The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers—Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Site-Specific Results
3.1.1. Anal Canal Cancer
3.1.2. Esophageal Cancer
3.1.3. Rectal Cancer
3.1.4. Pancreatic Cancer
4. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization International Agency for Research on Cancer (IARC). GLOBOCAN 2020: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2020. Available online: http://globocan.iarc.fr/ (accessed on 20 January 2023).
- Beaton, L.; Bandula, S.; Gaze, M.N.; Sharma, R.A. How rapid advances in imaging are defining the future of precision radiation oncology. Br. J. Cancer 2019, 120, 779–790. [Google Scholar] [CrossRef]
- Decazes, P.; Hinault, P.; Veresezan, O.; Thureau, S.; Gouel, P.; Vera, P. Trimodality PET/CT/MRI and Radiotherapy: A Mini-Review. Front. Oncol. 2021, 10, 614008. [Google Scholar] [CrossRef]
- Lambrecht, M.; Haustermans, K. Clinical evidence on PET-CT for radiation therapy planning in gastro-intestinal tumors. Radiother. Oncol. 2010, 96, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, A.; Poon, R.; Jonker, D. PET imaging in anal canal cancer: A systematic review and meta-analysis. Br. J. Radiol. 2017, 90, 1080. [Google Scholar] [CrossRef]
- Lu, J.; Sun, X.-D.; Yang, X.; Tang, X.-Y.; Qin, Q.; Zhu, H.-C.; Cheng, H.-Y.; Sun, X.-C. Impact of PET/CT on radiation treatment in patients with esophageal cancer: A systematic review. Crit. Rev. Oncol./Hematol. 2016, 107, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Gauthé, M.; Richard-Molard, M.; Cacheux, W.; Michel, P.; Jouve, J.L.; Mitry, E.; Alberini, J.L.; Lièvre, A.; Fédération Francophone de Cancérologie Digestive (FFCD). Role of fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography in gastrointestinal cancers. Dig. Liver Dis. 2015, 47, 443–454. [Google Scholar] [CrossRef]
- Ling, C.C.; Humm, J.; Larson, S.; Amols, H.; Fuks, Z.; Leibel, S.; Koutcher, J.A. Towards multidimensional radiotherapy (MD-CRT): Biological imaging and biological conformality. Int. J. Radiat. Oncol. Biol. Phys. 2000, 47, 551–560. [Google Scholar] [CrossRef]
- Prestwich, R.J.D.; Vaidyanathan, S.; Scarsbrook, A.F. Functional Imaging Biomarkers: Potential to Guide an Individualised Approach to Radiotherapy. Clin. Oncol. (R. Coll. Radiol.) 2015, 27, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Flechsig, P.; Lindner, T.; Abderrahim, L.; Altmann, A.; Mier, W.; Adeberg, S.; Rathke, H.; Röhrich, M.; Winter, H.; et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J. Nucl. Med. 2019, 60, 801–805. [Google Scholar] [CrossRef]
- Van Rossum, P.S.N.; van Lier, A.L.H.M.W.; Lips, I.M.; Meijer, G.J.; Reerink, O.; van Vulpen, M.; Lam, M.G.E.H.; van Hillegersberg, R.; Ruurda, J.P. Imaging of oesophageal cancer with FDG-PET/CT and MRI. Clin. Radiol. 2015, 70, 81–95. [Google Scholar] [CrossRef]
- Metcalfe, P.; Liney, G.P.; Holloway, L.; Walker, A.; Barton, M.; Delaney, G.P.; Vinod, S.; Tomé, W. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol. Cancer Res. Treat. 2013, 12, 429–446. [Google Scholar] [CrossRef]
- Stahl, M.; Mariette, C.; Haustermans, K.; Cervantes, A.; Arnold, D.; ESMO Guidelines Working Group. Oesophageal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24 (Suppl. S6), vi51–vi56. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Nilsson, P.J.; Aschele, C.; Goh, V.; Peiffert, D.; Cervantes, A.; Arnold, D. Anal cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Radiother. Oncol. 2014, 111, 330–339. [Google Scholar] [CrossRef]
- Palta, M.; Godfrey, D.; Goodman, K.A.; Hoffe, S.; Dawson, L.A.; Dessert, D.; Hall, W.A.; Herman, J.M.; Khorana, A.A.; Merchant, N.; et al. Radiation Therapy for Pancreatic Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2019, 9, 322–332. [Google Scholar] [CrossRef]
- Glynne-Jones, R.; Wyrwicz, L.; Tiret, E.; Brown, G.; Rödel, C.; Cervantes, A.; Arnold, D. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28 (Suppl. S4), iv22–iv40. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Anal Carcinoma (Version 1.2023). Available online: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1414 (accessed on 25 January 2023).
- Krengli, M.; Milia, M.E.; Turri, L.; Mones, E.; Bassi, M.C.; Cannillo, B.; Deantonio, L.; Sacchetti, G.; Brambilla, M.; Inglese, E. FDG-PET/CT imaging for staging and target volume delineation in conformal radiotherapy of anal carcinoma. Radiat. Oncol. 2010, 5, 10. [Google Scholar] [CrossRef]
- Zimmermann, M.; Beer, J.; Bodis, S.; von Moos, R.; Vlachopoulou, V.; Zwahlen, D.R.; Oehler, C. PET-CT guided SIB-IMRT combined with concurrent 5-FU/MMC for the treatment of anal cancer. Acta Oncol. 2017, 56, 1734–1740. [Google Scholar] [CrossRef]
- Di Carlo, C.; di Benedetto, M.; Vicenzi, L.; Costantini, S.; Cucciarelli, F.; Fenu, F.; Arena, E.; Mariucci, C.; Montisci, M.; Panni, V.; et al. FDG-PET/CT in the Radiotherapy Treatment Planning of Locally Advanced Anal Cancer: A Monoinstitutional Experience. Front. Oncol. 2021, 11, 2524. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.L.; Patil, S.M.; Temple, L.K.; Minsky, B.D.; Saltz, L.B.; Goodman, K.A. Squamous cell carcinoma of the anal canal: Patterns and predictors of failure and implications for intensity-modulated radiation treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Leong, T.; Chander, S.; Chu, J.; Kneebone, A.; Carroll, S.; Wiltshire, K.; Ngan, S.; Kachnic, L. Australasian Gastrointestinal Trials Group (AGITG) contouring atlas and planning guidelines for intensity-modulated radiotherapy in anal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Myerson, R.J.; Garofalo, M.C.; El Naqa, I.; Abrams, R.A.; Apte, A.; Bosch, W.R.; Das, P.; Gunderson, L.L.; Hong, T.S.; Kim, J.J.; et al. Elective clinical target volumes for conformal therapy in anorectal cancer: A radiation therapy oncology group consensus panel contouring atlas. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Muirhead, R.; Adams, R.; Gilbert, D.; Harrison, M.; Glynne-Jones, R.; Sebag-Montefiore, D. National Guidance for IMRT in Anal Cancer. 2016. Available online: http://analimrtguidance.co.uk/national-anal-imrt-guidance-v3.pdf (accessed on 20 August 2020).
- Frennered, A.; Scherman, J.; Buchwald, P.; Johnsson, A.; Sartor, H.; Zackrisson, S.; Trägårdh, E.; Nilsson, M.P. Patterns of pathologic lymph nodes in anal cancer: A PET-CT-based analysis with implications for radiotherapy treatment volumes. BMC Cancer 2021, 21, 447. [Google Scholar] [CrossRef] [PubMed]
- Dapper, H.; Schiller, K.; Münch, S.; Peeken, J.C.; Borm, K.; Weber, W.; Combs, S.E. Have we achieved adequate recommendations for target volume definitions in anal cancer? A PET imaging based patterns of failure analysis in the context of established contouring guidelines. BMC Cancer 2019, 19, 742. [Google Scholar] [CrossRef]
- Garda, A.E.; Navin, P.J.; Merrell, K.W.; Martenson, J.A.; Neben Wittich, M.A.; Haddock, M.G.; Sio, T.T.; Rule, W.G.; Ashman, J.B.; Sheedy, S.P.; et al. Patterns of inguinal lymph node metastases in anal canal cancer and recommendations for elective clinical target volume (CTV) delineation. Radiother. Oncol. 2020, 149, 128–133. [Google Scholar] [CrossRef]
- Bird, D.; Nix, M.G.; McCallum, H.; Teo, M.; Gilbert, A.; Casanova, N.; Cooper, R.; Buckley, D.L.; Sebag-Montefiore, D.; Speight, R.; et al. The benefit of MR-only radiotherapy treatment planning for anal and rectal cancers: A planning study. J. Appl. Clin. Med. Phys. 2021, 22, 41–53. [Google Scholar] [CrossRef]
- Rusten, E.; Rekstad, B.L.; Undseth, C.; Al-Haidari, G.; Hanekamp, B.; Hernes, E.; Hellebust, T.P.; Malinen, E.; Guren, M.G. Target volume delineation of anal cancer based on magnetic resonance imaging or positron emission tomography. Radiat. Oncol. 2017, 12, 147. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, Y.; Zhu, Y.; Xu, Y. Systematic review and meta-analysis of the accuracy of 18F-FDG PET/CT for detection of regional lymph node metastasis in esophageal squamous cell carcinoma. J. Thorac. Dis. 2018, 10, 6066–6076. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Esophageal and Esophagastric Junction Cancers (Version 2.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf (accessed on 23 April 2023).
- Garcia, B.; Goodman, K.A.; Cambridge, L.; Dunphy, M.; Wu, A.J. Distribution of FDG-avid nodes in esophageal cancer: Implications for radiotherapy target delineation. Radiat. Oncol. 2016, 11, 156. [Google Scholar] [CrossRef]
- Machiels, M.; Wouterse, S.J.; Geijsen, E.D.; van Os, R.M.; Bennink, R.J.; van Laarhoven, H.W.M.; Hulshof, M.C. Distribution of lymph node metastases on FDG-PET/CT in inoperable or unresectable oesophageal cancer patients and the impact on target volume definition in radiation therapy. J. Med. Imaging Radiat. Oncol. 2016, 60, 520–527. [Google Scholar] [CrossRef]
- Münch, S.; Marr, L.; Feuerecker, B.; Dapper, H.; Braren, R.; Combs, S.E.; Duma, M.-N. Impact of 18F-FDG-PET/CT on the identification of regional lymph node metastases and delineation of the primary tumor in esophageal squamous cell carcinoma patients. Strahlenther. Onkol. 2020, 196, 787–794. [Google Scholar] [CrossRef]
- van Hagen, P.; Hulshof, M.C.C.M.; Van Lanschot, J.J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- Wang, X.; Miao, C.; Chen, Z.; Li, W.; Yuan, S.; Yu, J.; Hu, X. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophgeal cancer? A systematic review and meta-analysis. Onco Targets Ther. 2017, 10, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-J.; Jing, S.-W.; Zhu, L.-L.; Wang, J.; Wang, L.; Liu, Q.; Yang, C.-R.; Wang, Y.; Cao, F.; Jiao, W.-P.; et al. Comparison of elective nodal irradiation and involved-field irradiation in esophageal squamous cell carcinoma: A meta-analysis. J. Radiat. Res. 2018, 59, 604–615. [Google Scholar] [CrossRef]
- Jimenez-Jimenez, E.; Mateos, P.; Aymar, N.; Roncero, R.; Ortiz, I.; Gimenez, M.; Pardo, J.; Salinas, J.; Sabater, S. Radiotherapy volume delineation using 18F-FDG-PET/CT modifies gross node volume in patients with oesophageal cancer. Clin. Transl. Oncol. 2018, 20, 1460–1466. [Google Scholar] [CrossRef]
- Metzger, J.-C.; Wollschläger, D.; Miederer, M.; Vaupel, P.; Moehler, M.; Schmidberger, H.; Mayer, A. Inclusion of PET-CT into planning of primary or neoadjuvant chemoradiotherapy of esophageal cancer improves prognosis. Strahlenther. Onkol. 2017, 193, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Muijs, C.T.; Beukema, J.C.; Woutersen, D.; Mul, V.E.; Berveling, M.J.; Pruim, J.; van der Jagt, E.J.; Hospers, G.A.; Groen, H.; Plukker, J.T.; et al. Clinical validation of FDG-PET/CT in the radiation treatment planning for patients with oesophageal cancer. Radiother. Oncol. 2014, 113, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Yu, J.; Yu, Y.; Zhang, G.; Zhong, X.; Lu, J.; Yin, Y.; Fu, Z.; Mu, D.; Zhang, B.; et al. Comparison of 18F-Fluorothymidine and 18F-Fluorodeoxyglucose PET/CT in Delineating Gross Tumor Volume by Optimal Threshold in Patients with Squamous Cell Carcinoma of Thoracic Esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Mamede, M.; El Fakhri, G.; Abreu-E-Lima, P.; Gandler, W.; Nosé, V.; Gerbaudo, V.H. Pre-operative estimation of esophageal tumor metabolic length in FDG-PET images with surgical pathology confirmation. Ann. Nucl. Med. 2007, 21, 553–562. [Google Scholar] [CrossRef]
- Zhong, X.; Yu, J.; Zhang, B.; Mu, D.; Zhang, W.; Li, D.; Han, A.; Song, P.; Li, H.; Yang, G.; et al. Using 18F-Fluorodeoxyglucose Positron Emission Tomography to Estimate the Length of Gross Tumor in Patients with Squamous Cell Carcinoma of the Esophagus. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 136–141. [Google Scholar] [CrossRef]
- Vesprini, D.; Ung, Y.; Dinniwell, R.; Breen, S.; Cheung, F.; Grabarz, D.; Kamra, J.; Mah, K.; Mansouri, A.; Pond, G.; et al. Improving observer variability in target delineation for gastro-oesophageal cancer—The role of 18Ffluoro-2-deoxy-D-glucose positron emission tomography/computed tomography. Clin. Oncol. (R. Coll. Radiol.) 2008, 20, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Schreurs, L.M.A.; Busz, D.M.; Paardekooper, G.M.R.M.; Beukema, J.C.; Jager, P.L.; Van der Jagt, E.J.; Van Dam, G.M.; Groen, H.; Plukker, J.T.M.; Langendijk, J.A. Impact of 18-fluorodeoxyglucose positron emission tomography on computed tomography defined target volumes in radiation treatment planning of esophageal cancer: Reduction in geographic misses with equal inter-observer variability. Dis. Esophagus 2010, 23, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Nowee, M.E.; Voncken, F.E.M.; Kotte, A.N.T.J.; Goense, L.; van Rossum, P.S.N.; van Lier, A.L.H.M.W.; Heijmink, S.W.; Aleman, B.M.P.; Nijkamp, J.; Meijer, G.J.; et al. Gross tumour delineation on computed tomography and positron emission tomography-computed tomography in oesophageal cancer: A nationwide study. Clin. Transl. Radiat. Oncol. 2018, 14, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Toya, R.; Matsuyama, T.; Saito, T.; Imuta, M.; Shiraishi, S.; Fukugawa, Y.; Iyama, A.; Watakabe, T.; Sakamoto, F.; Tsuda, N.; et al. Impact of hybrid FDG-PET/CT on gross tumor volume definition of cervical esophageal cancer: Reducing interobserver variation. J. Radiat. Res. 2019, 60, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, Y.; Wang, X.; Zhang, Y.; Liu, X.; Liu, S.; Wang, W.; Wang, J.; Guo, Y.; Xu, M.; et al. Inter-Observer and Intra-Observer Variability in Gross Tumor Volume Delineation of Primary Esophageal Carcinomas Based on Different Combinations of Diagnostic Multimodal Images. Front. Oncol. 2022, 12, 817413. [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Li, F.; Zhang, Y.; Guo, Y.; Wang, W.; Wang, J. Comparison of the Gross Target Volumes Based on Diagnostic PET/CT for Primary Esophageal Cancer. Front. Oncol. 2021, 11, 550100. [Google Scholar] [CrossRef]
- Hou, D.-L.; Shi, G.-F.; Gao, X.-S.; Asaumi, J.; Li, X.-Y.; Liu, H.; Yao, C.; Chang, J.Y. Improved longitudinal length accuracy of gross tumor volume delineation with diffusion weighted magnetic resonance imaging for esophageal squamous cell carcinoma. Radiat. Oncol. 2013, 8, 169. [Google Scholar] [CrossRef]
- Vollenbrock, S.E.; Nowee, M.E.; Voncken, F.E.M.; Kotte, A.N.T.J.; Goense, L.; van Rossum, P.S.N.; van Lier, A.L.H.M.W.; Heijmink, S.W.; Bartels-Rutten, A.; Wessels, F.J.; et al. Gross Tumor Delineation in Esophageal Cancer on MRI Compared With 18F-FDG-PET/CT. Adv. Radiat. Oncol. 2019, 4, 596–604. [Google Scholar] [CrossRef]
- Wang, F.; Guo, R.; Zhang, Y.; Yu, B.; Meng, X.; Kong, H.; Yang, Y.; Yang, Z.; Li, N. Value of 18F-FDG PET/MRI in the Preoperative Assessment of Resectable Esophageal Squamous Cell Carcinoma: A Comparison With 18F-FDG PET/CT, MRI, and Contrast-Enhanced CT. Front. Oncol. 2022, 12, 844702. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Rectal Cancer (Version 2.2023). Available online: https://www.nccn.org/professionals/physician_gls/pdf/rectal.pdf (accessed on 23 April 2023).
- Buijsen, J.; van den Bogaard, J.; Janssen, M.H.; Bakers, F.C.; Engelsman, S.; Öllers, M.; Beets-Tan, R.G.; Nap, M.; Beets, G.L.; Lambin, P.; et al. FDG-PET provides the best correlation with the tumor specimen compared to MRI and CT in rectal cancer. Radiother. Oncol. 2011, 98, 270–276. [Google Scholar] [CrossRef]
- O’Neill, B.D.P.; Salerno, G.; Thomas, K.; Tait, D.M.; Brown, G. MR vs CT imaging: Low rectal cancer tumour delineation for three-dimensional conformal radiotherapy. Br. J. Radiol. 2009, 82, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Joon, D.L.; Fitt, G.; Wada, M.; Mercuri, A.; Marr, M.; Chao, M.; Khoo, V.; Joon, M.L. The utility of multimodality imaging with CT and MRI in defining rectal tumour volumes for radiotherapy treatment planning: A pilot study. J. Med. Imaging Radiat. Oncol. 2010, 54, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Buijsen, J.; Van Den Bogaard, J.; Van Der Weide, H.; Engelsman, S.; Van Stiphout, R.; Janssen, M.; Beets, G.; Beets-Tan, R.; Lambin, P.; Lammering, G. FDG-PET-CT reduces the interobserver variability in rectal tumor delineation. Radiother. Oncol. 2012, 102, 371–376. [Google Scholar] [CrossRef]
- Brændengen, M.; Hansson, K.; Radu, C.; Siegbahn, A.; Jacobsson, H.; Glimelius, B. Delineation of gross tumor volume (GTV) for radiation treatment planning of locally advanced rectal cancer using information from MRI or FDG-PET/CT: A prospective study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e439–e445. [Google Scholar] [CrossRef]
- Regini, F.; Gourtsoyianni, S.; Cardoso De Melo, R.; Charles-Edwards, G.D.; Griffin, N.; Parikh, J.; Rottenberg, G.; Leslie, M.; Gaya, A.; Goh, V. Rectal tumour volume (GTV) delineation using T2-weighted and diffusion-weighted MRI: Implications for radiotherapy planning. Eur. J. Radiol. 2014, 83, 768–772. [Google Scholar] [CrossRef]
- Burbach, J.P.M.; Kleijnen, J.P.-J.; Reerink, O.; Seravalli, E.; Philippens, M.E.P.; Schakel, T.; van Asselen, B.; Raaymakers, B.W.; van Vulpen, M.; Intven, M. Inter-observer agreement of MRI-based tumor delineation for preoperative radiotherapy boost in locally advanced rectal cancer. Radiother. Oncol. 2016, 118, 399–407. [Google Scholar] [CrossRef]
- Hearn, N.; Bugg, W.; Chan, A.; Vignarajah, D.; Cahill, K.; Atwell, D.; Lagopoulos, J.; Min, M. Manual and semi-automated delineation of locally advanced rectal cancer subvolumes with diffusion-weighted MRI. Br. J. Radiol. 2020, 93, 20200543. [Google Scholar] [CrossRef] [PubMed]
- Whaley, J.T.; Fernandes, A.T.; Sackmann, R.; Plastaras, J.P.; Teo, B.-K.; Grover, S.; Perini, R.F.; Metz, J.M.; Pryma, D.A.; Apisarnthanarax, S. Clinical utility of integrated positron emission tomography/computed tomography imaging in the clinical management and radiation treatment planning of locally advanced rectal cancer. Pract. Radiat. Oncol. 2014, 4, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Rosa, C.; Gasparini, L.; Di Guglielmo, F.C.; Caravatta, L.; Di Tommaso, M.; Delli Pizzi, A.; Martino, G.; Castaldi, P.; Mazza, R.; Porreca, A.; et al. DWI-MR and PET-CT functional imaging for boost tumor volume delineation in neoadjuvant rectal cancer treatment. In Vivo 2023, 37, 424–432. [Google Scholar] [CrossRef]
- Dalah, E.; Moraru, I.; Paulson, E.; Erickson, B.; Li, X.A. Variability of target and normal structure delineation using multimodality imaging for radiation therapy of pancreatic cancer. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 633–640. [Google Scholar] [CrossRef]
- Li, X.-X.; Liu, N.-B.; Zhu, L.; Yuan, X.-K.; Yang, C.-W.; Ren, P.; Gong, L.-L.; Zhao, L.-J.; Xu, W.-G.; Wang, P. Consequences of additional use of contrast-enhanced 18F-FDG PET/CT in target volume delineation and dose distribution for pancreatic cancer. Br. J. Radiol. 2015, 88, 20140590. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Yavuz, A.A.; Aydin, M.; Onal, C.; Yapar, F.; Yavuz, M.N. Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. J. Exp. Clin. Cancer Res. 2008, 27, 41. [Google Scholar] [CrossRef] [PubMed]
- Liermann, J.; Syed, M.; Ben-Josef, E.; Schubert, K.; Schlampp, I.; Sprengel, S.D.; Ristau, J.; Weykamp, F.; Röhrich, M.; Koerber, S.A.; et al. Impact of FAPI-PET/CT on target volume definition in radiation therapy of locally recurrent pancreatic cancer. Cancers 2021, 13, 796. [Google Scholar] [CrossRef] [PubMed]
Study | Design | Patients | Imaging Modality | Observations |
---|---|---|---|---|
Mahmud et al. [5] | meta-analysis | 17 studies | FDG-PET/CT, CT | FDG-PET/CT modified treatment plans in 12.5 to 59.3% of pts. |
Kregli et al. [19] | prospective | 27 | FDG-PET/CT, CT | FDG-PET/CT changed GTV in 55.6% and CTV 37.0%. |
di Carlo et al. [21] | retrospective | 37 | FDG-PET/CT, MRI, CT | FDG-PET/CT showed LNMs were not detected on MRI in 38% patients. |
Frennered et al. [26] | retrospective | 190 | FDG-PET/CT, CT | No FDG-PET LNMs were identified in the ischiorectal fossa or inguinal area located posterolateral to the deep vessels. |
Dapper et al. [27] | retrospective | 37 | FDG-PET/CT, CT | Of 49 FDG-PET-positive inguinal nodes, 10–29% were situated outside the recommended guidelines. |
Garda et al. [28] | retrospective | 40 (79 inguinal nodes) | FDG-PET/CT, MRI, CT | No LNMs were identified lateral or posterior to the vessels in the inguinal region. |
Zimmermann et al. [20] | retrospective | 26 | FDG-PET/CT, MRI | FDG-PET/CT led to major changes in treatment planning in 17% pts, and MRI was more sensitive in identifying T4 disease. |
Bird et al. [29] | prospective | 17 | MRI, CT | GTV and PTV smaller on MRI compared to CT, and dose to OAR was significantly lower on MRI in comparison to CT. |
Rusten et al. [30] | prospective | 19 | FDG-PET/CT, MRI | Dice coefficients of 0.80 for FDG-PET and 0.74 for MRI, (p = 0.053). |
Study | Design | Patients | Imaging Modality | Observations |
---|---|---|---|---|
Garcia et al. [33] | retrospective | 473 | FDG-PET/CT | Most common LNMs in upper EC—supraclavicular, retrotracheal and paratracheal. Most common LNMs in lower EC—paraesophageal and in gastrohepatic space. There were 55% paraesophageal LNMs adjacent to the primary tumor. |
Machiels et al. [34] | retrospective | 105 | FDG-PET/CT | Good correlation between distribution of nodal volumes at risk in surgical series and on FDG-PET/CT. |
Münch et al. [35] | retrospective | 76 | FDG-PET/CT | Most common sites of LNMs—paraesophageal and paratracheal, and <5% of patients had supraclavicular, subaortic, diaphragmatic or hilar LNMs. |
Jimenez et al. [39] | retrospective | 29 | FDG-PET/CT, CT | Dice similarity coefficient of 0.72 for GTVtumor and 0.25 for GTVnode. |
Metzger et al. [40] | retrospective | 145 | FDG-PET/CT | FDG-PET/CT included into radiotherapy planning was associated with significantly longer local recurrence-free survival. |
Muijs et al. [41] | prospective | 90 | FDG-PET/CT, CT | Local recurrences were seen in 10 patients (11%); none were considered preventable by FDG-PET/CT. |
Han et al. [42] | prospective | 22 | FDG-PET/CT | SUV cut-off of 2.5 on FDG-PET/CT provided closest estimation of GTV length. |
Mamede et al. [43] | retrospective | 34 | FDG-PET/CT | FDG-PET-derived tumor length of untreated EC correlated well with surgical pathology results. |
Zhong et al. [44] | prospective | 36 | FDG-PET/CT | SUV cut-off of 2.5 provided closest estimation of tumor length. |
Vesprini et al. [45] | prospective | 10 | FDG-PET/CT, CT | Overlap of contours was 72.7% for FDG-PET/CT vs. 69.1% for CT alone (p = 0.05). |
Schreus et al. [46] | retrospective | 28 | FDG-PET/CT, CT | Mean concordance indexes for CT-based CTV and FDG-PET/CT-based CTV were 72%. |
Nowee et al. [47] | retrospective | 6 | FDG-PET/CT, CT | No difference in CIgen was observed (average 0.67 on CT, 0.69 on PET-CT). |
Toya et al. [48] | retrospective | 10 | FDG-PET/CT, CT | Mean interobserver CI of GTVCT and GTVPET/CT was 0.39 ± 0.15 and 0.58 ± 0.10 (p = 0.005), respectively. |
Li et al. [49] | prospective | 51 | FDG-PET/CT, CT, EUS, endoscopy, esophagography | Multimodal imaging (CT, endoscopy/EUS, esophagography, FDG-PET/CT) reduced interobserver variability. |
Shi et al. [50] | prospective | 72 | FDG-PET/CT, CT | No significant difference between the GTVs delineated based on visual referencing or deformable registration. |
Hou et al. [51] | prospective | 42 | MRI, CT | DWI displayed EC lengths most precisely when compared with CT or regular MRI. |
Vollenbrock et al. [52] | prospective | 6 | FDG-PET/CT, MRI | No differences were observed in CIgen (FDG-PET/CT, 0.68; T2 MRI, 0.66; T2 MRI+DWI, 0.68). |
Wang et al. [53] | prospective | 35 | FDG-PET/CT, CECT, MRI | For primary tumor staging, accuracy of PET/MRI, MRI and CECT in comparison to the pathological specimen was 85.7%, 77.1% and 51.4%. |
Study | Design | Patients | Imaging Modality | Observations |
---|---|---|---|---|
O’Neill et al. [56] | retrospective | 10 | MRI, CT | Tumor volumes defined on MRI were smaller and more distant from the anal sphincter than CT-based volumes. |
Tan et al. [57] | retrospective | 15 | MRI, CT | MRI was useful where suboptimal tumor visualisation occurred on CT—in sigmoid and anorectal subregion. |
Regini et al. [60] | retrospective | 27 | MRI | Results showed smaller target volume on DWI, which did not translate into better agreement. |
Burbach et al. [61] | prospective | 24 | MRI | No differences in CI were observed per modality (T2 MRI and DWI). Smallest volume was delineated using DWI. |
Hearn et al. [62] | retrospective | 20 | MRI | Contours of co-registered session (T2 MRI and DWI) demonstrated significantly lower interobserver agreement. |
Buijsen et al. [55] | prospective | 26 | FDG-PET/CT, MRI, CT | Automatically generated FDG-PET/CT contours showed best correlation with surgical specimen compared to manual FDG-PET, MRI and CT contours. |
Whaley et al. [63] | retrospective | 34 | FDG-PET/CT, CT | FDG-PET/CT increased CI in contouring GTV compared with CT only: 0.56 versus 0.38 (p < 0.001). |
Buijsen et al. [58] | retrospective | 42 | FDG-PET/CT, MRI, CT | CI increased significantly using PET, best interobserver agreement was observed using PET auto-contours. |
Brændengen et al. [59] | prospective | 68 | FDG-PET/CT, MRI | Median volume of GTV-MRI was larger than GTV-PET (p < 0.001). |
Rosa et al. [64] | retrospective | 27 | FDG-PET/CT, MRI, CT | Mean Dice index was 0.85 for GTV-CT, 0.84 for GTV-T2 MRI, 0.82 for GTV-DWI and 0.89 for GTV-PET (p = 0.009). DWI resulted in smaller volume. |
Study | Design | Patients | Imaging Modality | Observations |
---|---|---|---|---|
Dalah et al. [65] | retrospective | 19 | FDG-PET/CT, MRI | Significant differences were found between volumes of GTV contoured on several modalities. |
Li et al. [66] | prospective | 21 | FDG-PET/CT, CECT | GTVs were smaller when contoured on FDG-PET/CT scans in comparison to CECT or non-CECT. |
Topkan et al. [67] | prospective | 14 | FDG-PET/CT, CT | Changes in GTV delineation were necessary in five patients based on FDG-PET/CT information. Average increase in GTV was 29.7%. |
Liermann et al. [68] | retrospective | 7 | FAPI-PET/CT | No significant difference between volumes of automatic FAPI-GTVs and most of manually contoured GTVs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secerov Ermenc, A.; Segedin, B. The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers—Review of the Literature. Cancers 2023, 15, 2967. https://doi.org/10.3390/cancers15112967
Secerov Ermenc A, Segedin B. The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers—Review of the Literature. Cancers. 2023; 15(11):2967. https://doi.org/10.3390/cancers15112967
Chicago/Turabian StyleSecerov Ermenc, Ajra, and Barbara Segedin. 2023. "The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers—Review of the Literature" Cancers 15, no. 11: 2967. https://doi.org/10.3390/cancers15112967
APA StyleSecerov Ermenc, A., & Segedin, B. (2023). The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers—Review of the Literature. Cancers, 15(11), 2967. https://doi.org/10.3390/cancers15112967