The Association of Gross Tumor Volume and Its Radiomics Features with Brain Metastases Development in Patients with Radically Treated Stage III Non-Small Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Acquisition of Images
2.2. Delineation of Regions of Interest (ROI)/GTV
2.3. GTV Radiomics Features Extraction
2.4. Clinical and Treatment-Related Variables
2.5. Statistics
3. Results
3.1. BM Risk Models
3.2. Evaluation of the Models’ Performance
3.3. OS, PFS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Section/Topic | Item | Checklist Item | Page |
---|---|---|---|
Title and abstract | |||
Title | 1 | Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted. | 1 |
Abstract | 2 | Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions. | 1 |
Introduction | |||
Background and objectives | 3a | Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models. | 2–3 |
3b | Specify the objectives, including whether the study describes the development or validation of the model or both. | 3 | |
Methods | |||
Source of data | 4a | Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation datasets, if applicable. | 3 |
4b | Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up. | 3 | |
Participants | 5a | Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres. | 3 |
5b | Describe eligibility criteria for participants. | 3 | |
5c | Give details of treatments received, if relevant. | 3 | |
Outcome | 6a | Clearly define the outcome that is predicted by the prediction model, including how and when assessed. | 5 |
6b | Report any actions to blind assessment of the outcome to be predicted. | NA | |
Predictors | 7a | Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured. | 3–5 |
7b | Report any actions to blind assessment of predictors for the outcome and other predictors. | NA | |
Sample size | 8 | Explain how the study size was arrived at. | 3 |
Missing data | 9 | Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method. | 5 |
Statistical analysis methods | 10a | Describe how predictors were handled in the analyses. | 5 |
10b | Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. | 5–6, Figure 1 | |
10d | Specify all measures used to assess model performance and, if relevant, to compare multiple models. | 6 | |
Risk groups | 11 | Provide details on how risk groups were created, if done. | NA |
Results | |||
Participants | 13a | Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. | 6, Figure 2 |
13b | Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome. | 6, Table 1 | |
Model development | 14a | Specify the number of participants and outcome events in each analysis. | 6–7 |
14b | If done, report the unadjusted association between each candidate predictor and outcome. | NA | |
Model specification | 15a | Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point). | 6–7. Table 2 and Table 3 |
15b | Explain how to the use the prediction model. | 7, Figure 3 | |
Model performance | 16 | Report performance measures (with CIs) for the prediction model. | 7 |
Discussion | |||
Limitations | 18 | Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data). | 10–11 |
Interpretation | 19b | Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence. | 8–11 |
Implications | 20 | Discuss the potential clinical use of the model and implications for future research. | 10 |
Other information | |||
Supplementary information | 21 | Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and datasets. | 5 |
Funding | 22 | Give the source of funding and the role of the funders for the present study. | Title page |
HR | 95% CI | p | |
---|---|---|---|
Clinical model (n = 310, 176 death) | |||
Age (>60 vs. ≤60) | 1.44 | 0.98–2.11 | 0.066 |
Histology (Non–Squamous vs. squamous) | 1.08 | 0.79–1.46 | 0.645 |
GTVn (cm3) | |||
<6 | [Reference] | ||
6–36.4 | 1.49 | 1.01–2.21 | 0.045 |
>36.4 | 2.32 | 1.50–3.59 | <0.001 |
GTV radiomic model (n = 282, 168 death) | |||
HLH firstorder Median | 1.00 | 0.91–1.11 | 0.977 |
HLH glcm Imc1 | 1.08 | 0.91–1.28 | 0.392 |
Original firstorder Skewness | 0.95 | 0.81–1.12 | 0.55 |
Original glszm Zone Entropy | 1.19 | 0.98–1.43 | 0.081 |
HHH glszm Small Area Emphasis | 1.01 | 0.85–1.18 | 0.95 |
GTVn radiomic model (n = 254, 158 death) | |||
LLH glrlm Run Variance | 1.20 | 1.04–1.39 | 0.016 |
HLH glcm Imc1 | 1.01 | 0.86–1.20 | 0.873 |
HLH glszm Small Area Low Grey Level Emphasis | 0.78 | 0.63–0.97 | 0.026 |
LLH glszm Size Zone Non Uniformity Normalized | 1.03 | 0.88–1.20 | 0.717 |
HHL glszm Grey Level Non Uniformity Normalized | 1.04 | 0.88–1.23 | 0.648 |
GTVp radiomic model (n = 260, 153 death) | |||
LHH glszm Small Area Low Grey Level Emphasis | 1.15 | 0.96–1.39 | 0.132 |
LLH glcm Cluster Shade | 1.02 | 0.88–1.18 | 0.83 |
HLH glszm Grey Level Non Uniformity | 1.17 | 1.00–1.37 | 0.047 |
HLL firstorder Root Mean Squared | 0.97 | 0.79–1.20 | 0.797 |
LLL glcm Imc1 | 1.32 | 1.09–1.60 | 0.005 |
Combined model (n = 231, 142 death) | |||
GTVn (cm3) | |||
<6 | [Reference] | ||
6–36.4 | 1.10 | 0.67–1.78 | 0.716 |
>36.4 | 1.70 | 0.94–3.09 | 0.081 |
GTV HLH glcm Imc1 | 1.05 | 0.85–1.29 | 0.655 |
GTVn LLH glrlm Run Variance | 1.12 | 0.93–1.35 | 0.23 |
GTVp HLH glszm Grey Level Non Uniformity | 1.17 | 1.02–1.33 | 0.023 |
HR | 95% CI | p | |
---|---|---|---|
Clinical model (n = 310, 183 progression) | |||
Age (>60 vs. ≤60) | 1.12 | 0.78–1.63 | 0.537 |
Histology (Non—Squamous vs. squamous) | 1.35 | 1.00–1.83 | 0.054 |
GTVn (cm3) | |||
<6 | [Reference] | ||
6–36.4 | 1.93 | 1.30–2.85 | 0.001 |
>36.4 | 2.08 | 1.31–3.30 | 0.002 |
GTV radiomic model (n = 282, 167 progression) | |||
HLH firstorder Median | 0.87 | 0.78–0.98 | 0.02 |
HLH glcm Imc1 | 1.06 | 0.90–1.25 | 0.51 |
Original firstorder Skewness | 1.07 | 0.89–1.27 | 0.494 |
Original glszm Zone Entropy | 1.02 | 0.86–1.22 | 0.787 |
HHH glszm Small Area Emphasis | 1.05 | 0.90–1.23 | 0.531 |
GTVn radiomic model (n = 254, 156 progression) | |||
LLH glrlm Run Variance | 1.03 | 0.87–1.23 | 0.733 |
HLH glcm Imc1 | 1.12 | 0.94–1.32 | 0.204 |
HLH glszm Small Area Low Grey Level Emphasis | 0.84 | 0.69–1.01 | 0.065 |
LLH glszm Size Zone Non Uniformity Normalized | 1.14 | 0.97–1.33 | 0.105 |
HHL glszm Grey Level Non Uniformity Normalized | 1.01 | 0.85–1.19 | 0.944 |
GTVp radiomic model (n = 260, 157 progression) | |||
LHH glszm Small Area Low Grey Level Emphasis | 1.17 | 0.99–1.38 | 0.06 |
LLH glcm Cluster Shade | 1.16 | 1.02–1.33 | 0.026 |
HLH glszm Grey Level Non Uniformity | 1.16 | 0.96–1.40 | 0.121 |
HLL firstorder Root Mean Squared | 0.93 | 0.77–1.13 | 0.453 |
LLL glcm Imc1 | 1.38 | 1.15–1.65 | 0.001 |
Combined model (n = 231, 145 progression) | |||
GTVn (cm3) | |||
<6 | [Reference] | ||
6–36.4 | 1.63 | 0.99–2.69 | 0.054 |
>36.4 | 2.37 | 1.28–4.38 | 0.006 |
GTV HLH glcm Imc1 | 1.06 | 0.86–1.30 | 0.593 |
GTVn LLH glrlm Run Variance | 0.96 | 0.78–1.18 | 0.679 |
GTVp HLH glszm Grey Level Non Uniformity | 1.13 | 0.98–1.31 | 0.1 |
References
- De Ruysscher, D.; Dingemans, A.C.; Praag, J.; Belderbos, J.; Tissing-Tan, C.; Herder, J.; Haitjema, T.; Ubbels, F.; Lagerwaard, F.; El Sharouni, S.Y.; et al. Prophylactic Cranial Irradiation Versus Observation in Radically Treated Stage III Non-Small-Cell Lung Cancer: A Randomized Phase III NVALT-11/DLCRG-02 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2366–2377. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hua, X.; Jia, J.; Wu, Y.; Wei, S.; Xu, L.; Han, S.; Zhang, H.; Zhu, X. Risk factors for brain metastases in patients with non-small cell lung cancer: A meta-analysis of 43 studies. Ann. Palliat. Med. 2021, 10, 3657–3672. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Jing, W.; Wang, H.; Li, J.; Liu, Y.; Yu, J.; Zhu, H. Risk factors for brain metastases in patients with non-small-cell lung cancer. Cancer Med. 2018, 7, 6357–6364. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.S.; Hu, L.K.; Cai, Y.; Li, X.M.; Ye, L.; Hou, H.Y.; Wang, C.H.; Jiang, Y.H. A systematic review of risk factors for brain metastases and value of prophylactic cranial irradiation in non-small cell lung cancer. Asian Pac. J. Cancer Prev. 2014, 15, 1233–1239. [Google Scholar] [CrossRef]
- Soliman, M.; Yaromina, A.; Appold, S.; Zips, D.; Reiffenstuhl, C.; Schreiber, A.; Thames, H.D.; Krause, M.; Baumann, M. GTV differentially impacts locoregional control of non-small cell lung cancer (NSCLC) after different fractionation schedules: Subgroup analysis of the prospective randomized CHARTWEL trial. Radiother. Oncol. 2013, 106, 299–304. [Google Scholar] [CrossRef]
- Chen, N.B.; Li, Q.W.; Zhu, Z.F.; Wang, Y.M.; Cheng, Z.J.; Hui, Z.G.; Guo, S.P.; He, H.Q.; Wang, B.; Huang, X.Y.; et al. Developing and validating an integrated gross tumor volume (GTV)-TNM stratification system for supplementing unresectable locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy. Radiat. Oncol. (Lond. Engl.) 2020, 15, 260. [Google Scholar] [CrossRef]
- Dehing-Oberije, C.; Aerts, H.; Yu, S.; De Ruysscher, D.; Menheere, P.; Hilvo, M.; van der Weide, H.; Rao, B.; Lambin, P. Development and validation of a prognostic model using blood biomarker information for prediction of survival of non-small-cell lung cancer patients treated with combined chemotherapy and radiation or radiotherapy alone (NCT00181519, NCT00573040, and NCT00572325). Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 360–368. [Google Scholar]
- Dehing-Oberije, C.; Yu, S.; De Ruysscher, D.; Meersschout, S.; Van Beek, K.; Lievens, Y.; Van Meerbeeck, J.; De Neve, W.; Rao, B.; van der Weide, H.; et al. Development and external validation of prognostic model for 2-year survival of non-small-cell lung cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 355–362. [Google Scholar] [CrossRef]
- Van Laar, M.; van Amsterdam, W.A.C.; van Lindert, A.S.R.; de Jong, P.A.; Verhoeff, J.J.C. Prognostic factors for overall survival of stage III non-small cell lung cancer patients on computed tomography: A systematic review and meta-analysis. Radiother. Oncol. 2020, 151, 152–175. [Google Scholar] [CrossRef]
- Ji, Z.; Bi, N.; Wang, J.; Hui, Z.; Xiao, Z.; Feng, Q.; Zhou, Z.; Chen, D.; Lv, J.; Liang, J.; et al. Risk factors for brain metastases in locally advanced non-small cell lung cancer with definitive chest radiation. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 330–337. [Google Scholar] [CrossRef]
- Levy, A.; Le Péchoux, C.; Mistry, H.; Martel-Lafay, I.; Bezjak, A.; Lerouge, D.; Padovani, L.; Taylor, P.; Faivre-Finn, C. Prophylactic Cranial Irradiation for Limited-Stage Small-Cell Lung Cancer Patients: Secondary Findings from the Prospective Randomized Phase 3 CONVERT Trial. J. Thorac. Oncol. 2019, 14, 294–297. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, J.; Ai, Y.; Zhu, K.; Xiao, C.; Xie, C.; Jin, X. Computer Tomography Radiomics-Based Nomogram in the Survival Prediction for Brain Metastases from Non-Small Cell Lung Cancer Underwent Whole Brain Radiotherapy. Front. Oncol. 2020, 10, 610691. [Google Scholar] [CrossRef]
- Zhao, S.; Hou, D.; Zheng, X.; Song, W.; Liu, X.; Wang, S.; Zhou, L.; Tao, X.; Lv, L.; Sun, Q.; et al. MRI radiomic signature predicts intracranial progression-free survival in patients with brain metastases of ALK-positive non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 368–380. [Google Scholar] [CrossRef]
- Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 1, 99–101. [Google Scholar] [CrossRef]
- Chen, A.; Lu, L.; Pu, X.; Yu, T.; Yang, H.; Schwartz, L.H.; Zhao, B. CT-Based Radiomics Model for Predicting Brain Metastasis in Category T1 Lung Adenocarcinoma. AJR Am. J. Roentgenol. 2019, 213, 134–139. [Google Scholar] [CrossRef]
- Xu, X.; Huang, L.; Chen, J.; Wen, J.; Liu, D.; Cao, J.; Wang, J.; Fan, M. Application of radiomics signature captured from pretreatment thoracic CT to predict brain metastases in stage III/IV ALK-positive non-small cell lung cancer patients. J. Thorac. Dis. 2019, 11, 4516–4528. [Google Scholar] [CrossRef]
- Sun, F.; Chen, Y.; Chen, X.; Sun, X.; Xing, L. CT-based radiomics for predicting brain metastases as the first failure in patients with curatively resected locally advanced non-small cell lung cancer. Eur. J. Radiol. 2021, 134, 109411. [Google Scholar] [CrossRef]
- Keek, S.A.; Kayan, E.; Chatterjee, A.; Belderbos, J.S.A.; Bootsma, G.; van den Borne, B.; Dingemans, A.C.; Gietema, H.A.; Groen, H.J.M.; Herder, J.; et al. Investigation of the added value of CT-based radiomics in predicting the development of brain metastases in patients with radically treated stage III NSCLC. Ther. Adv. Med. Oncol. 2022, 14, 116605. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.Z.; Li, W.H.; Han, Y.; Li, Q.; Ye, Z. Pretreatment Thoracic CT Radiomic Features to Predict Brain Metastases in Patients With ALK-Rearranged Non-Small Cell Lung Cancer. Front. Genet. 2022, 13, 772090. [Google Scholar] [CrossRef]
- Goldstraw, P.; Crowley, J.; Chansky, K.; Giroux, D.J.; Groome, P.A.; Rami-Porta, R.; Postmus, P.E.; Rusch, V.; Sobin, L. The IASLC Lung Cancer Staging Project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J. Thorac. Oncol. 2007, 2, 706–714. [Google Scholar] [CrossRef]
- Van Diessen, J.; De Ruysscher, D.; Sonke, J.J.; Damen, E.; Sikorska, K.; Reymen, B.; van Elmpt, W.; Westman, G.; Persson, G.F.; Dieleman, E.; et al. The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). Radiother. Oncol. 2019, 131, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Felip, E.; Dafni, U.; Tufman, A.; Guckenberger, M.; Álvarez, R.; Nadal, E.; Becker, A.; Vees, H.; Pless, M.; et al. Progression-Free and Overall Survival for Concurrent Nivolumab with Standard Concurrent Chemoradiotherapy in Locally Advanced Stage IIIA-B NSCLC: Results From the European Thoracic Oncology Platform NICOLAS Phase II Trial (European Thoracic Oncology Platform 6-14). J. Thorac. Oncol. 2021, 16, 278–288. [Google Scholar] [PubMed]
- Nestle, U.; Le Pechoux, C.; De Ruysscher, D. Evolving target volume concepts in locally advanced non-small cell lung cancer. Transl. Lung Cancer Res. 2021, 10, 1999–2010. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 1988, 16, 1141–1154. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J. Am. Stal. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Yan, M.; Yu, J.; Dekker, A.; Zhao, L.; Wee, L. Radiomics and Dosiomics Signature From Whole Lung Predicts Radiation Pneumonitis: A Model Development Study With Prospective External Validation and Decision-curve Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 746–758. [Google Scholar] [CrossRef]
- Compter, I.; Verduin, M.; Shi, Z.; Woodruff, H.C.; Smeenk, R.J.; Rozema, T.; Leijenaar, R.T.H.; Monshouwer, R.; Eekers, D.B.P.; Hoeben, A.; et al. Deciphering the glioblastoma phenotype by computed tomography radiomics. Radiother. Oncol. 2021, 160, 132–139. [Google Scholar] [CrossRef]
- Tohidinezhad, F.; Bontempi, D.; Zhang, Z.; Dingemans, A.M.; Aerts, J.; Bootsma, G.; Vansteenkiste, J.; Hashemi, S.; Smit, E.; Gietema, H.; et al. Computed tomography-based radiomics for the differential diagnosis of pneumonitis in stage IV non-small cell lung cancer patients treated with immune checkpoint inhibitors. Eur. J. Cancer 2023, 183, 142–151. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. Br. J. Surg. 2015, 102, 148–158. [Google Scholar] [CrossRef]
- Lacoppidan, T.; Vogelius, I.R.; Pøhl, M.; Strange, M.; Persson, G.F.; Nygård, L. An investigative expansion of a competing risk model for first failure site in locally advanced non-small cell lung cancer. Acta Oncol. 2019, 58, 1386–1392. [Google Scholar] [CrossRef]
- Zeng, H.; Zheng, D.; Witlox, W.J.A.; Levy, A.; Traverso, A.; Kong, F.S.; Houben, R.; De Ruysscher, D.K.M.; Hendriks, L.E.L. Risk Factors for Brain Metastases in Patients with Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 889161. [Google Scholar] [CrossRef]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef]
- Loong, T.W. Understanding sensitivity and specificity with the right side of the brain. BMJ 2003, 327, 716–719. [Google Scholar] [CrossRef]
- Takehana, K.; Sakamoto, R.; Fujimoto, K.; Matsuo, Y.; Nakajima, N.; Yoshizawa, A.; Menju, T.; Nakamura, M.; Yamada, R.; Mizowaki, T.; et al. Peritumoral radiomics features on preoperative thin-slice CT images can predict the spread through air spaces of lung adenocarcinoma. Sci. Rep. 2022, 12, 10323. [Google Scholar] [CrossRef]
- Pérez-Morales, J.; Tunali, I.; Stringfield, O.; Eschrich, S.A.; Balagurunathan, Y.; Gillies, R.J.; Schabath, M.B. Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening. Sci. Rep. 2020, 10, 10528. [Google Scholar] [CrossRef]
Characteristics | Number (%) |
---|---|
Age | |
Mean ± SD | 65.7 ± 8.4 |
≤60 | 80 (25.8) |
>60 | 230 (74.2) |
Male gender | 169 (54.5) |
Body mass index-kg/m2 | |
Normal (18.5–24.9) | 137 (44.2) |
Underweight (<18.5) | 13 (4.2) |
Overweight (25.0–29.9) | 113 (36.5) |
Obese (≥30) | 47 (15.2) |
Smoking | |
Never/Former | 174 (56.1) |
Current | 136 (43.9) |
Performance status | |
0 | 123 (39.7) |
1 | 160 (51.6) |
2–3 | 27 (8.7) |
TNM_T | |
0/X/1/2/3 | 171 (55.2) |
4 | 139 (44.8) |
TNM_N | |
0–1 | 38 (12.3) |
2 | 210 (67.7) |
3 | 62 (20.0) |
Stage | |
IIIA | 160 (51.6) |
IIIB | 150 (48.4) |
Histology | |
Squamous-cell | 116 (37.4) |
Non-Squamous-cell | 194 (62.6) |
Chemoradiotherapy | |
Concurrent | 277 (89.4) |
Sequential | 33 (10.6) |
Type of radiation | |
OD | 205 (66.1) |
TD/TD+OD | 105 (33.9) |
Total dose (Gy) | |
≤66 | 226 (72.9) |
>66 | 84 (27.1) |
Adjuvant immunotherapy | 84 (27.1) |
GTV (cm3) | |
Median (range) | 71.2 (4.3–1252.8) |
<35.2 | 78 (25.2) |
35.2–115.2 | 153 (49.4) |
>115.2 | 79 (25.5) |
GTVn (cm3) | |
Median (range) | 16.4 (0–244.1) |
<6 | 78 (25.2) |
6–36.4 | 154 (49.7) |
>36.4 | 78 (25.2) |
GTVp (cm3) | |
Median (range) | 41.4 (0–1195.6) |
<9.8 | 78 (25.2) |
9.8–89 | 154 (49.7) |
>89 | 78 (25.2) |
sHR | 95% CI | p | |
---|---|---|---|
Clinical model (n = 310, 52 BM) | |||
Age (>60 vs. ≤60) | 0.56 | 0.32–0.99 | 0.045 |
Histology (Non-Squamous vs squamous) | 2.64 | 1.28–5.46 | 0.009 |
GTVn (cm3) | |||
<6 | [Reference] | ||
6–36.4 | 3.76 | 1.33–10.61 | 0.012 |
>36.4 | 3.86 | 1.28–11.65 | 0.017 |
GTV radiomic model (n = 282, 46 BM) | |||
HLH firstorder Median | 0.63 | 0.50–0.78 | <0.001 |
HLH glcm Imc1 | 1.72 | 1.13–2.61 | 0.011 |
Original firstorder Skewness | 1.39 | 1.17–1.64 | <0.001 |
Original glszm Zone Entropy | 0.66 | 0.50–0.87 | 0.003 |
HHH glszm Small Area Emphasis | 1.66 | 1.17–2.35 | 0.004 |
GTVn radiomic model (n = 254, 44 BM) | |||
LLH glrlm Run Variance | 1.77 | 1.26–2.48 | 0.001 |
HLH glcm Imc1 | 1.67 | 1.14–2.46 | 0.009 |
HLH glszm Small Area Low Grey Level Emphasis | 0.58 | 0.38–0.89 | 0.012 |
LLH glszm Size Zone Non Uniformity Normalized | 1.54 | 1.27–1.87 | <0.001 |
HHL glszm Grey Level Non Uniformity Normalized | 0.67 | 0.48–0.93 | 0.018 |
GTVp radiomic model (n = 260, 39 BM) | |||
LHH glszm Small Area Low Grey Level Emphasis | 1.66 | 1.29–2.14 | <0.001 |
LLH glcm Cluster Shade | 1.40 | 1.10–1.80 | 0.007 |
HLH glszm Grey Level Non Uniformity | 1.90 | 1.58–2.29 | <0.001 |
HLL firstorder Root Mean Squared | 0.62 | 0.43–0.90 | 0.013 |
LLL glcm Imc1 | 1.93 | 1.06–3.51 | 0.032 |
Combined model (n = 231, 37 BM) | |||
GTVn (cm3) | |||
<6 | [Reference] | ||
6–36.4 | 3.09 | 0.68–13.98 | 0.143 |
>36.4 | 2.49 | 0.50–12.53 | 0.268 |
GTV HLH glcm Imc1 | 1.33 | 0.82–2.16 | 0.242 |
GTVn LLH glrlm Run Variance | 1.53 | 1.05–2.24 | 0.028 |
GTVp HLH glszm Grey Level Non Uniformity | 1.52 | 1.29–1.79 | <0.001 |
Models | AUC (95% CI) | Sensitivity | Specificity | PPV | NPV | Accuracy |
---|---|---|---|---|---|---|
Clinical | 0.69 (0.66–0.82) | 59% | 77% | 33% | 91% | 74% |
GTV | 0.63 (0.57–0.77) | 65% | 67% | 27% | 91% | 67% |
GTVn | 0.74 (0.71–0.86) | 84% | 61% | 29% | 95% | 65% |
GTVp | 0.66 (0.62–0.81) | 54% | 80% | 34% | 90% | 76% |
Combined | 0.65 (0.60–0.78) | 70% | 60% | 25% | 91% | 62% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H.; Tohidinezhad, F.; De Ruysscher, D.K.M.; Willems, Y.C.P.; Degens, J.H.R.J.; van Kampen-van den Boogaart, V.E.M.; Pitz, C.; Cortiula, F.; Brandts, L.; Hendriks, L.E.L.; et al. The Association of Gross Tumor Volume and Its Radiomics Features with Brain Metastases Development in Patients with Radically Treated Stage III Non-Small Cell Lung Cancer. Cancers 2023, 15, 3010. https://doi.org/10.3390/cancers15113010
Zeng H, Tohidinezhad F, De Ruysscher DKM, Willems YCP, Degens JHRJ, van Kampen-van den Boogaart VEM, Pitz C, Cortiula F, Brandts L, Hendriks LEL, et al. The Association of Gross Tumor Volume and Its Radiomics Features with Brain Metastases Development in Patients with Radically Treated Stage III Non-Small Cell Lung Cancer. Cancers. 2023; 15(11):3010. https://doi.org/10.3390/cancers15113010
Chicago/Turabian StyleZeng, Haiyan, Fariba Tohidinezhad, Dirk K. M. De Ruysscher, Yves C. P. Willems, Juliette H. R. J. Degens, Vivian E. M. van Kampen-van den Boogaart, Cordula Pitz, Francesco Cortiula, Lloyd Brandts, Lizza E. L. Hendriks, and et al. 2023. "The Association of Gross Tumor Volume and Its Radiomics Features with Brain Metastases Development in Patients with Radically Treated Stage III Non-Small Cell Lung Cancer" Cancers 15, no. 11: 3010. https://doi.org/10.3390/cancers15113010
APA StyleZeng, H., Tohidinezhad, F., De Ruysscher, D. K. M., Willems, Y. C. P., Degens, J. H. R. J., van Kampen-van den Boogaart, V. E. M., Pitz, C., Cortiula, F., Brandts, L., Hendriks, L. E. L., & Traverso, A. (2023). The Association of Gross Tumor Volume and Its Radiomics Features with Brain Metastases Development in Patients with Radically Treated Stage III Non-Small Cell Lung Cancer. Cancers, 15(11), 3010. https://doi.org/10.3390/cancers15113010