Gastric Cancer Risk in Association with Underweight, Overweight, and Obesity: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Quality of the Included Studies
3.2. Patient Characteristics
3.3. GC and Abnormal BMI
3.4. Subgroup and Subset Analysis
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Song, Y.; Liu, X.; Cheng, W.; Li, H.; Zhang, D. The global, regional and national burden of stomach cancer and its attributable risk factors from 1990 to 2019. Sci. Rep. 2022, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Barsouk, A. Epidemiology of gastric cancer: Global trends, risk factors and prevention. Gastroenterol. Rev. 2019, 14, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Abdi, E.; Latifi-Navid, S.; Zahri, S.; Yazdanbod, A.; Pourfarzi, F. Risk factors predisposing to cardia gastric adenocarcinoma: Insights and new perspectives. Cancer Med. 2019, 8, 6114–6126. [Google Scholar] [CrossRef] [PubMed]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef]
- Arnold, M.; Ferlay, J.; van Berge Henegouwen, M.I.; Soerjomataram, I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 2020, 69, 1564–1571. [Google Scholar] [CrossRef]
- Kumar, S.; Mantero, A.; Delgado, C.; Dominguez, B.; Nuchovich, N.; Goldberg, D.S. Eastern European and Asian-born populations are prone to gastric cancer: An epidemiologic analysis of foreign-born populations and gastric cancer. Ann. Gastroenterol. 2021, 34, 669–674. [Google Scholar] [CrossRef]
- Anderson, W.F.; Camargo, M.C.; Fraumeni, J.F., Jr.; Correa, P.; Rosenberg, P.S.; Rabkin, C.S. Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA 2010, 303, 1723–1728. [Google Scholar] [CrossRef]
- Devesa, S.S.; Fraumeni Jr, J.F. The rising incidence of gastric cardia cancer. J. Natl. Cancer Inst. 1999, 91, 747–749. [Google Scholar] [CrossRef]
- Yang, L.; Ying, X.; Liu, S.; Lyu, G.; Xu, Z.; Zhang, X.; Li, H.; Li, Q.; Wang, N.; Ji, J. Gastric cancer: Epidemiology, risk factors and prevention strategies. Chin. J. Cancer Res. 2020, 32, 695–704. [Google Scholar] [CrossRef]
- Wu, J.-Y.; Lee, Y.-C.; Graham, D.Y. The eradication of Helicobacter pylori to prevent gastric cancer: A critical appraisal. Expert Rev. Gastroenterol. Hepatol. 2018, 13, 17–24. [Google Scholar] [CrossRef]
- Bouras, E.; Tsilidis, K.K.; Triggi, M.; Siargkas, A.; Chourdakis, M.; Haidich, A.-B. Diet and Risk of Gastric Cancer: An Umbrella Review. Nutrients 2022, 14, 1764. [Google Scholar] [CrossRef]
- Yao, Q.; Qi, X.; Xie, S.-H. Sex difference in the incidence of cardia and non-cardia gastric cancer in the United States, 1992–2014. BMC Gastroenterol. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Chandanos, E.; Lagergren, J. Oestrogen and the enigmatic male predominance of gastric cancer. Eur. J. Cancer 2008, 44, 2397–2403. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. Available online: http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. (accessed on 16 July 2021).
- Dai, H.; Alsalhe, T.A.; Chalghaf, N.; Riccò, M.; Bragazzi, N.L.; Wu, J. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. PLoS Med. 2020, 17, e1003198. [Google Scholar] [CrossRef]
- Endalifer, M.L.; Diress, G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J. Obes. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Pati, S.; Irfan, W.; Jameel, A.; Ahmed, S.; Shahid, R.K. Obesity and Cancer: A Current Overview of Epidemiology, Pathogenesis, Outcomes, and Management. Cancers 2023, 15, 485. [Google Scholar] [CrossRef]
- Cannata, D.; Fierz, Y.; Vijayakumar, A.; LeRoith, D. Type 2 diabetes and cancer: What is the connection? Mt. Sinai J. Med. N. Y. 2010, 77, 197–213. [Google Scholar] [CrossRef]
- Friedenreich, C.M.; Ryder-Burbidge, C.; McNeil, J. Physical activity, obesity and sedentary behavior in cancer etiology: Epidemiologic evidence and biologic mechanisms. Mol. Oncol. 2020, 15, 790–800. [Google Scholar] [CrossRef]
- Chang, P.; Friedenberg, F. Obesity and GERD. Gastroenterol. Clin. N. Am. 2014, 43, 161–173. [Google Scholar] [CrossRef]
- Lyons, K.; Le, L.C.; Pham, Y.T.-H.; Borron, C.; Park, J.Y.; Tran, C.T.; Tran, T.V.; Tran, H.T.-T.; Vu, K.T.; Do, C.D. Gastric cancer: Epidemiology, biology, and prevention: A mini review. Eur. J. Cancer Prev. 2019, 28, 397–412. [Google Scholar] [CrossRef]
- Wang, Y.; A Beydoun, M. Meat consumption is associated with obesity and central obesity among US adults. Int. J. Obes. 2009, 33, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Rosato, V.; Rota, M.; Costa, A.R.; Morais, S.; Pelucchi, C.; Johnson, K.C.; Hu, J.; Palli, D.; Ferraroni, M.; et al. Meat intake and risk of gastric cancer in the Stomach cancer Pooling (StoP) project. Int. J. Cancer 2019, 147, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Fischbach, L.A.; Delongchamp, R.; Faramawi, M.F.; Orloff, M. The Association between Salt and Potential Mediators of the Gastric Precancerous Process. Cancers 2019, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.W.; Koo, H.S.; Han, K.H.; Han, S.Y.; Chin, H.J. Associations of sodium intake with obesity, metabolic disorder, and albuminuria according to age. PLoS ONE 2017, 12, e0188770. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Yang, P.; Zhou, Y.; Chen, B.; Wan, H.-W.; Jia, G.-Q.; Bai, H.-L.; Wu, X.-T. Overweight, obesity and gastric cancer risk: Results from a meta-analysis of cohort studies. Eur. J. Cancer 2009, 45, 2867–2873. [Google Scholar] [CrossRef]
- Lin, X.-J.; Wang, C.-P.; Liu, X.-D.; Yan, K.-K.; Li, S.; Bao, H.-H.; Zhao, L.-Y. Body Mass Index and Risk of Gastric Cancer: A Meta-analysis. Jpn. J. Clin. Oncol. 2014, 44, 783–791. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Wang, X.; Wang, J.; Yan, Z.; Cheng, J.; Gong, G.; Li, G. Body mass index and risk of gastric cancer: A meta-analysis of a population with more than ten million from 24 prospective studies. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1395–1408. [Google Scholar] [CrossRef]
- Bae, J.-M. Body Mass Index and Risk of Gastric Cancer in Asian Adults: A Meta-Epidemiological Meta-Analysis of Population-Based Cohort Studies. Cancer Res. Treat. 2020, 52, 369–373. [Google Scholar] [CrossRef]
- Turati, F.; Tramacere, I.; La Vecchia, C.; Negri, E. A meta-analysis of body mass index and esophageal and gastric cardia adenocarcinoma. Ann. Oncol. 2013, 24, 609–617. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: A scoping review. Syst. Rev. 2017, 6, 1–14. [Google Scholar] [CrossRef]
- World Health Organization; Regional Office for the Western P. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000. [Google Scholar]
- Kuriyama, S.; Tsubono, Y.; Hozawa, A.; Shimazu, T.; Suzuki, Y.; Koizumi, Y.; Suzuki, Y.; Ohmori, K.; Nishino, Y.; Tsuji, I. Obesity and risk of cancer in Japan. Int. J. Cancer 2004, 113, 148–157. [Google Scholar] [CrossRef]
- Oh, S.W.; Yoon, Y.S.; Shin, S.-A. Effects of Excess Weight on Cancer Incidences Depending on Cancer Sites and Histologic Findings Among Men: Korea National Health Insurance Corporation Study. J. Clin. Oncol. 2005, 23, 4742–4754. [Google Scholar] [CrossRef]
- Tran, G.D.; Sun, X.-D.; Abnet, C.C.; Fan, J.-H.; Dawsey, S.M.; Dong, Z.-W.; Mark, S.D.; Qiao, Y.-L.; Taylor, P.R. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int. J. Cancer 2004, 113, 456–463. [Google Scholar] [CrossRef]
- Persson, C.; Inoue, M.; Sasazuki, S.; Kurahashi, N.; Iwasaki, M.; Ye, W.; Tsugane, S. Female reproductive factors and the risk of gastric cancer in a large-scale population-based cohort study in Japan (JPHC study). Eur. J. Cancer Prev. 2008, 17, 345–353. [Google Scholar] [CrossRef]
- Inoue, M.; Noda, M.; Kurahashi, N.; Iwasaki, M.; Sasazuki, S.; Iso, H.; Tsugane, S. Impact of metabolic factors on subsequent cancer risk: Results from a large-scale population-based cohort study in Japan. Eur. J. Cancer Prev. 2009, 18, 240–247. [Google Scholar] [CrossRef]
- Camargo, M.C.; Freedman, N.D.; Hollenbeck, A.R.; Abnet, C.; Rabkin, C.S. Height, weight, and body mass index associations with gastric cancer subsites. Gastric Cancer 2013, 17, 463–468. [Google Scholar] [CrossRef]
- Buckland, G.; Travier, N.; Huerta, J.M.; Bueno-De-Mesquita, H.; Siersema, P.; Skeie, G.; Weiderpass, E.; Engeset, D.; Ericson, U.; Ohlsson, B.; et al. Healthy lifestyle index and risk of gastric adenocarcinoma in the EPIC cohort study. Int. J. Cancer 2014, 137, 598–606. [Google Scholar] [CrossRef]
- Steffen, A.; Huerta, J.-M.; Weiderpass, E.; Bueno-De-Mesquita, H.; May, A.M.; Siersema, P.D.; Kaaks, R.; Neamat-Allah, J.; Pala, V.; Panico, S.; et al. General and abdominal obesity and risk of esophageal and gastric adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition. Int. J. Cancer 2015, 137, 646–657. [Google Scholar] [CrossRef]
- Fan, J.; Wang, J.; Wang, S.; Abnet, C.C.; Qiao, Y.; Taylor, P.R. Body mass index and risk of gastric cancer: A 30-year follow-up study in the Linxian general population trial cohort. Cancer Sci. 2017, 108, 1667–1672. [Google Scholar] [CrossRef] [PubMed]
- Petrick, J.L.; Kelly, S.; Liao, L.M.; Freedman, N.D.; I Graubard, B.; Cook, M.B. Body weight trajectories and risk of oesophageal and gastric cardia adenocarcinomas: A pooled analysis of NIH-AARP and PLCO Studies. Br. J. Cancer 2017, 116, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Hirabayashi, M.; Inoue, M.; Sawada, N.; Saito, E.; Abe, S.K.; Hidaka, A.; Iwasaki, M.; Yamaji, T.; Shimazu, T.; Shibuya, K.; et al. Effect of body-mass index on the risk of gastric cancer: A population-based cohort study in A Japanese population. Cancer Epidemiol. 2019, 63, 101622. [Google Scholar] [CrossRef] [PubMed]
- Christakoudi, S.; Tsilidis, K.K.; Evangelou, E.; Riboli, E. A Body Shape Index (ABSI), hip index, and risk of cancer in the UK Biobank cohort. Cancer Med. 2021, 10, 5614–5628. [Google Scholar] [CrossRef]
- Liu, A.; He, Q.; Wu, W.; Du, J.; Kuo, Z.; Xia, B.; Tang, Y.; Yun, P.; Cheung, E.C.; Tang, Y.; et al. Body composition and risk of gastric cancer: A population-based prospective cohort study. Cancer Med. 2021, 10, 2164–2174. [Google Scholar] [CrossRef]
- Wang, S.-M.; Katki, H.A.; Graubard, B.I.; Kahle, L.L.; Chaturvedi, A.; Matthews, C.E.; Freedman, N.D.; Abnet, C.C. Population Attributable Risks of Subtypes of Esophageal and Gastric Cancers in the United States. Am. J. Gastroenterol. 2021, 116, 1844–1852. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Oxford 2000.
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Begg, C.B.; Mazumdar, M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50, 1088–1101. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021, 134, 178–189. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, J.-B.; Yang, H.; Fan, J.-H.; Qiao, Y.-L.; Taylor, P.R. Body mass index and risk of upper gastrointestinal cancer: A 30-year follow-up of the Linxian dysplasia nutrition intervention trial cohort. Cancer Epidemiol. 2020, 65, 101683. [Google Scholar] [CrossRef]
- Jang, J.; Lee, S.; Ko, K.-P.; Abe, S.K.; Rahman, S.; Saito, E.; Islam, R.; Sawada, N.; Shu, X.-O.; Koh, W.-P.; et al. Association between Body Mass Index and Risk of Gastric Cancer by Anatomic and Histologic Subtypes in Over 500,000 East and Southeast Asian Cohort Participants. Cancer Epidemiol. Biomark. Prev. 2022, 31, 1727–1734. [Google Scholar] [CrossRef]
- Rapp, K.; Schroeder, J.; Klenk, J.; Stoehr, S.; Ulmer, H.; Concin, H.; Diem, G.; Oberaigner, W.; Weiland, S.K. Obesity and incidence of cancer: A large cohort study of over 145 000 adults in Austria. Br. J. Cancer 2005, 93, 1062–1067. [Google Scholar] [CrossRef]
- Lukanova, A.; Björ, O.; Kaaks, R.; Lenner, P.; Lindahl, B.; Hallmans, G.; Stattin, P. Body mass index and cancer: Results from the Northern Sweden Health and Disease Cohort. Int. J. Cancer 2005, 118, 458–466. [Google Scholar] [CrossRef]
- Sjoödahl, K.; Jia, C.; Vatten, L.; Nilsen, T.; Hveem, K.; Lagergren, J. Body Mass and Physical Activity and Risk of Gastric Cancer in a Population-Based Cohort Study in Norway. Cancer Epidemiol. Biomark. Prev. 2008, 17, 135–140. [Google Scholar] [CrossRef]
- Abnet, C.C.; Freedman, N.D.; Hollenbeck, A.R.; Fraumeni Jr, J.F.; Leitzmann, M.; Schatzkin, A. A prospective study of BMI and risk of oesophageal and gastric adenocarcinoma. Eur. J. Cancer 2008, 44, 465–471. [Google Scholar] [CrossRef]
- Eom, B.W.; Joo, J.; Kim, S.; Shin, A.; Yang, H.-R.; Park, J.; Choi, I.J.; Kim, Y.-W.; Kim, J.; Nam, B.-H. Prediction Model for Gastric Cancer Incidence in Korean Population. PLoS ONE 2015, 10, e0132613. [Google Scholar] [CrossRef]
- Sanikini, H.; Muller, D.; Sophiea, M.; Rinaldi, S.; Agudo, A.; Duell, E.J.; Weiderpass, E.; Overvad, K.; Tjønneland, A.; Halkjær, J.; et al. Anthropometric and reproductive factors and risk of esophageal and gastric cancer by subtype and subsite: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Int. J. Cancer 2019, 146, 929–942. [Google Scholar] [CrossRef]
- Sanikini, H.; Muller, D.C.; Chadeau-Hyam, M.; Murphy, N.; Gunter, M.J.; Cross, A.J. Anthropometry, body fat composition and reproductive factors and risk of oesophageal and gastric cancer by subtype and subsite in the UK Biobank cohort. PLoS ONE 2020, 15, e0240413. [Google Scholar] [CrossRef]
- Wang, L.; Jin, G.; Yu, C.; Lv, J.; Guo, Y.; Bian, Z.; Yang, L.; Chen, Y.; Hu, Z.; Chen, F.; et al. Cancer incidence in relation to body fatness among 0.5 million men and women: Findings from the China Kadoorie Biobank. Int. J. Cancer 2019, 146, 987–998. [Google Scholar] [CrossRef]
- Choi, I.Y.; Choi, Y.J.; Shin, D.W.; Han, K.D.; Jeon, K.H.; Jeong, S.; Yoo, J.E. Association between obesity and the risk of gastric cancer in premenopausal and postmenopausal women: A nationwide cohort study. J. Gastroenterol. Hepatol. 2021, 36, 2834–2840. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-W.; Huang, D.; Shin, W.-K.; de la Torre, K.; Yang, J.J.; Song, M.; Shin, A.; Lee, J.-K.; Kang, D. Obesity at early adulthood increases risk of gastric cancer from the Health Examinees-Gem (HEXA-G) study. PLoS ONE 2022, 17, e0260826. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Shin, C.M.; Han, K.-D.; Lee, S.W.; Jin, E.H.; Choi, Y.J.; Yoon, H.; Park, Y.S.; Kim, N.; Lee, D.H. Association between the Persistence of Obesity and the Risk of Gastric Cancer: A Nationwide Population-Based Study. Cancer Res. Treat. 2022, 54, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.3 (Updated February 2022). Cochrane, 2022. Available online: www.training.cochrane.org/handbook (accessed on 24 February 2023).
- Matsuo, T.; Ito, M.; Takata, S.; Tanaka, S.; Yoshihara, M.; Chayama, K. Low Prevalence of Helicobacter pylori-negative Gastric Cancer among Japanese. Helicobacter 2011, 16, 415–419. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, N.; Yoon, H.; Choi, Y.J.; Lee, J.Y.; Kwon, Y.H.; Yoon, K.; Jo, H.J.; Shin, C.M.; Park, Y.S.; et al. Comparison between Resectable Helicobacter pylori-Negative and -Positive Gastric Cancers. Gut Liver 2016, 10, 212–219. [Google Scholar] [CrossRef]
- Katoh, H.; Ishikawa, S. Lifestyles, genetics, and future perspectives on gastric cancer in east Asian populations. J. Hum. Genet. 2021, 66, 887–899. [Google Scholar] [CrossRef]
- Ning, F.-L.; Lyu, J.; Pei, J.-P.; Gu, W.-J.; Zhang, N.-N.; Cao, S.-Y.; Zeng, Y.-J.; Abe, M.; Nishiyama, K.; Zhang, C.-D. The burden and trend of gastric cancer and possible risk factors in five Asian countries from 1990 to 2019. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Deurenberg, P.; Deurenberg-Yap, M.; Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes. Rev. 2002, 3, 141–146. [Google Scholar] [CrossRef]
- Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [CrossRef]
- Low, S.; Chin, M.C.; Ma, S.; Heng, D.; Deurenberg-Yap, M. Rationale for redefining obesity in Asians. Ann. Acad. Med. Singap. 2009, 38, 66. [Google Scholar] [CrossRef]
- Li, Z.; Daniel, S.; Fujioka, K.; Umashanker, D. Obesity among Asian American people in the United States: A review. Obesity 2023, 31, 316–328. [Google Scholar] [CrossRef]
- Yaghootkar, H.; Whitcher, B.; Bell, J.D.; Thomas, E. Ethnic differences in adiposity and diabetes risk—insights from genetic studies. J. Intern. Med. 2020, 288, 271–283. [Google Scholar] [CrossRef]
- A Lear, S.; Humphries, K.H.; Kohli, S.; Chockalingam, A.; Frohlich, J.J.; Birmingham, C.L. Visceral adipose tissue accumulation differs according to ethnic background: Results of the Multicultural Community Health Assessment Trial (M-CHAT). Am. J. Clin. Nutr. 2007, 86, 353–359. [Google Scholar] [CrossRef]
- Januszewicz, W.; Turkot, M.H.; Malfertheiner, P.; Regula, J. A Global Perspective on Gastric Cancer Screening: Which Concepts Are Feasible, and When? Cancers 2023, 15, 664. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Chen, S.; Hu, J.; Guo, Q.; Liu, R.; Zheng, H.; Jin, Z.; Yuan, Y.; Xi, Y.; et al. Endoscopic Screening in Asian Countries Is Associated With Reduced Gastric Cancer Mortality: A Meta-analysis and Systematic Review. Gastroenterology 2018, 155, 347–354.e9. [Google Scholar] [CrossRef]
- Pearson-Stuttard, J.; Zhou, B.; Kontis, V.; Bentham, J.; Gunter, M.J.; Ezzati, M. Worldwide burden of cancer attributable to diabetes and high body-mass index: A comparative risk assessment. Lancet Diabetes Endocrinol. 2018, 6, e6–e15. [Google Scholar] [CrossRef]
- Luan, X.; Niu, P.; Wang, W.; Zhao, L.; Zhang, X.; Zhao, D.; Chen, Y. Sex Disparity in Patients with Gastric Cancer: A Systematic Review and Meta-Analysis. J. Oncol. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Takano, N.; Iizuka, N.; Hazama, S.; Yoshino, S.; Tangoku, A.; Oka, M. Expression of estrogen receptor-alpha and -beta mRNAs in human gastric cancer. Cancer Lett. 2002, 176, 129–135. [Google Scholar] [CrossRef]
- Argyrakopoulou, G.; Dalamaga, M.; Spyrou, N.; Kokkinos, A. Gender Differences in Obesity-Related Cancers. Curr. Obes. Rep. 2021, 10, 100–115. [Google Scholar] [CrossRef]
- Kubo, A.; Corley, D.A. Body Mass Index and Adenocarcinomas of the Esophagus or Gastric Cardia: A Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2006, 15, 872–878. [Google Scholar] [CrossRef]
- Du, X.; Hidayat, K.; Shi, B.-M. Abdominal obesity and gastroesophageal cancer risk: Systematic review and meta-analysis of prospective studies. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [PubMed]
- Mukaisho, K.-i.; Nakayama, T.; Hagiwara, T.; Hattori, T.; Sugihara, H. Two distinct etiologies of gastric cardia adenocarcinoma: Interactions among pH, Helicobacter pylori, and bile acids. Front. Microbiol. 2015, 6, 412. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [PubMed]
- Arnotti, K.; Bamber, M. Fruit and Vegetable Consumption in Overweight or Obese Individuals: A Meta-Analysis. West. J. Nurs. Res. 2019, 42, 306–314. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Zhou, Y.; Qiao, L. Obesity and gastric cancer. Front. Biosci. 2012, 17, 2383–2390. [Google Scholar] [CrossRef]
- Jang, J.; Wang, T.; Cai, H.; Ye, F.; Murphy, G.; Shimazu, T.; Taylor, P.R.; Qiao, Y.; Yoo, K.; Jee, S.H.; et al. The U-shaped association between body mass index and gastric cancer risk in the Helicobacter pylori Biomarker Cohort Consortium: A nested case–control study from eight East Asian cohort studies. Int. J. Cancer 2019, 147, 777–784. [Google Scholar] [CrossRef]
Study, Year, Location | Outcome | Ascertainment of Exposure | Adjustments | Result of Multivariate Adjusted Analysis |
---|---|---|---|---|
Rapp et al., 2005, Austria [55] | Gastric Adenocarcinoma | Measured by trained personnel | Age, year smoking, occupation | HR (95% CI): GC: Men: Overweight: 1.04 (0.73–1.47), obesity: 0.72 (0.40–1.33) Women: Overweight: 0.78 (0.51–1.20), obesity: 1.28 (0.76–2.15) |
Lukanova et al., 2006, Japan [56] | Gastric Adenocarcinoma | Measured by trained personnel | Age, year, smoking | RR (95% CI): GC: Men: Overweight 1.36 (0.75–2.57) Women: Overweight: 0.53 (0.22–1.18) |
Sjödahl et al., 2008, Norway [57] | Gastric Adenocarcinoma, Gastric Cardia Adenocarcinoma Gastric Noncardia Adenocarcinoma | Measured by trained personnel | Age, smoking, alcohol, meat, fish, fruit, veg | HR (95% CI): GC: Underweight: 0.7 (0.1–5.2); overweight: 1.0 (0.7–1.4), Obesity: 1.1 (0.7–1.8) GNCC: Underweight: 0.9 (0.1–6.7); overweight: 1.1 (0.7–1.6), obesity: 1.2 (0.7–2.1) |
Abnet et al., 2008, Six USA states * [58] | Gastric Adenocarcinoma, Gastric Cardia Adenocarcinoma, Gastric Noncardia Adenocarcinoma | A self-reported questionnaire | Age, sex, smoking, alcohol, activity, edu, race | HR (95% CI): GCC: Underweight: 0.70 (0.10–5.06), overweight: 1.06 (0.79–1.41), Obese: 1.70 (1.22–2.36); GNCC: Underweight: 2.97 (1.38–6.39), overweight: 0.80 (0.61–1.04), Obese: 1.08 (0.78–1.50) |
Eom et al., 2015, Korea [59] | Gastric Adenocarcinoma | Measured by trained personnel | Age, family history, meal, slat, alcohol, smoking | HR (95% CI): GC: Men: Underweight: 1.135 (1.051–1.226), overweight: 0.895 (0.864–0.927); Women GC: Underweight: 1.160 (1.010–1.333), overweight: 0.966 (0.906–1.030) |
Sanikini et al., 2019, ten European countries ** [60] | Gastric Adenocarcinoma, Gastric Cardia Adenocarcinoma, Gastric Noncardia Adenocarcinoma | Measured by trained personnel | Age, center, smoking, edu., alcohol | HR (95% CI): GCC: Men: Overweight: 1.22 (0.86–1.75), obese: 0.94 (0.55–1.61); Women: Overweigh: 1.44 (0.85–2.43), obesity: 1.41 (0.70–2.83); GNCC: Men: Overweight: 1.13 (0.79–1.62); 1.03 (0.64–1.65); Women: Overweight: 0.96 (0.67–1.38), obesity: 1.31 (0.86–2.00) |
Sanikini et al., 2020, UK [61] | Gastric Adenocarcinoma, Gastric Cardia Adenocarcinoma, Gastric Noncardia Adenocarcinoma | Measured by trained personnel | Age, sex, townsend index, smoking, edu | HR (95% CI): GCC: Overweight: 1.13 (0.71–1.82); obesity: 1.32 (0.79–2.21); GNCC: Overweight: 0.74 (0.45–1.23), obesity: 0.74 (0.42–1.32) |
Zhang et al., 2020, China [53] | Gastric Adenocarcinoma | Measured by trained personnel | Age, gender, smoking, alcohol, family history, edu., fruit | HR (95% CI): GC: Underweight: 0.99(0.78–1.26), overweight or obesity: 1.06(0.73–1.55) |
Wang et al., 2020 China [62] | Gastric Adenocarcinoma | Measured by trained personnel | Age, region, edu., marital status, income, alcohol, smoking, activity | HR (95% CI): GC: Underweight: 1.47 (1.22, 1.77), overweight: 0.94 (0.85, 1.06), obesity: 0.95 (0.76, 1.20) |
Choi et al., 2021, Korea [63] | Gastric Adenocarcinoma | Measured by trained personnel | Smoking, alcohol, activity, income, age, parity, breastfeeding, contraceptive, HRT | HR (95% CI): GC in premenopausal women: Underweight: 1.12 (0.95–1.33), overweight: 0.96 (0.89–1.04), and obesity: 1.02 (0.94–1.11); GC in postmenopausal women: Underweight: 1.07 (1.00–1.14), overweight: 1.01 (0.99–1.04), and obesity: 1.03 (1.00–1.05) |
Lee et al., 2022, Korea [64] | Gastric Adenocarcinoma | Measured by trained personnel | Age, sex, edu., smoking, alcohol, family history, activity, energy intake | HR (95% CI): GC (BMI at Baseline survey): Underweight: 0.67 (0.36–1.26), overweight 0.95 (0.81–1.11) and obesity: 1.08 (0.93–1.25) |
Lim et al., 2022, Korea [65] | Gastric Adenocarcinoma | Measured by trained personnel | Age, sex, smoking, alcohol, exercise, income, DM, HTN, DLP | HR (95% CI): GC: Underweight: 1.15 (1.03–1.29), overweight 0.98 (0.93–1.02) and obesity: 1.03 (0.98–1.07) |
Jang et al., 2022, thirteen cohorts from four Asian countries *** [54] | Gastric Adenocarcinoma, Gastric Cardia Adenocarcinoma, Gastric Noncardia Adenocarcinoma | Measured by trained personnel | Age, sex, country, smoking, alcohol | HR (95% CI): GC: Underweight: 1.15 (1.05–1.25), overweight: 1.01 (0.94–1.08), Obese: 1.12 (1.03–1.22); GCC: Underweight: 0.89 (0.58–1.38), overweight: 1.16 (0.86–1.57), Obese: 0.94 (0.62–1.43); GNCC: Underweight: 1.22 (1.10–1.35), overweight: 0.97 (0.89–1.05), Obese: 1.09 (0.98–1.21) |
Reference | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Total Score |
---|---|---|---|---|---|---|---|---|---|
Rapp et al. [55] | - | * | * | * | * | * | * | * | ******* |
Lukanova et al. [56] | * | * | * | * | * | * | * | * | ******** |
Sjödahl et al. [57] | * | * | * | - | * | * | * | - | ****** |
Abnet et al. [58] | - | * | - | * | * | * | * | - | ***** |
Eom et al. [59] | - | * | * | * | * | * | * | * | ******* |
Sanikini et al. [60] | * | * | - | * | * | * | * | * | ******* |
Sanikini et al. [61] | * | * | * | * | * | * | * | * | ******** |
Zhang et al. [53] | * | * | * | - | ** | * | * | * | ******** |
Wang et al. [62] | * | * | * | * | * | * | * | * | ******** |
Choi et al. [63] | - | * | * | * | * | * | * | * | ******* |
Lee et al. [64] | * | * | * | * | ** | * | * | - | ******** |
Lim et al. [65] | * | * | * | * | * | * | * | * | ******** |
Jang et al. [54] | * | * | * | * | * | * | * | * | ******** |
References | Race | Cohort Members | Gender (Male %) | Mean Age (Years) | Follow-Up Time (Years) | BMI Categories (kg/m2) |
---|---|---|---|---|---|---|
Rapp et al. [55] | Non-Asian | 145,931 | 54 | 42.2 | 9.93 | Participants with normal weight (18.5–24.9), overweight (25–29.9), and obesity (≥30) |
Lukanova et al. [56] | Non-Asian | 68,786 | 48.6 | 46.1 | 8.2 | Participants with normal weight (18.5–24.9), overweight (25–29.9), and obesity (≥30) |
Sjödahl et al. [57] | Non-Asian | 72,487 | 49 | 49.0 | 15.4 | Participants with underweight (<18.5), normal weight (18.5–24.9), overweight (25–29.9), and obesity (≥30) |
Abnet et al. [58] | Non-Asian | 480,475 | 60 | 62.0 | 8 | Participants with underweight (<18.5), normal weight (18.5–24.9), overweight (25–29.9), obesity (30–35), and extremely obesity (≥35) |
Eom et al. [59] | Asian | 2,176,501 | 63 | 46.4 | 11.3 | Participants with underweight (<18.5), normal weight (18.5–22.9), overweight (23–24.9), and obesity (≥25) Asian-Pacific BMI cut-offs were used to define BMI subgroups |
Sanikini et al. [60] | Non-Asian | 391,474 | 36 | 51.3 | 14 | Participants with underweight (<18.5), normal weight (18.5–24.9), overweight (25–29.9), and obesity (≥30) |
Sanikini et al. [61] | Non-Asian | 455,166 | 46.6 | 57.4 | 6.5 | Participants with underweight (<18.5), normal weight (18.5–24.9), overweight (25–29.9), and obesity (≥30) |
Zhang et al. [53] | Asian | 3298 | 44 | 55.0 | 30 | Participants with underweight (<18.5), normal weight (18.5–23.9), and overweight or obesity (≥24) Asian-Pacific BMI cut-offs were used to define BMI subgroups |
Wang et al. [62] | Asian | 508,362 | 41 | 51.5 | 8.95 | Participants with underweight (<18.5), lower BMI (18.5–21.9), normal weight (22.0–24.9), overweight (25–29.9), and obesity (≥30) |
Choi et al. [63] | Asian | 6,272,367 | 0 | 56.2 | 7.2 | Participants with underweight (<18.5), normal weight (18.5–22.9), overweight (23–24.9), obesity (25–29.9), and severely obesity (≥30) Asian-Pacific BMI cut-offs were used to define BMI subgroups |
Lee et al. [64] | Asian | 134,130 | 34 | 52.4 | 8.6 | Participants with underweight (<18.5), normal weight (18.5–22.9), overweight (23–24.9), and obesity (≥25) Asian-Pacific BMI cut-offs were used to define BMI subgroups |
Lim et al. [65] | Asian | 2,757,017 | 74 | 42.5 | 6.78 | Participants with underweight (< 18.5), normal weight (18.5–22.9), overweight (23–24.9), and obesity (≥ 25) Asian-Pacific BMI cut-offs were used to define BMI subgroups |
Jang et al. [54] | Asian | 554,037 | 45.3 | 54.4 | 14.9 | Participants with underweight (<18.5), normal weight (18.5–23), overweight (23–27.5), and obesity (≥27.5) Asian-Pacific BMI cut-offs were used to define BMI subgroups. |
Potential Factors | RR (CI 95%) | No of Studies | Heterogeneity χ2 | p Value | I2% | Interaction p Value |
---|---|---|---|---|---|---|
Obesity | ||||||
Race | Subgroup analysis | |||||
Asian Non-Asian | 1.056 (0.900–1.238) 1.573 (1.389–1.780) | 6 5 | 394.63 1.36 | 0.000 0.852 | 98.73 0.00 | 0.000 |
Gender | Subset analysis | |||||
Male Female | 0.983 (0.835–1.158) 1.554 (1.223–1.976) | 4 | 7.09 12.93 | 0.069 0.005 | 57.70 76.80 | 0.002 |
Type of Cancer | Subset analysis | |||||
Cardia Non-Cardia | 1.318 (0.803–2.162) 1.182 (0.728–1.919) | 5 | 32.52 69.61 | 0.000 0.000 | 87.70 94.25 | 0.759 |
All studies | 1.218 (1.070–1.386) | 11 | 425.83 | 0.000 | 97.65 | - |
Overweight | ||||||
Race | Subgroup analysis | |||||
Asian Non-Asian | 1.019 (0.914–1.137) 1.438 (1.209–1.711) | 6 6 | 178.04 13.98 | 0.000 0.016 | 97.19 64.24 | 0.001 |
Gender | Subset analysis | |||||
Male Female | 1.052 (0.821–1.348) 1.462 (1.173–1.823) | 5 | 24.15 15.09 | 0.000 0.005 | 83.44 73.50 | 0.052 |
Type of Cancer | Subset analysis | |||||
Cardia Non-Cardia | 1.292 (0.899–1.858) 1.107 (0.765–1.602) | 5 | 23.77 59.18 | 0.000 0.000 | 83.17 93.24 | 0.559 |
All studies | 1.155 (1.051–1.270) | 12 | 228.43 | 0.000 | 95.18 | - |
Underweight | ||||||
Race | Subgroup analysis | |||||
Asian Non-Asian | 1.097 (0.940–1.281) 1.424 (0.742–2.732) | 7 4 | 85.27 5.35 | 0.000 0.148 | 92.96 43.90 | 0.446 |
Gender | Subset analysis | |||||
Male Female | 1.829 (0.774–4.324) 1.137 (0.993–1.301) | 4 | 13.46 2.58 | 0.004 0.460 | 77.71 0.00 | 0.284 |
Type of Cancer | Subset analysis | |||||
CardiaNon-Cardia | 0.958 (0.662–1.387) 1.611 (0.975–2.660) | 5 | 1.69 7.78 | 0.792 0.100 | 0.00 48.60 | 0.102 |
All studies | 1.124 (0.968–1.304) | 11 | 91.57 | 0.000 | 89.08 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azizi, N.; Zangiabadian, M.; Seifi, G.; Davari, A.; Yekekhani, E.; Safavi-Naini, S.A.A.; Berger, N.A.; Nasiri, M.J.; Sohrabi, M.-R. Gastric Cancer Risk in Association with Underweight, Overweight, and Obesity: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 2778. https://doi.org/10.3390/cancers15102778
Azizi N, Zangiabadian M, Seifi G, Davari A, Yekekhani E, Safavi-Naini SAA, Berger NA, Nasiri MJ, Sohrabi M-R. Gastric Cancer Risk in Association with Underweight, Overweight, and Obesity: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(10):2778. https://doi.org/10.3390/cancers15102778
Chicago/Turabian StyleAzizi, Narges, Moein Zangiabadian, Golnoosh Seifi, Afshan Davari, Elham Yekekhani, Seyed Amir Ahmad Safavi-Naini, Nathan A. Berger, Mohammad Javad Nasiri, and Mohammad-Reza Sohrabi. 2023. "Gastric Cancer Risk in Association with Underweight, Overweight, and Obesity: A Systematic Review and Meta-Analysis" Cancers 15, no. 10: 2778. https://doi.org/10.3390/cancers15102778
APA StyleAzizi, N., Zangiabadian, M., Seifi, G., Davari, A., Yekekhani, E., Safavi-Naini, S. A. A., Berger, N. A., Nasiri, M. J., & Sohrabi, M. -R. (2023). Gastric Cancer Risk in Association with Underweight, Overweight, and Obesity: A Systematic Review and Meta-Analysis. Cancers, 15(10), 2778. https://doi.org/10.3390/cancers15102778