ||||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | AUC (95% CI) of the Model | p Value of the Model | OR (95% CI) | p Value | AUC (95% CI) of the Model | p Value of the Model | |
“Baseline” examination | ||||||||
US (n = 79) | 0.71 (0.60–0.82) | 0.007 | ||||||
Color score 3 vs. 4 (n = 88) | 0.41 (0.17–0.98) | 0.045 | 0.61 (0.50–0.71) | 0.040 | 0.37 (0.14–0.95) | 0.040 | ||
VI (n = 80) | 0.97 (0.94–0.99) | 0.038 | 0.64 (0.51–0.76) | 0.030 | Removed | |||
VFI (n = 80) | 0.93 (0.87–0.99) | 0.023 | 0.64 (0.51–0.76) | 0.010 | Removed | |||
Tumor peak enhancement (n = 86) | 1.00 (1.00–1.00) | 0.029 | 0.67 (0.56–0.79) | 0.020 | 1.00 (1.00–1.00) | 0.040 | ||
Rise time (n = 86) | 1.06 (0.94–1.20) | 0.321 | 0.63 (0.51–0.75) | 0.310 | ||||
Wash-in rate (n = 86) | 1.00 (1.00–1.00) | 0.823 | 0.69 (0.57–0.80) | 0.820 | ||||
MRI | ||||||||
No characteristics included in the present study | ||||||||
PET/CT (n = 88) | 0.71 (0.60–0.82) | 0.004 | ||||||
SUVmax (n = 88) | 0.90 (0.83–0.98) | 0.016 | 0.69 (0.57–0.80) | 0.001 | NIC | |||
SUVmean (n = 88) | 0.83 (0.73–0.95) | 0.008 | 0.71 (0.60–0.82) | 0.0001 | 0.83 (0.73–0.95) | 0.008 | ||
“Early” examination | ||||||||
US (n = 74) | 0.71 (0.59–0.83) | 0.002 | ||||||
Maximum tumor diameter, mm (n = 88) | 1.05 (1.01–1.10) | 0.012 | 0.67 (0.55–0.79) | 0.004 | 1.06 (1.02–1.11) | 0.009 | ||
Tumor volume, cm3 (n = 88) | 1.02 (0.99–1.04) | 0.064 | 0.65 (0.53–0.76) | 0.010 | ||||
VI (n = 74) | 0.97 (0.95–0.99) | 0.026 | 0.65 (0.52–0.78) | 0.020 | 0.97 (0.95–0.99) | 0.030 | ||
MRI (n = 88) | 0.68 (0.57–0.80) | 0.001 | ||||||
Maximum tumor diameter, mm (n = 88) | 1.05 (1.02–1.09) | 0.005 | 0.68 (0.57–0.80) | 0.001 | 1.05 (1.02–1.09) | 0.005 | ||
Tumor volume, cm3 (n = 88) | 1.05 (1.01–1.09) | 0.017 | 0.68 (0.57–0.80) | 0.001 | NIC | |||
PET/CT (n = 88) | 0.69 (0.57–0.80) | 0.010 | ||||||
MTV (n = 88) | 1.03 (1.00–1.06) | 0.024 | 0.69 (0.57–0.80) | 0.010 | 1.03 (1.00–1.06) | 0.020 | ||
TLG (n = 88) | 1.00 (0.99–1.01) | 0.176 | 0.68 (0.56–0.80) | 0.003 | ||||
“Final” examination | ||||||||
US | ||||||||
No characteristics included in the present study | ||||||||
MRI (n = 82) | 0.78 (0.68–0.88) | 0.0001 | ||||||
Maximum tumor diameter, mm (n = 88) | 1.12 (1.04–1.19) | 0.001 | 0.71 (0.60–0.81) | 0.0001 | 1.09 (1.01–1.18) | 0.040 | ||
Tumor volume, cm3 (n = 88) | 2.49 (1.04–5.95) | 0.040 | 0.72 (0.62–0.83) | 0.0001 | NIC | |||
Evaluation according to High DWI SI plus ADCmean ≤ 1.1 × 10−3 mm2/s (n = 82) | 7.75 (2.78–21.59) | <0.0001 | 0.73 (0.63–0.82) | <0.0001 | 3.82 (1.20–12.13) | 0.020 | ||
PET/CT (n = 88) | 0.70 (0.59–0.81) | <0.0001 | ||||||
SUVmax (n = 88) | 2.27 (1.27–4.04) | 0.005 | 0.70 (0.59–0.81) | <0.0001 | 2.27 (1.27–4.04) | 0.005 | ||
SUVmean (n = 88) | 3.12 (1.36–7.18) | 0.007 | 0.68 (0.56–0.79) | 0.0004 | NIC | |||
TLG (n = 88) | 1.04 (0.99–1.09) | 0.170 | 0.64 (0.53–0.76) | 0.020 | ||||
Δ “baseline”–“early” examination | ||||||||
US (n = 85) | 0.71 (0.60–0.81) | 0.0004 | ||||||
ΔMaximum tumor diameter% (n = 88) | 0.97 (0.94–0.99) | 0.009 | 0.66 (0.54–0.77) | 0.005 | NIC | |||
ΔTumor volume% (n = 88) | 0.98 (0.97–0.99) | 0.002 | 0.71 (0.60–0.81) | 0.0004 | 0.98 (0.97–0.99) | 0.002 | ||
ΔTumor peak enhancement % (n = 85) | 0.99 (0.99–1.00) | 0.086 | 0.64 (0.53–0.76) | 0.020 | ||||
ΔWash-in rate% (n = 85) | 0.99 (0.99–1.00) | 0.070 | 0.67 (0.55–0.79) | 0.004 | ||||
MRI (n = 88) | 0.71 (0.60–0.82) | 0.0003 | ||||||
ΔMaximum tumor diameter% (n = 88) | 0.96 (0.94–0.99) | 0.002 | 0.70 (0.59–0.81) | 0.0005 | - | - | ||
ΔTumor volume% (n = 88) | 0.97 (0.95–0.99) | 0.002 | 0.71 (0.60–0.82) | 0.0003 | 0.97 (0.95–0.99) | 0.002 | ||
PET/CT (n = 88) | 0.78 (0.68–0.88) | <0.0001 | ||||||
ΔSUVmax% (n = 88) | 0.96 (0.94–0.98) | 0.001 | 0.75 (0.64–0.86) | 0.0001 | NIC | |||
ΔSUVmean% (n = 88) | 0.96 (0.94–0.98) | <0.0001 | 0.76 (0.65–0.86) | 0.0001 | 0.93 (0.89–0.97) | 0.001 | ||
ΔMTV% (n = 88) | 0.99 (0.98–0.99) | 0.022 | 0.70 (0.59–0.81) | 0.0008 | 0.96 (0.93–0.99) | 0.012 | ||
ΔTLG% (n = 88) | 0.98 (0.97–0.99) | 0.013 | 0.74 (0.63–0.84) | 0.0004 | 1.06 (1.01–1.11) | 0.019 | ||
Δ “baseline”–“final” examination | ||||||||
US | ||||||||
Evaluation not performed | ||||||||
MRI (n = 82) | 0.70 (0.59–0.81) | <0.0001 | ||||||
ΔMaximum tumor diameter% (n = 88) | 0.95 (0.92–0.98) | 0.001 | 0.70 (0.59–0.81) | 0.0002 | 0.95 (0.92–0.98) | 0.002 | ||
ΔTumor volume% (n = 88) | 0.75 (0.60–0.93) | 0.009 | 0.70 (0.59–0.81) | 0.0001 | NIC | |||
ΔADCmean % (n = 82) | 1.03 (1.01–1.04) | 0.007 | 0.67 (0.55–0.80) | 0.003 | 1.02 (1.01–1.04) | 0.030 | ||
PET/CT (n = 88) | 0.80 (0.71–0.90) | <0.0001 | ||||||
ΔSUVmax% (n = 88) | 0.87 (0.80–0.93) | <0.0001 | 0.80 (0.71–0.90) | <0.0001 | 0.87 (0.80–0.93) | <0.0001 | ||
ΔSUVmean% (n = 88) | 0.89 (0.84–0.95) | <0.0001 | 0.79 (0.70–0.88) | <0.0001 | NIC | |||
ΔTLG% (n = 88) | 0.95 (0.89–1.02) | 0.141 | 0.68 (0.57–0.80) | 0.060 |
Characteristic † | OR (95% CI) | p Value | AUC (95% CI) of the Model | p Value of the Model |
---|---|---|---|---|
“Baseline” examination (n = 79) * | 0.77 (0.66–0.87) | 0.0003 | ||
VFI (US) | 0.99 (0.99–0.99) | 0.011 | ||
SUVmean (PET/CT) | 0.80 (0.69–0.93) | 0.004 | ||
“Early” examination (n = 74) ‡ | 0.73 (0.61–0.84) | 0.008 | ||
VI (US) | 0.97 (0.94–0.99) | 0.030 | ||
“Final” examination (n = 82) ° | 0.81 (0.72–0.90) | <0.0001 | ||
Evaluation according to high DWI SI and ADCmean ≤ 1.1 × 10−3 mm2/s (MRI) | 4.04 (1.19–13.75) | 0.030 | ||
SUVmax (PET/CT) | 2.47 (1.15–5.34) | 0.020 | ||
Δ “baseline”–“early” examination (n = 88) § | 0.80 (0.71–0.89) | <0.0001 | ||
ΔSUVmean% (PET/CT) | 0.94 (0.90–0.98) | 0.007 | ||
ΔMTV% (PET/CT) | 0.96 (0.93–0.99) | 0.040 | ||
ΔTLG% (PET/CT) | 1.06 (1.01–1.11) | 0.040 | ||
Δ “baseline”–“final” examination (n = 82) ¶ | 0.84 (0.75–0.93) Ɨ | <0.0001 | ||
ΔSUVmax% (PET/CT) | 0.88 (0.81–0.96) Ɨ | 0.004 Ɨ |
Model | Type of Examination and Timing | Cost per Patient |
---|---|---|
Model 1 | Ultrasonography + Color Doppler + PET/CT at “baseline” examination | 1165.09 EUR |
Model 2 | Ultrasonography + Color Doppler at “early” examination | 93.44 EUR |
Model 3 | MRI + PET/CT at “final” examination | 1191.73 EUR |
Model 4 | PET/CT at “baseline” and “early” examination | 2143.30 EUR |
Model 5 | PET/CT at “baseline” and “final” examination | 2143.30 EUR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasciuto, T.; Moro, F.; Collarino, A.; Gambacorta, M.A.; Zannoni, G.F.; Oradei, M.; Ferrandina, M.G.; Gui, B.; Testa, A.C.; Rufini, V. The Role of Multimodal Imaging in Pathological Response Prediction of Locally Advanced Cervical Cancer Patients Treated by Chemoradiation Therapy Followed by Radical Surgery. Cancers 2023, 15, 3071. https://doi.org/10.3390/cancers15123071
Pasciuto T, Moro F, Collarino A, Gambacorta MA, Zannoni GF, Oradei M, Ferrandina MG, Gui B, Testa AC, Rufini V. The Role of Multimodal Imaging in Pathological Response Prediction of Locally Advanced Cervical Cancer Patients Treated by Chemoradiation Therapy Followed by Radical Surgery. Cancers. 2023; 15(12):3071. https://doi.org/10.3390/cancers15123071
Chicago/Turabian StylePasciuto, Tina, Francesca Moro, Angela Collarino, Maria Antonietta Gambacorta, Gian Franco Zannoni, Marco Oradei, Maria Gabriella Ferrandina, Benedetta Gui, Antonia Carla Testa, and Vittoria Rufini. 2023. "The Role of Multimodal Imaging in Pathological Response Prediction of Locally Advanced Cervical Cancer Patients Treated by Chemoradiation Therapy Followed by Radical Surgery" Cancers 15, no. 12: 3071. https://doi.org/10.3390/cancers15123071
APA StylePasciuto, T., Moro, F., Collarino, A., Gambacorta, M. A., Zannoni, G. F., Oradei, M., Ferrandina, M. G., Gui, B., Testa, A. C., & Rufini, V. (2023). The Role of Multimodal Imaging in Pathological Response Prediction of Locally Advanced Cervical Cancer Patients Treated by Chemoradiation Therapy Followed by Radical Surgery. Cancers, 15(12), 3071. https://doi.org/10.3390/cancers15123071