Growth Hormone Replacement Therapy Seems to Be Safe in Children with Low-Grade Midline Glioma: A Series of 124 Cases with Review of the Literature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Population Characteristics
3.1.1. Flow Chart
3.1.2. Comparison of the Population in the Two Groups
3.2. Primary Endpoint: Relapse
3.3. Second Cancer, Death and Diabetes
3.3.1. Second Cancer Rate
3.3.2. Death Rate
3.3.3. Diabetes Rate
3.4. Particularities in GH Substituted Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sturm, D.; Pfister, S.; Jones, D.T.W. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J. Clin. Oncol. 2017, 35, 2370–2377. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Conklin, H.M.; Huang, S.; Srivastava, D.; Sanford, R.; Ellison, D.W.; Merchant, T.E.; Hudson, M.M.; Hoehn, M.E.; Robison, L.L.; et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro Oncol. 2011, 13, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Iersel, L.; Li, Z.; Srivastava, D.K.; Brinkman, T.M.; Bjornard, K.L.; Wilson, C.L.; Green, D.M.E.; Merchant, T.; Pui, C.-H.; Howell, R.M.; et al. Hypothalamic-Pituitary Disorders in Childhood Cancer Survivors: Prevalence, Risk Factors and Long-Term Health Outcomes. J. Clin. Endocrinol. Metab. 2019, 104, 6101–6115. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Teinturier, C.; Salenave, S. Endocrine sequelae after treatment of pediatric cancer: From childhood to adulthood. Bull. Cancer 2015, 102, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Tamhane, S.; Sfeir, J.; Kittah, M.N.E.N.; Jasim, M.S.; Chemaitilly, M.W.E.; Cohen, M.L.; Murad, M.H. GH Therapy in Childhood Cancer Survivors: A Systematic Review and Meta-Analysis. J. Clin. Endocrinol. Metab. 2018, 103, 2794–2801. [Google Scholar] [CrossRef]
- Boguszewski, C.L.; Boguszewski, M.C.D.S. Growth Hormone’s Links to Cancer. Endocr. Rev. 2019, 40, 558–574. [Google Scholar] [CrossRef]
- Boguszewski, M.C.S.; Cardoso-Demartini, A.A.; Boguszewski, C.L.; Chemaitilly, W.; Higham, C.E.; Johannsson, G.; Yuen, K.C.J. Safety of growth hormone (GH) treatment in GH deficient children and adults treated for cancer and non-malignant intracranial tumors—A review of research and clinical practice. Pituitary 2021, 24, 810–827. [Google Scholar] [CrossRef]
- Richmond, E.; Rogol, A.D. Treatment of growth hormone deficiency in children, adolescents and at the transitional age. Best Pr. Res. Clin. Endocrinol. Metab. 2016, 30, 749–755. [Google Scholar] [CrossRef]
- Raman, S.; Grimberg, A.; Waguespack, S.G.; Miller, B.; Sklar, C.A.; Meacham, L.R.; Patterson, B. Risk of Neoplasia in Pediatric Patients Receiving Growth Hormone Therapy—A Report From the Pediatric Endocrine Society Drug and Therapeutics Committee. J. Clin. Endocrinol. Metab. 2015, 100, 2192–2203. [Google Scholar] [CrossRef]
- Sklar, C.A.; Antal, Z.; Chemaitilly, W.; Cohen, L.E.; Follin, C.; Meacham, L.R.; Murad, M.H. Hypothalamic–Pituitary and Growth Disorders in Survivors of Childhood Cancer: An Endocrine Society* Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 2761–2784. [Google Scholar] [CrossRef]
- Stochholm, K.; Kiess, W. Long-term safety of growth hormone—A combined registry analysis. Clin. Endocrinol. 2017, 88, 515–528. [Google Scholar] [CrossRef]
- Shen, L.; Sun, C.M.; Li, X.T.; Liu, C.J.; Zhou, Y.X. Growth hormone therapy and risk of recurrence/progression in intracranial tumors: A meta-analysis. Neurol. Sci. 2015, 36, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-F.; Chen, H.-L. Growth hormone treatment and risk of recurrence or development of secondary neoplasms in survivors of pediatric brain tumors. J. Clin. Neurosci. 2014, 21, 2155–2159. [Google Scholar] [CrossRef]
- Allen, D.B.; Backeljauw, P.; Bidlingmaier, M.; Biller, B.M.K.; Boguszewski, M.; Burman, P.; Butler, G.; Chihara, K.; Christiansen, J.; Cianfarani, S.; et al. GH safety workshop position paper: A critical appraisal of recombinant human GH therapy in children and adults. Eur. J. Endocrinol. 2015, 174, P1–P9. [Google Scholar] [CrossRef] [Green Version]
- Deodati, A.; Ferroli, B.B.; Cianfarani, S. Association between growth hormone therapy and mortality, cancer and cardiovascular risk: Systematic review and meta-analysis. Growth Horm. IGF Res. 2014, 24, 105–111. [Google Scholar] [CrossRef]
- Swerdlow, A.J.; Reddingius, R.E.; Higgins, C.D.; Spoudeas, H.A.; Phipps, K.; Qiao, Z.; Ryder, W.D.J.; Brada, M.; Hayward, R.D.; Brook, C.G.D.; et al. Growth Hormone Treatment of Children with Brain Tumors and Risk of Tumor Recurrence. J. Clin. Endocrinol. Metab. 2000, 85, 4444–4449. [Google Scholar] [CrossRef]
- Swerdlow, A.J.; Cooke, R.; Beckers, D.; Borgström, B.; Butler, G.; Carel, J.-C.; Cianfarani, S.; Clayton, P.; Coste, J.; Deodati, A.; et al. Cancer Risks in Patients Treated with Growth Hormone in Childhood: The SAGhE European Cohort Study. J. Clin. Endocrinol. Metab. 2017, 102, 1661–1672. [Google Scholar] [CrossRef]
- Rakotonjanahary, J.; De Carli, E.; DeLion, M.; Kalifa, C.; Grill, J.; Doz, F.; Leblond, P.; Bertozzi, A.-I.; Rialland, X.; Brain Tumor Committee of SFCE. Mortality in Children with Optic Pathway Glioma Treated with Up-Front BB-SFOP Chemotherapy. PLoS ONE 2015, 10, e0127676. [Google Scholar] [CrossRef]
- Traunwieser, T.; Kandels, D.; Pauls, F.; Pietsch, T.; Warmuth-Metz, M.; Bison, B.; Krauss, J.; Kortmann, R.-D.; Timmermann, B.; Thomale, U.-W.; et al. Long-term cognitive deficits in pediatric low-grade glioma (LGG) survivors reflect pretreatment conditions—Report from the German LGG studies. Neuro-Oncol. Adv. 2020, 2, vdaa094. [Google Scholar] [CrossRef]
- Thomale, U.-W.; Gnekow, A.K.; Kandels, D.; Bison, B.; Driever, P.H.; Witt, O.; Pietsch, T.; Koch, A.; Capper, D.; Kortmann, R.-D.; et al. Long-term follow-up of surgical intervention pattern in pediatric low-grade gliomas: Report from the German SIOP-LGG 2004 cohort. J. Neurosurgery: Pediatr. 2022, 30, 316–329. [Google Scholar] [CrossRef]
- Laithier, V.; Grill, J.; Le Deley, M.-C.; Ruchoux, M.-M.; Couanet, D.; Doz, F.; Pichon, F.; Rubie, H.; Frappaz, D.; Vannier, J.-P.; et al. Progression-Free Survival in Children with Optic Pathway Tumors: Dependence on Age and the Quality of the Response to Chemotherapy—Results of the First French Prospective Study for the French Society of Pediatric Oncology. J. Clin. Oncol. 2003, 21, 4572–4578. [Google Scholar] [CrossRef] [PubMed]
- Gnekow, A.K.; Walker, D.A.; Kandels, D.; Picton, S.; Perilongo, G.; Grill, J.; Stokland, T.; Sandstrom, P.E.; Warmuth-Metz, M.; Pietsch, T.; et al. A European randomised controlled trial of the addition of etoposide to standard vincristine and carboplatin induction as part of an 18-month treatment programme for childhood (≤16 years) low grade glioma–A final report. Eur. J. Cancer 2017, 81, 206–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassaletta, A.; Scheinemann, K.; Zelcer, S.M.; Hukin, J.; Wilson, B.A.; Jabado, N.; Carret, A.S.; Lafay-Cousin, L.; Larouche, V.; Hawkins, C.E.; et al. Phase II Weekly Vinblastine for Chemotherapy-Naïve Children With Progressive Low-Grade Glioma: A Canadian Pediatric Brain Tumor Consortium Study. J. Clin. Oncol. 2016, 34, 3537–3543. [Google Scholar] [CrossRef] [PubMed]
- Journal Officiel. Arrêté Du 24 Février 2003 Modifiant La Liste Des Spécialités Pharmaceutiques Remboursables Aux Assurés Sociaux. 2003. Available online: https://solidarites-sante.gouv.fr/fichiers/bo/2003/03-11/a0110796.htm?TSPD_101_R0=087dc22938ab200033c5694e4b4eac43c6a2ec98888f293ebd9a639ba2ce8dc3457111f2e798da6c08137ddd63143000e0264336f85a6335ede74c6ce2b8015d11f6a839a31873fcd3dd1ab835a6f8ee2c12094ba7dc878ba949ffb266d1c61a (accessed on 24 February 2022).
- Protocole National de Diagnostic et de Soins (PNDS) Neurofibromatose Published online August 2021. Available online: https://www.has-sante.fr/upload/docs/application/pdf/2022-07/pndsnf1final.pdf (accessed on 1 September 2021).
- Burns, C.; Rigsby, P.; Moore, M.; Rafferty, B. The First International Standard for Insulin-like Growth Factor-1 (IGF-1) for immunoassay: Preparation and calibration in an international collaborative study. Growth Horm. IGF Res. 2009, 19, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Thomas-Teinturier, C.; Oliver-Petit, I.; Pacquement, H.; Fresneau, B.; Allodji, R.S.; Veres, C.; Bolle, S.; Berchery, D.; Demoor-Goldschmidt, C.; Haddy, N.; et al. Influence of growth hormone therapy on the occurrence of a second neoplasm in survivors of childhood cancer. Eur. J. Endocrinol. 2020, 183, 471–480. [Google Scholar] [CrossRef]
- Stokland, T.; Liu, J.-F.; Ironside, J.W.; Ellison, D.W.; Taylor, R.; Robinson, K.J.; Picton, S.V.; Walker, D.A. A multivariate analysis of factors determining tumor progression in childhood low-grade glioma: A population-based cohort study (CCLG CNS9702). Neuro-oncology 2010, 12, 1257–1268. [Google Scholar] [CrossRef] [Green Version]
- Aihara, Y.; Chiba, K.; Eguchi, S.; Amano, K.; Kawamata, T. Pediatric Optic Pathway/Hypothalamic Glioma. Neurol. Medico-chirurgica 2018, 58, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.Y.; Wijesinghe, I.V.S.; Alfarizal Kamarudin, M.N.; Parhar, I. Paediatric Gliomas: BRAF and Histone H3 as Biomarkers, Therapy and Perspective of Liquid Biopsies. Cancers 2021, 13, 607. [Google Scholar] [CrossRef]
- Novartis Pharmaceuticals. Phase II Pediatric Study with Dabrafenib in Combination with Trametinib in Patients with HGG and LGG. Published online 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT02684058 (accessed on 29 November 2022).
- Entz-Werle, N. Pediatric Low Grade Glioma-MEKinhibitor TRIal vs. Chemotherapy (PLGG-MEK-TRIC). 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT05180825 (accessed on 8 July 2022).
- Journy, N.M.Y.; Zrafi, W.S.; Bolle, S.; Fresneau, B.; Alapetite, C.; Allodji, R.S.; Berchery, D.; Haddy, N.; Kobayashi, I.; Labbé, M.; et al. Risk Factors of Subsequent Central Nervous System Tumors after Childhood and Adolescent Cancers: Findings from the French Childhood Cancer Survivor Study. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2021, 30, 133–141. [Google Scholar] [CrossRef]
- Samani, A.A.; Yakar, S.; Leroith, D.; Brodt, P. The Role of the IGF System in Cancer Growth and Metastasis: Overview and Recent Insights. Endocr. Rev. 2007, 28, 20–47. [Google Scholar] [CrossRef] [Green Version]
- Abs, R.; Mattsson, A.F.; Thunander, M.; Verhelst, J.I.; Góth, M.; Wilton, P.; Kołtowska-Häggström, M.; Luger, A. Prevalence of diabetes mellitus in 6050 hypopituitary patients with adult-onset GH deficiency before GH replacement: A KIMS analysis. Eur. J. Endocrinol. 2013, 168, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, N.M.; Zaidi, H.; Noormohamed, N.; Cote, D.J.; Crocker, E.; Doucette, J.; Bi, W.L.; Alharthy, S.; Quevedo, P.V.; Mekary, R.A.; et al. Comparison of Physiologic Growth Hormone Replacement Therapy to No Replacement on Craniopharyngioma Recurrence in Pediatric Patients. J. Neurol. Surg. Part B: Skull Base 2017, 78, S1–S156. [Google Scholar] [CrossRef]
- Losa, M.; Castellino, L.; Pagnano, A.; Rossini, A.; Mortini, P.; Lanzi, R. Growth Hormone Therapy Does Not Increase the Risk of Craniopharyngioma and Nonfunctioning Pituitary Adenoma Recurrence. J. Clin. Endocrinol. Metab. 2020, 105, 1573–1580. [Google Scholar] [CrossRef]
- Alotaibi, N.M.; Noormohamed, N.; Cote, D.J.; Alharthi, S.; Doucette, J.; Zaidi, H.A.; Mekary, R.A.; Smith, T.R. Physiologic Growth Hormone–Replacement Therapy and Craniopharyngioma Recurrence in Pediatric Patients: A Meta-Analysis. World Neurosurg. 2017, 109, 487–496.e1. [Google Scholar] [CrossRef]
- Darendeliler, F.; Karagiannis, G.; Wilton, P.; Ranke, M.B.; Albertsson-Wikland, K.; Price, D.A. Recurrence of brain tumours in patients treated with growth hormone: Analysis of KIGS (Pfizer International Growth Database). Acta Paediatr. 2006, 95, 1284–1290. [Google Scholar] [CrossRef]
- Karavitaki, N.; Warner, J.T.; Marland, A.; Shine, B.; Ryan, F.; Arnold, J.; Turner, H.E.; Wass, J.A.H. GH replacement does not increase the risk of recurrence in patients with craniopharyngioma. Clin. Endocrinol. 2006, 64, 556–560. [Google Scholar] [CrossRef]
- Rohrer, T.R.; Langer, T.; Grabenbauer, G.G.; Buchfelder, M.; Glowatzki, M.; Dörr, H.G. Growth Hormone Therapy and the Risk of Tumor Recurrence after Brain Tumor Treatment in Children. J. Pediatr. Endocrinol. Metab. 2010, 23, 935–942. [Google Scholar] [CrossRef]
Group without GHRT | Group with GHRT | p-Value | |
---|---|---|---|
Total population | n (%) | n (%) | |
107 | 17 | ||
Gender | 0.38 | ||
Female | 60 (56.1%) | 7 (41.2%) | |
Male | 47 (43.9%) | 10 (58.8%) | |
NF1 | 39 (36.5%) | 3 (17.7%) | 0.21 |
Tumor type | |||
Pilocytic astrocytoma (grade I) | 95 (88.8%) | 12 (70.6%) | 0.02 |
Astrocytoma (grade II) | 2 (1.9%) | 3 (17.6%) | |
Oligoastrocytoma (grade II) | 3 (2.8%) | 0 (0%) | |
Oligodendroglioma (grade II) | 3 (2.8%) | 0 (0%) | |
Ganglioglioma (grade II) | 4 (3.7%) | 2 (11.8%) | |
Biopsy (followed by chemo or RT or simple monitoring) | 22 (20.6%) | 6 (35.3%) | 0.21 |
First-line treatments (can be combined) | |||
Subtotal resection | 26 (24.3%) | 6 (35.3%) | 0.37 |
Complete resection | 9 (8.4%) | 0 (0%) | 1 |
Chemotherapy | 53 (49.5%) | 15 (88.2%) | 0.003 |
Radiotherapy | 7 (6.5%) | 1 (5.9%) | 0.99 |
First-line treatments in detail | |||
Surgery only | 19 (17.8%) | 1 (5.9%) | 0.3 |
Surgery + RT | 3 (2.8%) | 0 (0%) | 1 |
Surgery + chemo | 14 (13.1%) | 5 (29.4%) | 0.14 |
Surgery + RT + chemo | 1 (0.9%) | 0 (0%) | 1 |
Chemo only | 37 (34.6%) | 9 (52.9%) | 0.18 |
RT only | 2 (1.9%) | 0 (0%) | 1 |
Chemo + RT | 1 (0.9%) | 1 (5.9%) | 0.26 |
Simple monitoring | 30 (28%) | 1 (5.9%) | 0.07 |
Patients: | Age at Diagnosis (Year) | Sex | NF1 | Histology | Localization | Surgery | Radio Therapy | Chemo Therapy | GH Onset Age (y) | GH Dose (μg/kg/d) | GH Duration (Months) | Relapse | Second Cancer | Death |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No. 13 | 7.5 | M | No | Grade II astrocytoma | Bilateral thalamus | B | - | - | 15.4 | 48 | 47 | No | No | No |
No. 14 | 4.3 | M | Yes | Pilocytic astrocytoma | OPG | - | - | Chemo | 10.8 | 36 | 33 | Yes # before GH | No | No |
No. 15 | 2 | F | No | Pilocytic astrocytoma | OPG | B | - | Chemo | 10.9 | 38 | 20 | Yes # before GH | No | No |
No. 21 | 8.1 | M | No | Grade II astrocytoma | Left thalamus | B | - | Chemo | 12.5 | 32 | 12 | No | No | No |
No. 23 | 0.3 | F | No | Grade II astrocytoma | Chiasmatoventricular | B | - | Chemo | 9.5 | 22 | * | No | No | No |
No. 24 | 7 | M | No | Pilocytic astrocytoma | Chiasmatoventricular | B | - | Chemo | 13.5 | 29 | 40 | Yes # before GH | No | No |
No. 25 | 1.1 | F | No | Pilocytic astrocytoma | Chiasmatoventricular | SR | - | Chemo | 13.2 | 33 | 39 | Yes # before GH | No | No |
No. 27 | 3 | M | No | Pilocytic astrocytoma | Chiasmatoventricular | SR | - | Chemo | 10.75 | 37 | 54 | Yes # before GH | No | No |
No. 41 | 3.2 | M | No | Pilocytic astrocytoma | OPG | - | - | Chemo | 13.7 | 37 | * | No | No | No |
No. 43 | 6.6 | M | No | Pilocytic astrocytoma | Chiasmatoventricular and V3 | SR | - | Chemo | 14.3 | 23 | 14 | Yes # before GH | No | No |
No. 45 | 1.3 | F | Yes | Pilocytic astrocytoma | OPG | - | - | Chemo | 10.5 | 41 | * | No | No | No |
No. 47 | 1.1 | M | No | Pilocytic astrocytoma | OPG | SR | - | Chemo | 13.75 | 36 | 7 | Yes under GH | No | No |
No. 51 | 0.7 | F | No | Pilocytic astrocytoma | Right optic strip, diencephalon | SR | - | Chemo | 10.2 | 33 | * | No | No | No |
No. 77 | 10.1 | F | No | Pilocytic astrocytoma | OPG and V3 | B | - | Chemo | 12.8 | 35 | 6 | Yes under GH | No | No |
No. 81 | 4 | M | Yes | Pilocytic astrocytoma | OPG | - | RT | Chemo | 8.8 | 35 | 96 | No | No | No |
No. 83 | 13 | M | No | Ganglioglioma | Suprasellar tumor and lateral ventricle | SR | - | - | 20 | 15 | 24 | No | No | No |
No. 91 | 0.6 | F | No | Ganglioglioma | OPG | - | - | Chemo | 8.6 | 36 | 9 | Yes under GH | No | No |
No. | Sex | NF1 | Tumor | Localization | Surgery | RT | Chemo | Relapse | Death |
---|---|---|---|---|---|---|---|---|---|
1 | M | - | PA | Thalamo-peduncular | SR | RT | - | - | - |
2 | F | - | PA | Chiasmato-ventricular | SR | - | Chemo | Relapse | - |
3 | M | - | PA | OPG | B | - | Chemo | - | - |
4 | F | - | PA | OPG | SR | - | Chemo | Relapse | - |
5 | F | NF1 | PA | OPG | - | - | - | - | - |
6 | F | - | PA | Chiasmato-ventricular | SR | RT | Chemo | Relapse | - |
7 | M | NF1 | PA | OPG | - | - | - | - | - |
8 | F | NF1 | PA | OPG | - | - | - | - | - |
9 | F | - | PA | OPG | B | - | Chemo | - | - |
10 | F | - | PA | Thalamo-peduncular | SR | - | Chemo | Relapse | - |
11 | F | - | PA | Suprasellar tumor | - | - | Chemo | Relapse | - |
12 | M | - | PA | Chiasmato-ventricular | SR | - | Chemo | - | - |
16 | F | NF1 | PA | OPG | - | - | - | - | - |
17 | M | - | Astrocytoma grade II | Right thalamus | SR | - | - | - | - |
18 | M | - | PA | Thalamo-peduncular | B | - | - | Relapse | - |
19 | M | - | Oligoastrocytoma | Left thalamus | SR | - | Chemo | - | - |
20 | M | - | PA | Right thalamus | CR | - | - | - | - |
22 | F | NF1 | PA | OPG | - | - | - | - | - |
26 | M | NF1 | PA | Right optic nerve | - | - | - | - | - |
28 | M | - | Oligodendroglioma | Thalamus and left lateral ventricle | CR | - | - | Relapse | - |
29 | F | - | PA | Chiasmato-ventricular | B | RT | - | - | - |
30 | F | - | Oligoastrocytoma | Right optic nerve | CR | - | - | - | - |
31 | F | NF1 | PA | Right optic nerve | - | - | - | - | - |
32 | M | - | PA | Chiasmato-ventricular | SR | - | Chemo | Relapse | - |
33 | M | - | PA | Right temporo thalamo peduncular | SR | - | Chemo | - | Death |
34 | M | - | Oligodendroglioma | Right thalamus | B | RT | - | - | - |
35 | M | - | PA | OPG | B | - | Chemo | - | - |
36 | M | - | PA | Left optic nerve | CR | - | - | - | - |
37 | F | - | PA | Chiasmato-ventricular | SR | RT | - | Relapse | - |
38 | M | NF1 | PA | OPG | - | - | - | - | - |
39 | M | - | PA | OPG infiltrating basal ganglia | B | - | Chemo | Relapse | - |
40 | F | NF1 | PA | OPG | - | - | Chemo | Relapse | - |
42 | F | NF1 | PA | OPG | - | - | - | Relapse | - |
44 | M | - | PA | Chiasmato-ventricular | B | - | Chemo | Relapse | Death |
46 | M | NF1 | PA | Left optic nerve | CR | - | - | - | - |
48 | M | NF1 | PA | OPG | - | - | - | - | - |
49 | F | - | PA | V3 | CR | - | - | - | - |
50 | F | - | Oligodendroglioma | Right thalamus | B | - | - | - | - |
52 | F | NF1 | PA | OPG | - | - | - | - | - |
53 | F | NF1 | PA | OPG | - | - | Chemo | Relapse | - |
54 | F | NF1 | PA | OPG | - | - | Chemo | Relapse | - |
55 | F | NF1 | PA | OPG | - | - | Chemo | Relapse | - |
56 | F | - | PA | Left thalamus | CR | - | Chemo | - | - |
57 | M | - | Astrocytoma grade II | OPG and diencephalon | B | - | Chemo | - | - |
58 | F | - | PA | OPG | SR | RT | - | - | - |
59 | F | - | PA | OPG | - | - | Chemo | - | - |
60 | F | - | Oligoastrocytoma | Right V3 and thalamus | B | - | Chemo | Relapse | - |
61 | M | - | Ganglioglioma | Right occipital ventricular junction tumor | SR | - | - | Relapse | - |
62 | M | - | PA | Suprasellar tumor | SR | - | Chemo | Relapse | - |
63 | F | - | PA | Missing data | B | - | Chemo | - | - |
64 | F | - | PA | OPG | SR | - | Chemo | Relapse | Death |
65 | M | NF1 | PA | Left optic nerve | - | - | - | - | - |
66 | F | NF1 | PA | OPG | - | - | - | - | - |
67 | F | - | PA | V3 | CR | - | - | - | - |
68 | M | - | PA | OPG | SR | - | Chemo | Relapse | - |
69 | M | - | PA | OPG | SR | - | Chemo | Relapse | - |
70 | F | - | PA | Suprasellar tumor | SR | - | Chemo | Relapse | - |
71 | F | - | PA | OPG | - | - | Chemo | - | - |
72 | M | - | PA | Right thalamus | SR | - | - | - | - |
73 | M | NF1 | PA | OPG | - | - | - | - | - |
74 | F | - | PA | Suprasellar tumor | SR | - | - | Relapse | - |
75 | M | - | PA | OPG and V3 | SR | - | - | Relapse | - |
76 | F | NF1 | PA | OPG | - | - | - | - | - |
78 | F | - | PA | Quadruple blade | SR | - | - | - | - |
79 | M | NF1 | PA | OPG | - | - | Chemo | - | Death |
80 | F | - | PA | Thalamo-peduncular | B | - | Chemo | - | - |
82 | F | - | Ganglioglioma | V3 | SR | - | - | - | - |
84 | F | - | PA | Retrochiasmatic lesion | - | - | - | Relapse | - |
85 | M | - | Ganglioglioma | V3 | CR | - | - | - | - |
86 | F | - | PA | Suprasellar tumor | B | - | - | - | - |
87 | F | NF1 | PA | OPG | - | - | - | - | - |
88 | F | NF1 | PA | OPG | - | - | - | Relapse | - |
89 | F | NF1 | PA | OPG | - | - | - | - | - |
90 | F | NF1 | PA | OPG | - | - | - | - | - |
92 | F | - | PA | OPG | B | - | Chemo | - | - |
93 | F | - | PA | OPG | - | - | Chemo | Relapse | - |
94 | M | - | PA | OPG | SR | - | - | Relapse | - |
95 | F | - | PA | OPG | B | - | Chemo | - | - |
96 | F | NF1 | PA | OPG and V3 | - | - | - | Relapse | - |
97 | F | - | PA | OPG | B | - | Chemo | - | - |
98 | M | - | PA | OPG | - | - | Chemo | - | - |
99 | F | - | PA | OPG | - | - | Chemo | - | - |
100 | F | - | PA | OPG | - | - | Chemo | - | - |
101 | F | NF1 | PA | OPG | - | - | - | Relapse | - |
102 | M | NF1 | PA | OPG | - | - | - | - | Death |
103 | M | - | PA | Thalamo-peduncular | B | - | Chemo | - | - |
104 | M | - | PA | Right thalamus and V3 | B | - | Chemo | - | - |
105 | M | - | Ganglioglioma | Hypothalamus | - | - | - | Relapse | - |
106 | F | - | PA | Left thalamus | B | - | Chemo | Relapse | - |
107 | M | NF1 | PA | OPG | - | - | - | Relapse | - |
108 | M | NF1 | PA | OPG | - | - | - | - | - |
109 | M | NF1 | PA | OPG | - | - | Chemo | - | - |
110 | M | NF1 | PA | OPG | - | - | Chemo | - | - |
111 | M | - | PA | OPG | - | - | Chemo | Relapse | - |
112 | F | NF1 | PA | OPG | - | - | Chemo | - | - |
113 | M | NF1 | PA | OPG | - | - | Chemo | Relapse | - |
114 | F | NF1 | PA | OPG | - | - | Chemo | - | - |
115 | F | NF1 | PA | OPG | - | - | Chemo | Relapse | - |
116 | F | NF1 | PA | OPG | - | - | Chemo | - | - |
117 | F | NF1 | PA | OPG | - | - | Chemo | - | - |
118 | M | - | PA | OPG | - | RT | Chemo | - | - |
119 | M | - | PA | OPG | B | - | Chemo | Relapse | - |
120 | M | - | PA | OPG | SR | - | - | - | - |
121 | F | - | PA | Right capsulo-thalamic | B | - | - | - | - |
122 | M | - | PA | OPG | - | - | - | - | - |
123 | F | NF1 | PA | OPG | - | - | - | Relapse | - |
124 | F | - | PA | Suprasellar and V3 | SR | - | Chemo | - | - |
Patients who Did Not Relapse | Patients who Did Relapse | ||||
---|---|---|---|---|---|
n = 76 | % | n = 48 | % | p-Value | |
Age at diagnosis | 0.96 | ||||
<12 months | 8 | 10.5 | 6 | 12.5 | |
>12 months | 68 | 89.5 | 42 | 87.5 | |
Gender | 0.83 | ||||
Female | 40 | 52.6 | 27 | 56.3 | |
Male | 36 | 47.4 | 21 | 43.7 | |
NF1 | 0.28 | ||||
without NF1 | 47 | 61.8 | 35 | 72.9 | |
with NF1 | 29 | 38.2 | 13 | 27.1 | |
Tumor type | 0.49 | ||||
Pilocytic astrocytoma (grade I) | 64 | 84.2 | 43 | 89.6 | |
Astrocytoma (grade II) | 5 | 6.6 | 0 | - | |
Oligoastrocytoma (grade II) | 2 | 2.6 | 1 | 2.1 | |
Oligodendroglioma (grade II) | 2 | 2.6 | 1 | 2.1 | |
Ganglioglioma (grade II) | 3 | 4 | 3 | 6.2 | |
First line chemotherapy | 0.013 | ||||
Chemotherapy | 35 | 46 | 33 | 68.7 | |
No chemotherapy | 41 | 54 | 15 | 31.3 | |
First line radiotherapy | 0.47 | ||||
Radiotherapy | 6 | 7.9 | 2 | 4.2 | |
No radiotherapy | 70 | 92.1 | 46 | 95.8 | |
First line type of surgery | 0.088 | ||||
Complete resection | 8 | 10.5 | 1 | 2. 1 | |
Subtotal resection | 13 | 17. 1 | 19 | 86.4 | |
GHRT | 0.28 | ||||
no GHRT | 68 | 89.5 | 39 | 81.3 | |
with GHRT | 8 | 10.5 | 9 | 18.7 |
References | Study Groups | Recurrence | Authors Conclusions |
---|---|---|---|
Karavitaki et al., 2006 [40] | Craniopharyngioma: 32 patients with GHRT (but 11 started during adult life), 53 without GHRT | 4 patients treated with GH and 22 non-GH treated ones developed tumour recurrence (p = 0.06; RR = 0.309) | GH replacement does not increase the risk of recurrence in patients with craniopharyngioma |
Rohrer et al., 2010 [41] | 108 craniopharyngioma, medulloblastoma, and ependymoma patients | 13/44 GH-treated and 28/59 non-GH-treated children relapsed | No increased risk of recurrence under GHRT |
Alotaibi et al., 2017 [38] | Craniopharyngioma: 3436 pediatric patients were treated with GHRT after surgery (GHRT duration ranged between 1.9 and 6.4 years), and 51 were not. | The recurrence rate of the latter was significantly lower in children supplemented with GH (10.9%; 95% CI: 9.80–12.1%) compared to children without supplementation (35.2%; 95% CI: 23.1–49.6%) | This meta-analysis demonstrated a lower recurrence rate of craniopharyngioma among children treated with GHRT than those who were not. |
Shen et al., 2015 [12] | All brain tumors, meta-analysis of 15 studies, 2232 patients with GHRT and 3606 without GHRT | RR of recurrence: 0.44, (95% CI = 0.34 to 0.54; p = 0.680) In the subgroup analysis, the risks of recurrence were decreased for craniopharyngioma, medulloblastoma, astrocytoma, glioma, but not for pituitary adenomas and ependymomas | Recurrence of intracranial tumors was not associated with GHRT |
Zhi-Feng Wang et al., 2014 [13] | All brain tumors, meta-analysis of 10 studies | Tumor recurrence rate of 21.0% in children with GHRT and 44.3% without GHRT. RR for recidivism: 0.470 (95% CI 0.372–0.593; p = 0.000). In the astrocytomas subgroup, the RR was 0.515 (95% CI 0.285–0.929, p = 0.028) | No increased risk of recurrence under GHRT |
Darendeliler et al., 2006 [39] | 400 patients were treated for a glial tumor with GHRT | 39 presented a tumor recurrence (9.7%) The disease-free survival rate in these patients was 69% over 9.1 years of follow-up, similar to literature data for children not supplemented with GHRT. | Recurrence of glial tumors was not associated with GHRT. Prolonged follow-up for the detection of recurrences and secondary cancers remains essential. |
Swerdlow et al., 2000 [16] | All brain tumors after radiotherapy, 180 children with GHRT and 891 children without GHRT. | Thirty-five first recurrences occurred in the GH-treated children and 434 in the untreated children. RR of first recurrence for all brain tumors: 0.6; 95% CI 0.4–0.9). RR for astrocytomas: 0.5 (95% CI: 0.3–0.9). | Risk of recurrence was lower for patients on GHRT, particularly for astrocytomas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puvilland, C.; Villanueva, C.; Hemmendinger, A.; Kornreich, L.; Gueorguieva, I.; Karnoub, M.-A.; Beuriat, P.A.; Leblond, P. Growth Hormone Replacement Therapy Seems to Be Safe in Children with Low-Grade Midline Glioma: A Series of 124 Cases with Review of the Literature. Cancers 2023, 15, 55. https://doi.org/10.3390/cancers15010055
Puvilland C, Villanueva C, Hemmendinger A, Kornreich L, Gueorguieva I, Karnoub M-A, Beuriat PA, Leblond P. Growth Hormone Replacement Therapy Seems to Be Safe in Children with Low-Grade Midline Glioma: A Series of 124 Cases with Review of the Literature. Cancers. 2023; 15(1):55. https://doi.org/10.3390/cancers15010055
Chicago/Turabian StylePuvilland, Coline, Carine Villanueva, Anaëlle Hemmendinger, Laure Kornreich, Iva Gueorguieva, Mélodie-Anne Karnoub, Pierre Aurélien Beuriat, and Pierre Leblond. 2023. "Growth Hormone Replacement Therapy Seems to Be Safe in Children with Low-Grade Midline Glioma: A Series of 124 Cases with Review of the Literature" Cancers 15, no. 1: 55. https://doi.org/10.3390/cancers15010055
APA StylePuvilland, C., Villanueva, C., Hemmendinger, A., Kornreich, L., Gueorguieva, I., Karnoub, M. -A., Beuriat, P. A., & Leblond, P. (2023). Growth Hormone Replacement Therapy Seems to Be Safe in Children with Low-Grade Midline Glioma: A Series of 124 Cases with Review of the Literature. Cancers, 15(1), 55. https://doi.org/10.3390/cancers15010055