Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology and Etiology of Oral Cancer
3. Pathophysiology of Oral Cancer
3.1. Pathogenesis
3.2. Molecular Pathogenesis of Oral Cancer
3.2.1. Genetic Susceptibility
3.2.2. Proto-Oncogenes, Oncogenes, and Genetic Alterations
3.2.3. Tumor Suppressor Genes
3.2.4. Genomic Instability and Epigenetic Alterations
4. Conventional Treatments for Oral Cancer
5. Natural Products in Oral Cancer and Their Limitations
6. Formulation Strategies for Natural Products Targeting Oral Cancer: Mechanism and Bioavailability Enhancement
6.1. Nanostructural Systems
6.1.1. NPs
6.1.2. Microemulsions
6.1.3. SLN
6.1.4. Niosomes
6.2. Site-Specific and Target-Oriented Delivery Systems
6.2.1. Gels
6.2.2. Microspheres
6.2.3. Nanoliposomes
6.2.4. In Situ Gels
6.2.5. Hydrogels
6.2.6. Nanoemulsions (NE)
6.2.7. Mucoadhesive NPs
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AR | aldose reductase |
AURKA | aurora kinase A |
bcl | B-cell lymphoma |
BIRC5 | baculoviral IAP Repeat Containing 5 |
BRAs | black raspberry anthocyanins |
CDK | cyclin-dependent kinase |
CDKN2A | cyclin-dependent kinase inhibitor 2A |
C/EBPs | CCAAT/enhancer binding proteins |
COX-2 | cyclooxygenase-2 |
CSCs | cancer stem cells |
CT | conventional therapies |
DAP-K | death-associated protein kinase |
DMBA | dimethylbenz[a]anthracene |
DTX | docetaxel |
EE | eudragit E |
EGCG | epigallocatechin gallate |
EGFR | epidermal growth factor receptor |
EMT | epithelial-mesenchymal transition |
EPR | enhanced permeability and retention |
FHIT | fragile histidine triad |
5-FU | 5-fluorouracil |
GSTM1 | glutathione S-transferase M1 |
HBP | hepatobiliary tract and pancreas |
HCPT | hydroxycampothecin |
HNC | head and neck cancer |
HNSCC | head and neck squamous cell carcinoma |
HPV | human papilloma virus |
HSV | herpes simplex virus |
hsALDH | human salivary aldehyde dehydrogenase |
IARC | International Agency for Research on Cancer |
IGFBP-5 | insulin-like growth factor binding protein-5 |
IL-8 | interleukin-8 |
LC | liquid crystal |
LOH | loss of heterozygosity |
Mcl-1 | myeloid cell leukemia-1 |
MGMT | methylguanine-DNA methyltransferase |
MMP | mitochondrial membrane potential |
MSI | microsatellite instability |
mTOR | mammalian target of rapamycin |
NAR | naringenin |
NARNPs | naringenin nanoparticles |
NE | nanoemulsions |
NF-κB | nuclear factor-κB |
NPs | nanoparticles |
OC | oral cancer |
OCC | oral cavity cancer |
OSCC | oral squamous cell carcinomas |
PARP | poly adenosine diphosphate-ribose polymerase |
PCNA | proliferating cell nuclear antigen |
PCL | polycaprolactone |
PEG-PBLG | poly[ethylene glycol]-poly[gamma-benzyl-L- glutamate] |
PI3K | phosphatidyl inositol-3-kinase |
PLGA | poly(lactic-co-glycolic acid) |
PLGA-PEG-COOH | poly(lactide-co-glycolide)-block-poly(ethylene glycol)- carboxylic acid |
PRAD-1 | parathyroid adenomatosis1 |
PSLCs | precursor systems for liquid crystals |
PTGS2 | prostaglandin Coding gene |
PVA | polyvinyl alcohol |
RB-SiNP | rose bengal silica nanoparticles |
ROS | reactive oxygen species |
SalB | salvianolic acid B |
SalB-PLC-NPs | salvianolic acid B phospholipid complex-loaded nanoparticles |
SCC | squamous cell carcinomas |
SCCHN | squamous cell carcinoma of head and neck |
SIL | silibinin |
SILNPs | silibinin-loaded nanoparticles |
Si | silica |
SiNP | silica nanoparticles |
SLN | solid lipid nanoparticles |
SNEDDS | self-nano emulsifying drug delivery system |
TGF-α | transforming growth factor-α |
TNF-α | tumor necrosis factor-α |
References
- Khandekar, S.P.; Bagdey, P.S.; Tiwari, R.R. Oral Cancer and Some Epidemiological Factors: A Hospital Based Study. Indian J. Community Med. 2006, 31, 157–159. [Google Scholar]
- Ram, H.; Sarkar, J.; Kumar, H.; Konwar, R.; Bhatt, M.L.B.; Mohammad, S. Oral Cancer: Risk Factors and Molecular Pathogenesis. J. Maxillofac. Oral Surg. 2011, 10, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Sun, X.; Chen, Z.; Du, J.; Wu, Y. Head and Neck Squamous Cell Carcinoma: Risk Factors, Molecular Alterations, Immunology and Peptide Vaccines. Int. J. Pept. Res. Ther. 2022, 28, 19. [Google Scholar] [CrossRef] [PubMed]
- Kademani, D.; Bell, R.B.; Schmidt, B.L.; Blanchaert, R.; Fernandes, R.; Lambert, P.; Tucker, W.M. Oral and Maxillofacial Surgeons Treating Oral Cancer: A Preliminary Report from the American Association of Oral and Maxillofacial Surgeons Task Force on Oral Cancer. J. Oral Maxillofac. Surg. 2008, 66, 2151–2157. [Google Scholar] [CrossRef]
- Jané-Salas, E.; López-López, J.; Roselló-Llabrés, X.; Rodríguez-Argueta, O.F.; Chimenos-Küstner, E. Relationship between Oral Cancer and Implants: Clinical Cases and Systematic Literature Review. Med. Oral Patol. Oral Cir. Bucal 2012, 17, e23. [Google Scholar] [CrossRef] [Green Version]
- Johnson, N.W.; Warnakulasuriya, S.; Gupta, P.C.; Dimba, E.; Chindia, M.; Otoh, E.C.; Sankaranarayanan, R.; Califano, J.; Kowalski, L. Global Oral Health Inequalities in Incidence and Outcomes for Oral Cancer: Causes and Solutions. Adv. Dent. Res. 2011, 23, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Jaloudi, M.; Aamir, M.; Alfelasi, M.A.L.; Kanbar, J. Oral Cancer: Epidemiology and Infections (Bacterial and Fungal) Global Incidence. In Development of Oral Cancer; Springer: Cham, Switzerland, 2017; pp. 95–113. [Google Scholar] [CrossRef]
- Kumar, A.; Sarode, S.C.; Sarode, G.S.; Majumdar, B.; Patil, S.; Kumar Sharma, N. Beyond Gene Dictation in Oral Squamous Cell Carcinoma Progression and Its Therapeutic Implications. Transl. Res. Oral Oncol. 2017, 2, 2057178X1770146. [Google Scholar] [CrossRef] [Green Version]
- Mittal, D.; Gubin, M.M.; Schreiber, R.D.; Smyth, M.J. New Insights into Cancer Immunoediting and Its Three Component Phases—Elimination, Equilibrium and Escape. Curr. Opin. Immunol. 2014, 27, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Malik, U.U.; Zarina, S.; Pennington, S.R. Oral Squamous Cell Carcinoma: Key Clinical Questions, Biomarker Discovery, and the Role of Proteomics. Arch. Oral Biol. 2016, 63, 53–65. [Google Scholar] [CrossRef]
- Cardona-Mendoza, A.; Olivares-Niño, G.; Díaz-Báez, D.; Lafaurie, G.I.; Perdomo, S.J. Chemopreventive and Anti-Tumor Potential of Natural Products in Oral Cancer. Nutr. Cancer 2022, 74, 779–795. [Google Scholar] [CrossRef]
- Scully, C.; Bagan, J.V. Recent Advances in Oral Oncology. Oral Oncol. 2007, 43, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Yuen, A.P.W.; Wei, W.I.; Lam, L.K.; Ho, W.K.; Kwong, D. Results of Surgical Salvage of Locoregional Recurrence of Carcinoma of the Tongue after Radiotherapy Failure. Ann. Otol. Rhinol. Laryngol. 1997, 106, 779–782. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Chen, S.-F.; Liu, C.-L.; Nieh, S. The Chemoadjuvant Potential of Grape Seed Procyanidins on P53-Related Cell Death in Oral Cancer Cells. J. Oral Pathol. Med. 2012, 41, 322–331. [Google Scholar] [CrossRef]
- Wong, T.; Wiesenfeld, D. Oral Cancer. Aust. Dent. J. 2018, 63 (Suppl 1), S91–S99. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, M. Longitudinal Assessment of Articulatory and Masticatory Functions Following Glossectomy for Tongue Carcinoma. J. Stomatol. Soc. Jpn. 2010, 77, 27–34. [Google Scholar]
- Omura, K. Current Status of Oral Cancer Treatment Strategies: Surgical Treatments for Oral Squamous Cell Carcinoma. Int. J. Clin. Oncol. 2014, 19, 423–430. [Google Scholar] [CrossRef]
- Vincent, A.; Kohlert, S.; Lee, T.S.; Inman, J.; Ducic, Y. Free-Flap Reconstruction of the Tongue. Semin. Plast. Surg. 2019, 33, 38–45. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural Products in Drug Discovery: Advances and Opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Kinghorn, A.D.; Chin, Y.-W.; Swanson, S.M. Discovery of Natural Product Anticancer Agents from Biodiverse Organisms. Curr. Opin. drug Discov. Dev. 2009, 12, 189–196. [Google Scholar]
- Rayan, A.; Raiyn, J.; Falah, M. Nature Is the Best Source of Anticancer Drugs: Indexing Natural Products for Their Anticancer Bioactivity. PLoS ONE 2017, 12, e0187925. [Google Scholar] [CrossRef]
- Eastham, L.L.; Howard, C.M.; Balachandran, P.; Pasco, D.S.; Claudio, P.P. Eating Green: Shining Light on the Use of Dietary Phytochemicals as a Modern Approach in the Prevention and Treatment of Head and Neck Cancers. Curr. Top. Med. Chem. 2018, 18, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Sheth, S.H.; Johnson, D.E.; Kensler, T.W.; Bauman, J.E. Chemoprevention Targets for Tobacco-Related Head and Neck Cancer: Past Lessons and Future Directions. Oral Oncol. 2015, 51, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.F.; Haigentz, M.J.; Vermorken, J.B.; Strojan, P.; Bossi, P.; Rinaldo, A.; Takes, R.P.; Ferlito, A. Prevention of Head and Neck Squamous Cell Carcinoma: Removing the “Chemo” from “Chemoprevention”. Oral Oncol. 2015, 51, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Iriti, M.; Varoni, E.M. Chemopreventive Potential of Flavonoids in Oral Squamous Cell Carcinoma in Human Studies. Nutrients 2013, 5, 2564–2576. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Tseng, Y.-H. The Potential of Phytochemicals in Oral Cancer Prevention and Therapy: A Review of the Evidence. Biomolecules 2020, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Last 25 Years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brower, V. Back to Nature: Extinction of Medicinal Plants Threatens Drug Discovery. Gynecol. Oncol. 2008, 100, 838–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwell, M.; Rahman, P.K.S.M. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Wang, W.; Zhang, R. Novel Natural Product Therapeutics Targeting Both Inflammation and Cancer. Chin. J. Nat. Med. 2017, 15, 401–416. [Google Scholar] [CrossRef]
- Khazir, J.; Riley, D.L.; Pilcher, L.A.; De-Maayer, P.; Mir, B.A. Anticancer Agents from Diverse Natural Sources. Nat. Prod. Commun. 2014, 9, 1655–1669. [Google Scholar] [CrossRef]
- Amin, A.; Gali-Muhtasib, H.; Ocker, M.; Schneider-Stock, R. Overview of Major Classes of Plant-Derived Anticancer Drugs. Int. J. Biomed. Sci. IJBS 2009, 5, 1. [Google Scholar]
- Pezzuto, J.M. Plant-Derived Anticancer Agents. Biochem. Pharmacol. 1997, 53, 121–133. [Google Scholar] [CrossRef]
- Rajesh, E.; Sankari, L.S.; Malathi, L.; Krupaa, J.R. Naturally Occurring Products in Cancer Therapy. J. Pharm. Bioallied Sci. 2015, 7, S181–S183. [Google Scholar] [CrossRef]
- Amin, A.R.; Kucuk, O.; Khuri, F.R.; Shin, D.M. Perspectives for Cancer Prevention with Natural Compounds. J. Clin. Oncol. 2009, 27, 2712–2725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, B.P.; Chandran, R.; Abrahamse, H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants 2021, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, A.; Ramachandran, S.; Gupta, N.; Kaushik, I.; Wright, S.; Srivastava, S.; Das, H.; Srivastava, S.; Prasad, S.; Srivastava, S.K. Role of Phytochemicals in Cancer Prevention. Int. J. Mol. Sci. 2019, 20, 4981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.M.; Nabavi, S.; Behzad, S. Herbal Drugs and Natural Products in the Light of Nanotechnology and Nanomedicine for Developing Drug Formulations. Mini-Rev. Med. Chem. 2021, 21, 302–313. [Google Scholar] [CrossRef]
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural Product-Based Nanoformulations for Cancer Therapy: Opportunities and Challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef]
- Lagoa, R.; Silva, J.; Rodrigues, J.R.; Bishayee, A. Advances in Phytochemical Delivery Systems for Improved Anticancer Activity. Biotechnol. Adv. 2020, 38, 107382. [Google Scholar] [CrossRef]
- Ghanbari-Movahed, M.; Kaceli, T.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Recent Advances in Improved Anticancer Efficacies of Camptothecin Nano-Formulations: A Systematic Review. Biomedicines 2021, 9, 480. [Google Scholar] [CrossRef]
- Ghanbari-Movahed, M.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Quercetin- and Rutin-Based Nano-Formulations for Cancer Treatment: A Systematic Review of Improved Efficacy and Molecular Mechanisms. Phytomedicine 2022, 97, 153909. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Blot, W.J.; McLaughlin, J.K.; Winn, D.M.; Austin, D.F.; Greenberg, R.S.; Preston-Martin, S.; Bernstein, L.; Schoenberg, J.B.; Stemhagen, A.; Fraumeni, J.F. Smoking and Drinking in Relation to Oral and Pharyngeal Cancer. Cancer Res. 1988, 48, 3282–3287. [Google Scholar] [PubMed]
- Brugere, J.; Guenel, P.; Leclerc, A.; Rodriguez, J. Differential Effects of Tobacco and Alcohol in Cancer of the Larynx, Pharynx, and Mouth. Cancer 1986, 57, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Kato, I.; Nomura, A.M. Alcohol in the Aetiology of Upper Aerodigestive Tract Cancer. Eur. J. Cancer Part B Oral Oncol. 1994, 30, 75–81. [Google Scholar] [CrossRef]
- McCoy, G.D.; Wynder, E.L. Etiological and Preventive Implications in Alcohol Carcinogenesis. Cancer Res. 1979, 39, 2844–2850. [Google Scholar]
- De Stefani, E.; Boffetta, P.; Ronco, A.L.; Deneo-Pellegrini, H.; Correa, P.; Acosta, G.; Mendilaharsu, M.; E Luaces, M.; Silva, C. Processed Meat Consumption and Risk of Cancer: A Multisite Case–Control Study in Uruguay. Br. J. Cancer 2012, 107, 1584–1588. [Google Scholar] [CrossRef] [Green Version]
- Tavani, A.; Gallus, S.; La Vecchia, C.; Talamini, R.; Barbone, F.; Herrero, R.; Franceschi, S. Diet and Risk of Oral and Pharyngeal Cancer. An Italian Case–Control Study. Eur. J. Cancer Prev. 2001, 10, 191–195. [Google Scholar] [CrossRef]
- Brennan, J.A.; Boyle, J.O.; Koch, W.M.; Goodman, S.N.; Hruban, R.H.; Eby, Y.J.; Couch, M.J.; Forastiere, A.A.; Sidransky, D. Association between Cigarette Smoking and Mutation of the P53 Gene in Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 1995, 332, 712–717. [Google Scholar] [CrossRef]
- Negri, E.; La Vecchia, C.; Franceschi, S.; Decarli, A.; Bruzzi, P. Attributable Risks for Oesophageal Cancer in Northern Italy. Eur. J. Cancer 1992, 28A, 1167–1171. [Google Scholar] [CrossRef]
- Dikshit, R.; Gupta, P.C.; Ramasundarahettige, C.; Gajalakshmi, V.; Aleksandrowicz, L.; Badwe, R.; Kumar, R.; Roy, S.; Suraweera, W.; Bray, F.; et al. Cancer Mortality in India: A Nationally Representative Survey. Lancet 2012, 379, 1807–1816. [Google Scholar] [CrossRef] [PubMed]
- Coelho, K.R. Challenges of the Oral Cancer Burden in India. J. Cancer Epidemiol. 2012, 2012, 701932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, S.; Chaturvedi, P.; Nair, D.; Agarwal, J.; D′cruz, A.; Joshi, P. Delay in Seeking Specialized Care for Oral Cancers: Experience from a Tertiary Cancer Center. Indian J. Cancer 2014, 51, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Mummudi, N.; Agarwal, J.P.; Chatterjee, S.; Mallick, I.; Ghosh-Laskar, S. Oral Cavity Cancer in the Indian Subcontinent—Challenges and Opportunities. Clin. Oncol. 2019, 31, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Wynder, E.L.; Bross, I.J.; Feldman, R.K. A Study of the etiological factors in cancer of the mouth. Cancer 1957, 10, 1153–1156. [Google Scholar] [CrossRef]
- McCoy, G.D. A Biochemical Approach to the Etiology of Alcohol Related Cancers of the Head and Neck. Laryngoscope 1978, 88, 59–62. [Google Scholar]
- Ha, P.K.; Califano, J.A. The Role of Human Papillomavirus in Oral Carcinogenesis. Crit. Rev. Oral Biol. Med. 2004, 15, 188–196. [Google Scholar] [CrossRef] [Green Version]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human Papillomavirus Types in Head and Neck Squamous Cell Carcinomas Worldwide: A Systematic Review. Cancer Epidemiol. Biomark. Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Schildt, E.B.; Eriksson, M.; Hardell, L.; Magnuson, A. Oral Infections and Dental Factors in Relation to Oral Cancer: A Swedish Case-Control Study. Eur. J. Cancer Prev. 1998, 7, 201–206. [Google Scholar] [CrossRef]
- Cawson, R.A.; Lehner, T. Chronic Hyperplastic Candidiasis--Candidal Leukoplakia. Br. J. Dermatol. 1968, 80, 9–16. [Google Scholar] [CrossRef]
- Pflipsen, M.; Dent, Y.Z.-G. Nutrition for Oral Health and Oral Manifestations of Poor Nutrition and Unhealthy Habits. Gen. Dent. 2017, 65, 36–43. [Google Scholar] [PubMed]
- Grimm, M.; Cetindis, M.; Biegner, T.; Lehman, M.; Munz, A.; Teriete, P.; Reinert, S. Serum Vitamin D Levels of Patients with Oral Squamous Cell Carcinoma (OSCC) and Expression of Vitamin D Receptor in Oral Precancerous Lesions and OSCC. Med. Oral Patol. Oral Cir. Bucal 2015, 20, e188–e195. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.H.; Mahmood, Q.; Mariottini, G.L.; Chiang, T.A.; Lee, K.W. Adverse Health Effects of Betel Quid and the Risk of Oral and Pharyngeal Cancers. Biomed Res. Int. 2017, 2017, 3904098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundqvist, K.; Liu, Y.; Nair, J.; Bartsch, H.; Arvidson, K.; Grafström, R.C. Cytotoxic and Genotoxic Effects of Areca Nut-Related Compounds in Cultured Human Buccal Epithelial Cells. Cancer Res. 1989, 49, 5294–5298. [Google Scholar] [PubMed]
- Haddad, R.I.; Shin, D.M. Recent Advances in Head and Neck Cancer. N. Engl. J. Med. 2008, 359, 1143–1154. [Google Scholar] [CrossRef]
- Van Der Riet, P.; Nawroz, H.; Hruban, R.H.; Corto, R.; Tokino, K.; Koch, W.; Sidransky, D. Frequent Loss of Chromosome 9p21-22 Early in Head and Neck Cancer Progression. Cancer Res. 1994, 54, 1156–1158. [Google Scholar]
- Forastiere, A.; Koch, W.; Trotti, A.; Sidransky, D. Head and Neck Cancer. N. Engl. J. Med. 2001, 345, 1890–1900. [Google Scholar] [CrossRef]
- Nawroz, H.; Van Der Riet, P.; Hruban, R.H.; Koch, W.; Ruppert, J.M.; Sidransky, D. Allelotype of Head and Neck Squamous Cell Carcinoma. Cancer Res. 1994, 54, 1152–1155. [Google Scholar]
- Saba, N.F.; Choi, M.; Muller, S.; Shin, H.J.C.; Tighiouart, M.; Papadimitrakopoulou, V.A.; El-Naggar, A.K.; Khuri, F.R.; Chen, Z.G.; Shin, D.M. Role of Cyclooxygenase-2 in Tumor Progression and Survival of Head and Neck Squamous Cell Carcinoma. Cancer Prev. Res. 2009, 2, 823–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karamouzis, M.V.; Grandis, J.R.; Argiris, A. Therapies Directed against Epidermal Growth Factor Receptor in Aerodigestive Carcinomas. JAMA 2007, 298, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Temam, S.; Kawaguchi, H.; El-Naggar, A.K.; Jelinek, J.; Tang, H.; Liu, D.D.; Lang, W.; Issa, J.P.; Lee, J.J.; Mao, L. Epidermal Growth Factor Receptor Copy Number Alterations Correlate with Poor Clinical Outcome in Patients with Head and Neck Squamous Cancer. J. Clin. Oncol. 2007, 25, 2164–2170. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, F.; Zhang, W.; He, J.; Zhao, Y.; Chen, X. Prognostic Role of Epidermal Growth Factor Receptor in Head and Neck Cancer: A Meta-Analysis. J. Surg. Oncol. 2013, 108, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S.J.; Gorsky, M.; Lozada Dds, F.M. Oral Leukoplakia and Malignant Transformation A Follow-Up Study of 257 Patients. Cancer 1985, 55, 1303–1311. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Johnson, N.W.; Van Der Waal, I. Nomenclature and Classification of Potentially Malignant Disorders of the Oral Mucosa. J. Oral Pathol. Med. 2007, 36, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Cancer, O.; Lesions, P. Oral Cancer and Precancerous Lesions. Fogorv. Szle. 1997, 90 Spec No, 27. [Google Scholar] [CrossRef] [Green Version]
- Pires, F.R.; Pringle, G.A.; de Almeida, O.P.; Chen, S.-Y. Intra-Oral Minor Salivary Gland Tumors: A Clinicopathological Study of 546 Cases. Oral Oncol. 2007, 43, 463–470. [Google Scholar] [CrossRef]
- Buchner, A.; Merrell, P.W.; Carpenter, W.M. Relative Frequency of Intra-Oral Minor Salivary Gland Tumors: A Study of 380 Cases from Northern California and Comparison to Reports from Other Parts of the World. J. Oral Pathol. Med. 2007, 36, 207–214. [Google Scholar] [CrossRef]
- Montero, P.H.; Patel, S.G. Cancer of the Oral Cavity. Surg. Oncol. Clin. N. Am. 2015, 24, 491–508. [Google Scholar] [CrossRef] [Green Version]
- Pathology, H.W.-M. Molecular Pathogenesis of Oral Squamous Carcinoma. Mol. Pathol. 2000, 53, 165. [Google Scholar]
- Jefferies, S.; Eeles, R.; Goldgar, D.; A’Hern, R.; Henk, J.M.; Gore, M. The Role of Genetic Factors in Predisposition to Squamous Cell Cancer of the Head and Neck. Br. J. Cancer 1999, 79, 865–867. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, C.B.; Roy, N. Meta-Analysis of Glutathione S-Transferase M1 Genotype and Risk toward Head and Neck Cancer. Head Neck 2006, 28, 217–224. [Google Scholar] [CrossRef] [PubMed]
- oncology, D.S.-C. Molecular Genetics of Head and Neck Cancer. Curr. Opin. Oncol. 1995, 7, 229–233. [Google Scholar]
- Wong, D.; Oncogene, D.B. Expression of C-ErbB Proto-Oncogene during Dimethylbenzanthracene-Induced Tumorigenesis in Hamster Cheek Pouch. Oncogene 1987, 2, 67–72. [Google Scholar]
- Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. P53 Mutations in Human Cancers. Science 1991, 253, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamb, A.; Gruis, N.A.; Weaver-Feldhaus, J.; Liu, Q.; Harshman, K.; Tavtigian, S.V.; Stockert, E.; Day, R.S.; Johnson, B.E.; Skolnick, M.H. A Cell Cycle Regulator Potentially Involved in Genesis of Many Tumor Types. Science 1994, 264, 436–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadimitrakopoulou, V.; Lippman, S.; Lee, J.S.; Papadimitrakopoulou, V.; Izzo, J.; Lippman, S.M.; Lee, J.S.; Fan, H.; Clayman, G.; Ro, J.Y.; et al. Frequent Inactivation of P16INK4a in Oral Premalignant Lesions. Oncogene 1997, 14, 1799–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liggett, W.H., Jr.; Sewell, D.A.; Rocco, J.; Ahrendt, S.A.; Koch, W.; Sidransky, D. P16 and P16β Are Potent Growth Suppressors of Head and Neck Squamous Carcinoma Cells in Vitro. Cancer Res. 1996, 56, 4119–4123. [Google Scholar]
- Shao, X.; Tandon, R.; Samara, G.; Kanki, H.; Yano, H.; Close, L.G.; Parsons, R.; Sato, T. Mutational Analysis of the PTEN Gene in Head and Neck Squamous Cell Carcinoma. Int. J. Cancer 1998, 77, 684–688. [Google Scholar] [CrossRef]
- Mao, L.; Lee, J.S.; Fan, Y.H.; Ro, J.Y.; Batsakis, J.G.; Lippman, S.; Hittelman, W.; Hong, W.K. Frequent Microsatellite Alterations at Chromosomes 9p21 and 3p14 in Oral Premalignant Lesions and Their Value in Cancer Risk Assessment. Nat. Med. 1996, 2, 682–685. [Google Scholar] [CrossRef]
- E Tseng, J.; Kemp, B.L.; Khuri, F.R.; Kurie, J.M.; Lee, J.S.; Zhou, X.; Liu, D.; Hong, W.K.; Mao, L. Loss of Fhit Is Frequent in Stage I Non-Small Cell Lung Cancer and in the Lungs of Chronic Smokers. Cancer Res. 1999, 59, 4798–4803. [Google Scholar]
- Spafford, M.F.; Koch, W.M.; Reed, A.L.; A Califano, J.; Xu, L.H.; Eisenberger, C.F.; Yip, L.; Leong, P.L.; Wu, L.; Liu, S.X.; et al. Detection of Head and Neck Squamous Cell Carcinoma among Exfoliated Oral Mucosal Cells by Microsatellite Analysis. Clin. Cancer Res. 2001, 7, 607–612. [Google Scholar] [PubMed]
- Andrews, N.; Griffiths, C. Dental Complications of Head and Neck Radiotherapy: Part 2. Aust. Dent. J. 2001, 46, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Glynne-Jones, R. Radiotherapy and Oncology. Radiother. Oncol. 2012, 102, 161–162. [Google Scholar] [CrossRef] [PubMed]
- Scully, C. Oral and Maxillofacial Medicine: The Basis of Diagnosis and Treatment; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Adelstein, D.J.; Li, Y.; Adams, G.L.; Wagner, H.; Kish, J.A.; Ensley, J.F.; Schuller, D.E.; Forastiere, A.A. An Intergroup Phase III Comparison of Standard Radiation Therapy and Two Schedules of Concurrent Chemoradiotherapy in Patients with Unresectable Squamous Cell Head and Neck Cancer. J. Clin. Oncol. 2003, 21, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachaud, J.M.; Cohen-Jonathan, E.; Alzieu, C.; David, J.M.; Serrano, E.; Daly-Schveitzer, N. Combined Postoperative Radiotherapy and Weekly Cisplatin Infusion for Locally Advanced Head and Neck Carcinoma: Final Report of a Randomized Trial. Int. J. Radiat. Oncol. 1996, 36, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Trigo, J.M.; Bourhis, J.; Tortochaux, J.; Cortés-Funes, H.; Hitt, R.; Gascón, P.; Amellal, N.; Harstrick, A.; Eckardt, A. Phase II Multicenter Study of the Antiepidermal Growth Factor Receptor Monoclonal Antibody Cetuximab in Combination with Platinum-Based Chemotherapy in Patients with Platinum-Refractory Metastatic and/or Recurrent Squamous Cell Carcinoma of the Head and N. J. Clin. Oncol. 2005, 23, 5568–5577. [Google Scholar] [CrossRef] [PubMed]
- Calixto, G.; Bernegossi, J.; Fonseca-Santos, B.; Chorilli, M. Nanotechnology-Based Drug Delivery Systems for Treatment of Oral Cancer: A Review. Int. J. Nanomed. 2014, 9, 3719–3735. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Fazal, S.; Miyako, E.; Matsumura, K.; Rajan, R. Avengers against Cancer: A New Era of Nano-Biomaterial-Based Therapeutics. Mater. Today 2021, 51, 317–349. [Google Scholar] [CrossRef]
- Huang, S.-H.; O’Sullivan, B. Oral Cancer: Current Role of Radiotherapy and Chemotherapy. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e233–e240. [Google Scholar] [CrossRef]
- Tewari, D.; Rawat, P.; Singh, P.K. Adverse Drug Reactions of Anticancer Drugs Derived from Natural Sources. Food Chem. Toxicol. 2019, 123, 522–535. [Google Scholar] [CrossRef]
- Mitra, A.K.; Agrahari, V.; Mandal, A.; Cholkar, K.; Natarajan, C.; Shah, S.; Joseph, M.; Trinh, H.M.; Vaishya, R.; Yang, X.; et al. Novel Delivery Approaches for Cancer Therapeutics. J. Control. Release 2015, 219, 248–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcheri, C.; Mitsiadis, T.A. New Scenarios in Pharmacological Treatments of Head and Neck Squamous Cell Carcinomas. Cancers 2021, 13, 5515. [Google Scholar] [CrossRef]
- Hartner, L. Chemotherapy for Oral Cancer. Dent. Clin. N. Am. 2018, 62, 87–97. [Google Scholar] [CrossRef]
- GÓrnaŚ, M.; Szczylik, C. Oral Treatment of Metastatic Breast Cancer with Capecitabine: What Influences the Decision-Making Process? Eur. J. Cancer Care 2010, 19, 131–136. [Google Scholar] [CrossRef]
- Liu, G.; Franssen, E.; Fitch, M.I.; Warner, E. Patient Preferences for Oral versus Intravenous Palliative Chemotherapy. J. Clin. Oncol. 1997, 15, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Halfdanarson, T.R.; Jatoi, A. Oral Cancer Chemotherapy: The Critical Interplay between Patient Education and Patient Safety. Curr. Oncol. Rep. 2010, 12, 247–252. [Google Scholar] [CrossRef]
- Kumar, B.; Yadav, A.; Hideg, K.; Kuppusamy, P.; Teknos, T.N.; Kumar, P. A Novel Curcumin Analog (H-4073) Enhances the Therapeutic Efficacy of Cisplatin Treatment in Head and Neck Cancer. PLoS ONE 2014, 9, e93208. [Google Scholar] [CrossRef]
- Zlotogorski, A.; Dayan, A.; Dayan, D.; Chaushu, G.; Salo, T.; Vered, M. Nutraceuticals as New Treatment Approaches for Oral Cancer—I: Curcumin. Oral Oncol. 2013, 49, 187–191. [Google Scholar] [CrossRef]
- Zlotogorski, A.; Dayan, A.; Dayan, D.; Chaushu, G.; Salo, T.; Vered, M. Nutraceuticals as New Treatment Approaches for Oral Cancer: II. Green Tea Extracts and Resveratrol. Oral Oncol. 2013, 49, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Butnariu, M.; Quispe, C.; Sharifi-Rad, J.; Pons-Fuster, E.; Lopez-Jornet, P.; Zam, W.; Das, T.; Dey, A.; Kumar, M.; Pentea, M.; et al. Naturally-Occurring Bioactives in Oral Cancer: Preclinical and Clinical Studies, Bottlenecks and Future Directions. Front. Biosci. 2022, 14, 24. [Google Scholar] [CrossRef]
- Li, S.; Kuo, H.C.D.; Yin, R.; Wu, R.; Liu, X.; Wang, L.; Hudlikar, R.; Peter, R.M.; Kong, A.N. Epigenetics/Epigenomics of Triterpenoids in Cancer Prevention and in Health. Biochem. Pharmacol. 2020, 175, 113890. [Google Scholar] [CrossRef]
- Liskova, A.; Koklesova, L.; Samec, M.; Smejkal, K.; Samuel, S.M.; Varghese, E.; Abotaleb, M.; Biringer, K.; Kudela, E.; Danko, J.; et al. Flavonoids in Cancer Metastasis. Cancers 2020, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Liskova, A.; Kubatka, P.; Samec, M.; Zubor, P.; Mlyncek, M.; Bielik, T.; Samuel, S.M.; Zulli, A.; Kwon, T.K.; Büsselberg, D. Dietary Phytochemicals Targeting Cancer Stem Cells. Molecules 2019, 24, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.Y.; Kao, C.L.; Liu, C.M. The Cancer Prevention, Anti-Inflammatory and Anti-Oxidation of Bioactive Phytochemicals Targeting the TLR4 Signaling Pathway. Int. J. Mol. Sci. 2018, 19, 2729. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Oo Khor, T.; Shu, L.; Su, Z.-Y.; Fuentes, F.; Lee, J.-H.; Tony Kong, A.-N. Plants vs. Cancer: A Review on Natural Phytochemicals in Preventing and Treating Cancers and Their Druggability. Anticancer Agents Med. Chem. 2012, 12, 1281–1305. [Google Scholar] [CrossRef] [PubMed]
- Mahbub, A.; Le Maitre, C.; Haywood-Small, S.; Cross, N.; Jordan-Mahy, N. Polyphenols Act Synergistically with Doxorubicin and Etoposide in Leukaemia Cell Lines. Cell Death Discov. 2015, 1, 15043. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, A.; Ghorbani, A. Cancer Therapy with Phytochemicals: Evidence from Clinical Studies. Avicenna J. Phytomedicine 2015, 5, 84–97. [Google Scholar]
- Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in Cancer Treatment: From Preclinical Studies to Clinical Practice. Front. Pharmacol. 2020, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Sharma, B.; Kanwar, S.S.; Kumar, A. Lead Phytochemicals for Anticancer Drug Development. Front. Plant Sci. 2016, 7, 1667. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Guo, Y.; Gu, X. Salvianolic Acid B, a Potential Chemopreventive Agent, for Head and Neck Squamous Cell Cancer. J. Oncol. 2011, 2011, 534548. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, L.; Wei, J.; Zhang, C.; Zhou, Z.; Wu, L.; Liu, W. Cellular Uptake and Anticancer Activity of Salvianolic Acid B Phospholipid Complex Loaded Nanoparticles in Head and Neck Cancer and Precancer Cells. Colloids Surf. B. Biointerfaces 2016, 147, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Marcazzan, S.; Varoni, E.M.; Blanco, E.; Lodi, G.; Ferrari, M. Nanomedicine, an Emerging Therapeutic Strategy for Oral Cancer Therapy. Oral Oncol. 2018, 76, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.Q.; Chen, D.; Wang, A.X.; Li, S.; Chen, Y.; Wang, J. Antitumor Effects of Hydroxycamptothecin-Loaded Poly Micelles Against Oral Squamous Cell Carcinoma. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2006, 16, 313–323. [Google Scholar]
- The Effect of Topically Garlic Solution Painting on Experimental Oral Precancer and Oral Cancer in Rats. Zhonghua Kou Qiang Yi Xue Za Zhi 1995, 30, 232–234.
- Laskar, A.; Khan, S.H.; Subbarao, N.; Younus, H.; Danishuddin, M. Enhancement in the Catalytic Activity of Human Salivary Aldehyde Dehydrogenase by Alliin from Garlic: Implications in Aldehyde Toxicity and Oral Health. Curr. Pharm. Biotechnol. 2019, 20, 506–516. [Google Scholar] [CrossRef]
- Alamir, A.H.; Patil, S. Allicin Could Potentially Alleviate Oral Cancer Pain by Inhibiting “Pain Mediators” TNF-Alpha, IL-8, and Endothelin. Curr. Issues Mol. Biol. 2021, 43, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, P.; Ponnusamy, S.; Harish, S.; Ganesh, M.R.; Hayakawa, Y. Hydrothermal Synthesis of Pure and Bio Modified TiO2: Characterization, Evaluation of Antibacterial Activity against Gram Positive and Gram Negative Bacteria and Anticancer Activity against KB Oral Cancer Cell Line. Arab. J. Chem. 2020, 13, 3484–3497. [Google Scholar] [CrossRef]
- Mondal, A.; Banerjee, S.; Bose, S.; Mazumder, S.; Haber, R.A.; Farzaei, M.H.; Bishayee, A. Garlic Constituents for Cancer Prevention and Therapy: From Phytochemistry to Novel Formulations. Pharmacol. Res. 2022, 175, 105837. [Google Scholar] [CrossRef] [PubMed]
- Sasi, M.; Kumar, S.; Kumar, M.; Thapa, S.; Prajapati, U.; Tak, Y.; Changan, S.; Saurabh, V.; Kumari, S.; Kumar, A.; et al. Garlic (Allium sativum L.) Bioactives and Its Role in Alleviating Oral Pathologies. Antioxidants 2021, 10, 1847. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Binduga, U.E.; Rybczyńska-Tkaczyk, K.; Leja, M.L.; Gmiński, J. Cytotoxic Effects of Two Extracts from Garlic (Allium sativum L.) Cultivars on the HUMAN Squamous Carcinoma Cell Line SCC-15. Saudi J. Biol. Sci. 2018, 25, 1703–1712. [Google Scholar] [CrossRef] [Green Version]
- Krishnakumar, N.; Sulfikkarali, N.; RajendraPrasad, N.; Karthikeyan, S. Enhanced Anticancer Activity of Naringenin-Loaded Nanoparticles in Human Cervical (HeLa) Cancer Cells. Biomed. Prev. Nutr. 2011, 1, 223–231. [Google Scholar] [CrossRef]
- Sulfikkarali, N.; Krishnakumar, N.; Manoharan, S.; Nirmal, R.M. Chemopreventive Efficacy of Naringenin-Loaded Nanoparticles in 7,12-Dimethylbenz(a)Anthracene Induced Experimental Oral Carcinogenesis. Pathol. Oncol. Res. 2013, 19, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, N.; Sulfikkarali, N.K.; Manoharan, S.; Venkatachalam, P. Raman Spectroscopic Investigation of the Chemopreventive Response of Naringenin and Its Nanoparticles in DMBA-Induced Oral Carcinogenesis. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2013, 115, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Sahoo, S.K. Long Circulating Chitosan/PEG Blended PLGA Nanoparticle for Tumor Drug Delivery. Eur. J. Pharmacol. 2011, 670, 372–383. [Google Scholar] [CrossRef]
- Acharya, S.; Sahoo, S.K. PLGA Nanoparticles Containing Various Anticancer Agents and Tumour Delivery by EPR Effect. Adv. Drug Deliv. Rev. 2011, 63, 170–183. [Google Scholar] [CrossRef]
- Pradhan, R.; Chatterjee, S.; Hembram, K.C.; Sethy, C.; Mandal, M.; Kundu, C.N. Nano Formulated Resveratrol Inhibits Metastasis and Angiogenesis by Reducing Inflammatory Cytokines in Oral Cancer Cells by Targeting Tumor Associated Macrophages. J. Nutr. Biochem. 2021, 92, 108624. [Google Scholar] [CrossRef]
- Lin, W.; Huang, Y.-W.; Zhou, X.-D.; Ma, Y. In Vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells. Toxicol. Appl. Pharmacol. 2006, 217, 252–259. [Google Scholar] [CrossRef]
- Chen, M.; von Mikecz, A. Formation of Nucleoplasmic Protein Aggregates Impairs Nuclear Function in Response to SiO2 Nanoparticles. Exp. Cell Res. 2005, 305, 51–62. [Google Scholar] [CrossRef]
- Jin, Y.; Kannan, S.; Wu, M.; Zhao, J.X. Toxicity of Luminescent Silica Nanoparticles to Living Cells. Chem. Res. Toxicol. 2007, 20, 1126–1133. [Google Scholar] [CrossRef]
- Chang, J.S.; Chang, K.L.B.; Hwang, D.F.; Kong, Z.L. In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line. Environ. Sci. Technol. 2007, 41, 2064–2068. [Google Scholar] [CrossRef]
- Das, K.; Uppal, A.; Jain, B.; Bose, B.; Gupta, P.K. Light Induced Toxicity of Merocyanine 540-Silica Nanoparticle Complex. J. Nanosci. Nanotechnol. 2009, 9, 5642–5645. [Google Scholar] [CrossRef] [PubMed]
- Jain, B.; Uppal, A.; Gupta, P.K.; Das, K. Spectroscopic Investigations on the Binding of the Photosensitizer Chlorin P6 with Amine-Modified Silica Nanoparticles in Aqueous Media. Photochem. Photobiol. 2009, 85, 927–933. [Google Scholar] [CrossRef]
- Uppal, A.; Jain, B.; Gupta, P.K.; Das, K. Photodynamic Action of Rose Bengal Silica Nanoparticle Complex on Breast and Oral Cancer Cell Lines. Photochem. Photobiol. 2011, 87, 1146–1151. [Google Scholar] [CrossRef] [PubMed]
- Kiruthiga, P.V.; Pandian, S.K.; Devi, K.P. Silymarin Protects PBMC against B(a)P Induced Toxicity by Replenishing Redox Status and Modulating Glutathione Metabolizing Enzymes—An in Vitro Study. Toxicol. Appl. Pharmacol. 2010, 247, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Swarnakar, N.K.; Godugu, C.; Singh, R.P.; Jain, S. The Effect of the Oral Administration of Polymeric Nanoparticles on the Efficacy and Toxicity of Tamoxifen. Biomaterials 2011, 32, 503–515. [Google Scholar] [CrossRef]
- Xiao, Y.-Y.; Song, Y.-M.; Chen, Z.-P.; Ping, Q.-N. Preparation of silybin-phospholipid complex and its bioavailability in rats. Yao Xue Xue Bao 2005, 40, 611–617. [Google Scholar]
- Jung, J.-Y.; Yoo, S.D.; Lee, S.-H.; Kim, K.-H.; Yoon, D.-S.; Lee, K.-H. Enhanced Solubility and Dissolution Rate of Itraconazole by a Solid Dispersion Technique. Int. J. Pharm. 1999, 187, 209–218. [Google Scholar] [CrossRef]
- Wang, S.-L.; Lin, S.-Y.; Chen, T.-F.; Cheng, W.-T. Eudragit E Accelerated the Diketopiperazine Formation of Enalapril Maleate Determined by Thermal FTIR Microspectroscopic Technique. Pharm. Res. 2004, 21, 2127–2132. [Google Scholar] [CrossRef]
- Seremeta, K.P.; Chiappetta, D.A.; Sosnik, A. Poly(ɛ-Caprolactone), Eudragit® RS 100 and Poly(ɛ-Caprolactone)/Eudragit® RS 100 Blend Submicron Particles for the Sustained Release of the Antiretroviral Efavirenz. Colloids Surfaces B Biointerfaces 2013, 102, 441–449. [Google Scholar] [CrossRef]
- Liang, G.F.; Zhu, Y.L.; Sun, B.; Hu, F.H.; Tian, T.; Li, S.C.; Xiao, Z.D. PLGA-Based Gene Delivering Nanoparticle Enhance Suppression Effect of MiRNA in HePG2 Cells. Nanoscale Res. Lett. 2011, 6, 447. [Google Scholar] [CrossRef] [Green Version]
- Arya, G.; Vandana, M.; Acharya, S.; Sahoo, S.K. Enhanced Antiproliferative Activity of Herceptin (HER2)-Conjugated Gemcitabine-Loaded Chitosan Nanoparticle in Pancreatic Cancer Therapy. Biol. Med. 2011, 7, 859–870. [Google Scholar] [CrossRef]
- Shi, Y.-J.; Zeng, K.; Li, G.-F.; Zhang, M.; Zhu, X.-L.; Sun, L.-D.; Yang, X.-X. Effects of Podophyllotoxin Solid Lipid Nanoparticles on Proliferation and Apoptosis of Cervical Carcinoma Cells. J. South. Med Univ. 2008, 28, 786–788. [Google Scholar]
- Garcion, E.; Lamprecht, A.; Heurtault, B.; Paillard, A.; Aubert-Pouessel, A.; Denizot, B.; Menei, P.; Benoît, J.P. A New Generation of Anticancer, Drug-Loaded, Colloidal Vectors Reverses Multidrug Resistance in Glioma and Reduces Tumor Progression in Rats. Mol. Cancer Ther. 2006, 5, 1710–1722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohulkumar, M.; Gurushankar, K.; Prasad, N.R.; Krishnakumar, N. Enhanced Cytotoxicity and Apoptosis-Induced Anticancer Effect of Silibinin-Loaded Nanoparticles in Oral Carcinoma (KB) Cells. Mater. Sci. Eng. C 2014, 41, 274–282. [Google Scholar] [CrossRef]
- Lin, H.-Y.; Thomas, J.L.; Chen, H.-W.; Shen, C.-M.; Yang, W.-J.; Lee, M.-H. In Vitro Suppression of Oral Squamous Cell Carcinoma Growth by Ultrasound-Mediated Delivery of Curcumin Microemulsions. Int. J. Nanomed. 2012, 7, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Holpuch, A.S.; Hummel, G.J.; Tong, M.; Seghi, G.A.; Pei, P.; Ma, P.; Mumper, R.J.; Mallery, S.R. Nanoparticles for Local Drug Delivery to the Oral Mucosa: Proof of Principle Studies. Pharm. Res. 2010, 27, 1224–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazari, R.; Sattarahmady, N.; Heli, H. Nano-Technological Methods for Increasing the Oral Bioavailability of Curcumin. J. Fasa Univ. Med. Sci. 2017, 7, 152–161. [Google Scholar]
- Ag Seleci, D.; Seleci, M.; Walter, J.G.; Stahl, F.; Scheper, T. Niosomes as Nanoparticular Drug Carriers: Fundamentals and Recent Applications. J. Nanomater. 2016, 2016, 7372306. [Google Scholar] [CrossRef]
- Fazli, B.; Irani, S.; Bardania, H.; Moosavi, M.-S.; Rohani, B. Prophylactic Effect of Topical (Slow-Release) and Systemic Curcumin Nano-Niosome Antioxidant on Oral Cancer in Rat. BMC Complement. Med. Ther. 2022, 22, 109. [Google Scholar] [CrossRef]
- Kresty, L.A.; Mallery, S.R.; Stoner, G.D. Black Raspberries in Cancer Clinical Trials: Past, Present and Future. J. Berry Res. 2016, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Knobloch, T.J.; Ryan, N.M.; Bruschweiler-Li, L.; Wang, C.; Bernier, M.C.; Somogyi, A.; Yan, P.S.; Cooperstone, J.L.; Mo, X.; Brüschweiler, R.P.; et al. Metabolic Regulation of Glycolysis and AMP Activated Protein Kinase Pathways during Black Raspberry-Mediated Oral Cancer Chemoprevention. Metabolites 2019, 9, 140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallery, S.R.; Stoner, G.D.; Larsen, P.E.; Fields, H.W.; Rodrigo, K.A.; Schwartz, S.J.; Tian, Q.; Dai, J.; Mumper, R.J. Formulation and In-Vitro and In-Vivo Evaluation of a Mucoadhesive Gel Containing Freeze Dried Black Raspberries: Implications for Oral Cancer Chemoprevention. Pharm. Res. 2007, 24, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Mallery, S.R.; Tong, M.; Shumway, B.S.; Curran, A.E.; Larsen, P.E.; Ness, G.M.; Kennedy, K.S.; Blakey, G.H.; Kushner, G.M.; Vickers, A.M.; et al. Topical Application of a Mucoadhesive Freeze-Dried Black Raspberry Gel Induces Clinical and Histologic Regression and Reduces Loss of Heterozygosity Events in Premalignant Oral Intraepithelial Lesions: Results from a Multicentered, Placebo-Controlled Clin. Clin. Cancer Res. 2014, 20, 1910–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallery, S.R.; Zwick, J.C.; Pei, P.; Tong, M.; Larsen, P.E.; Shumway, B.S.; Lu, B.; Fields, H.W.; Mumper, R.J.; Stoner, G.D. Topical Application of a Bioadhesive Black Raspberry Gel Modulates Gene Expression and Reduces Cyclooxygenase 2 Protein in Human Premalignant Oral Lesions. Cancer Res. 2008, 68, 4945–4957. [Google Scholar] [CrossRef] [Green Version]
- Shumway, B.S.; Kresty, L.A.; Larsen, P.E.; Zwick, J.C.; Lu, B.; Fields, H.W.; Mumper, R.J.; Stoner, G.D.; Mallery, S.R. Effects of a Topically Applied Bioadhesive Berry Gel on Loss of Heterozygosity Indices in Premalignant Oral Lesions. Clin. Cancer Res. 2008, 14, 2421–2430. [Google Scholar] [CrossRef] [Green Version]
- Ugalde, C.M.; Liu, Z.; Ren, C.; Chan, K.K.; Rodrigo, K.A.; Ling, Y.; Larsen, P.E.; Chacon, G.E.; Stoner, G.D.; Mumper, R.J.; et al. Distribution of Anthocyanins Delivered from a Bioadhesive Black Raspberry Gel Following Topical Intraoral Application in Normal Healthy Volunteers. Pharm. Res. 2009, 26, 977–986. [Google Scholar] [CrossRef] [Green Version]
- Hernán Pérez de la Ossa, D.; Lorente, M.; Gil-Alegre, M.E.; Torres, S.; García-Taboada, E.; Aberturas, M.d.R.; Molpeceres, J.; Velasco, G.; Torres-Suárez, A.I. Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme. PLoS ONE 2013, 8, e54795. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Nie, S.; Hsiao, W.W.; Pam, W. Thermoreversible Pluronic® F127-Based Hydrogel Containing Liposomes for the Controlled Delivery of Paclitaxel: In Vitro Drug Release, Cell Cytotoxicity, And uptake studies. Int. J. Nanomed. 2011, 6, 151–166. [Google Scholar] [CrossRef]
- Choi, S.W.; Moon, E.K.; Park, J.Y.; Jung, K.W.; Oh, C.M.; Kong, H.J.; Won, Y.J. Trends in the Incidence of and Survival Rates for Oral Cavity Cancer in the Korean Population. Oral Dis. 2014, 20, 773–779. [Google Scholar] [CrossRef]
- Desai, K.G.H. Polymeric Drug Delivery Systems for Intraoral Site-Specific Chemoprevention of Oral Cancer. J. Biomed. Mater. Res. B. Appl. Biomater. 2018, 106, 1383–1413. [Google Scholar] [CrossRef]
- Mahajan, M.; Utreja, P.; Kumar Jain, S. Paclitaxel Loaded Nanoliposomes in Thermosensitive Hydrogel: A Dual Approach for Sustained and Localized Delivery. Anti-Cancer Agents Med. Chem. 2016, 16, 365–376. [Google Scholar] [CrossRef]
- Gharat, S.A.; Momin, M.; Bhavsar, C. Oral Squamous Cell Carcinoma: Current Treatment Strategies and Nanotechnology-Based Approaches for Prevention and Therapy. Crit. Rev. Ther. Drug Carr. Syst. 2016, 33, 363–400. [Google Scholar] [CrossRef] [PubMed]
- Gavin, A.; Pham, J.T.H.; Wang, D.; Brownlow, B.; Elbayoumi, T.A. Layered Nanoemulsions as Mucoadhesive Buccal Systems for Controlled Delivery of Oral Cancer Therapeutics. Int. J. Nanomed. 2015, 10, 1569–1584. [Google Scholar] [CrossRef] [Green Version]
- Mazzarino, L.; Loch-Neckel, G.; Bubniak, L.D.S.; Mazzucco, S.; Santos-Silva, M.C.; Borsali, R.; Lemos-Senna, E. Curcumin-Loaded Chitosan-Coated Nanoparticles as a New Approach for the Local Treatment of Oral Cavity Cancer. J. Nanosci. Nanotechnol. 2015, 15, 781–791. [Google Scholar] [CrossRef]
- Bernkop-Schnürch, A.; Dünnhaupt, S. Chitosan-Based Drug Delivery Systems. Eur. J. Pharm. Biopharm. 2012, 81, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Sogias, I.A.; Williams, A.C.; Khutoryanskiy, V.V. Why Is Chitosan Mucoadhesive? Biomacromolecules 2008, 9, 1837–1842. [Google Scholar] [CrossRef]
- Shin, H.K.; Kim, J.; Lee, E.J.; Kim, S.H. Inhibitory Effect of Curcumin on Motility of Human Oral Squamous Carcinoma YD-10B Cells via Suppression of ERK and NF-ΚB Activations. Phytother. Res. 2010, 24, 577–582. [Google Scholar] [CrossRef]
- Chang, K.W.; Hung, P.S.; Lin, I.Y.; Hou, C.P.; Chen, L.K.; Tsai, Y.M.; Lin, S.C. Curcumin Upregulates Insulin-like Growth Factor Binding Protein-5 (IGFBP-5) and C/EBPα during Oral Cancer Suppression. Int. J. Cancer 2010, 127, 9–20. [Google Scholar] [CrossRef]
- Liao, S.; Xia, J.; Chen, Z.; Zhang, S.; Ahmad, A.; Miele, L.; Sarkar, F.H.; Wang, Z. Inhibitory Effect of Curcumin on Oral Carcinoma CAL-27 Cells via Suppression of Notch-1 and NF-κB Signaling Pathways. J. Cell. Biochem. 2011, 112, 1055–1065. [Google Scholar] [CrossRef]
- Ünal, H.; Öztürk, N.; Bilensoy, E. Formulation Development, Stability and Anticancer Efficacy of Core-Shell Cyclodextrin Nanocapsules for Oral Chemotherapy with Camptothecin. Beilstein J. Org. Chem. 2015, 11, 204. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Hung, C.-F.; Hua, S.-C.; Hwang, T.-L. Acoustically Active Perfluorocarbon Nanoemulsions as Drug Delivery Carriers for Camptothecin: Drug Release and Cytotoxicity against Cancer Cells. Ultrasonics 2009, 49, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.G.; Lee, S.E.; Kang, B.S.; Ng, C.L.; Davaa, E.; Park, J.S. Thermosensitive and Mucoadhesive Sol-Gel Composites of Paclitaxel/Dimethyl-β-Cyclodextrin for Buccal Delivery. PLoS ONE 2014, 9, e109090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damascelli, B.; Patelli, G.L.; Lanocita, R.; Di Tolla, G.; Frigerio, L.F.; Marchianò, A.; Garbagnati, F.; Spreafico, C.; Tichà, V.; Gladin, C.R.; et al. A Novel Intraarterial Chemotherapy Using Paclitaxel in Albumin Nanoparticles to Treat Advanced Squamous Cell Carcinoma of the Tongue: Preliminary Findings. AJR. Am. J. Roentgenol. 2003, 181, 253–260. [Google Scholar] [CrossRef]
- Lin, C.H.; Lu, W.C.; Wang, C.W.; Chan, Y.C.; Chen, M.K. Capsaicin Induces Cell Cycle Arrest and Apoptosis in Human KB Cancer Cells. BMC Complement. Altern. Med. 2013, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, W.; Ruan, C.; Zhang, Y.; Wang, J.; Han, J.; Shao, Z.; Sun, Y.; Liang, J. Bioavailability Enhancement of EGCG by Structural Modification and Nano-Delivery: A Review. J. Funct. Foods 2020, 65, 103732. [Google Scholar] [CrossRef]
- Granja, A.; Pinheiro, M.; Reis, S. Epigallocatechin Gallate Nanodelivery Systems for Cancer Therapy. Nutrients 2016, 8, 307. [Google Scholar] [CrossRef] [PubMed]
- Belobrov, S.; Seers, C.; Reynolds, E.; Cirillo, N.; McCullough, M. Functional and Molecular Effects of a Green Tea Constituent on Oral Cancer Cells. J. Oral Pathol. Med. 2019, 48, 604–610. [Google Scholar] [CrossRef]
- Filippi, A.; Ciolac, O.-A.; Ganea, C.; Mocanu, M.-M. ErbB Proteins as Molecular Target of Dietary Phytochemicals in Malignant Diseases. J. Oncol. 2017, 2017, 1532534. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Biswal, B.K. Piperlongumine, a Potent Anticancer Phytotherapeutic: Perspectives on Contemporary Status and Future Possibilities as an Anticancer Agent. Pharmacol. Res. 2020, 156, 104772. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Liu, G.-H.; Chao, W.-Y.; Shi, C.-S.; Lin, C.-Y.; Lim, Y.-P.; Lu, C.-H.; Lai, P.-Y.; Chen, H.-R.; Lee, Y.-R. Piperlongumine Suppresses Proliferation of Human Oral Squamous Cell Carcinoma through Cell Cycle Arrest, Apoptosis and Senescence. Int. J. Mol. Sci. 2016, 17, 616. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimian, M.; Mahvelati, F.; Malaekeh-Nikouei, B.; Hashemi, E.; Oroojalian, F.; Hashemi, M. Bromelain Loaded Lipid-Polymer Hybrid Nanoparticles for Oral Delivery: Formulation and Characterization. Appl. Biochem. Biotechnol. 2022, 194, 3733–3748. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.; Park, H.; Kim, J. The Potential Use of Bromelain as a Natural Oral Medicine Having Anticarcinogenic Activities. Food Sci. Nutr. 2019, 7, 1656–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, L.; Fan, D.; Yi, X.; Cao, X.; Chen, D.; Wang, L. Curcumin Inhibits Oral Squamous Cell Carcinoma Proliferation and Invasion via EGFR Signaling Pathways. Int. J. Clin. Exp. Pathol. 2014, 7, 6438. [Google Scholar] [PubMed]
- Lee, A.Y.L.; Fan, C.C.; Chen, Y.A.; Cheng, C.W.; Sung, Y.J.; Hsu, C.P.; Kao, T.Y. Curcumin Inhibits Invasiveness and Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Through Reducing Matrix Metalloproteinase 2, 9 and Modulating P53-E-Cadherin Pathway. Integr. Cancer Ther. 2015, 14, 484–490. [Google Scholar] [CrossRef]
- Shen, R.; Kim, J.J.; Yao, M.; Elbayoumi, T.A. Development and Evaluation of Vitamin E D-α-Tocopheryl Polyethylene Glycol 1000 Succinate-Mixed Polymeric Phospholipid Micelles of Berberine as an Anticancer Nanopharmaceutical. Int. J. Nanomed. 2016, 11, 1687. [Google Scholar]
- Ong, C.P.; Lee, W.L.; Tang, Y.Q.; Yap, W.H. Honokiol: A Review of Its Anticancer Potential and Mechanisms. Cancers 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Zou, H.; Liu, G.; Song, C.; Tang, C.; Chen, S.; Zhang, G.; Ran, J.; Wang, Y.; Yin, X. Peroxidase-Mimicking Evodiamine/Indocyanine Green Nanoliposomes for Multimodal Imaging-Guided Theranostics for Oral Squamous Cell Carcinoma. Bioact. Mater. 2021, 6, 2144–2157. [Google Scholar] [CrossRef]
- Kishore T, K.K.; Ganugula, R.; Gade, D.R.; Reddy, G.B.; Nagini, S. Gedunin Abrogates Aldose Reductase, PI3K/Akt/mTOR, and NF-ΚB Signaling Pathways to Inhibit Angiogenesis in a Hamster Model of Oral Carcinogenesis. Tumor Biol. 2016, 37, 2083–2093. [Google Scholar] [CrossRef]
- Chang, Y.-T.; Wu, C.-Y.; Tang, J.-Y.; Huang, C.-Y.; Liaw, C.-C.; Wu, S.-H.; Sheu, J.-H.; Chang, H.-W. Sinularin Induces Oxidative Stress-Mediated G2/M Arrest and Apoptosis in Oral Cancer Cells. Environ. Toxicol. 2017, 32, 2124–2132. [Google Scholar] [CrossRef]
Natural Products/Extract | Formulation Type | Dose/Conc. | Polymer Used | Bioavailability /In Vitro Release | Major Outcome | References |
---|---|---|---|---|---|---|
BRAs | Gel | Applied 10% (w/w) freeze dried black raspberry gel (0.5 g gel) four times/day for 6 weeks. | Noveon AA1 and Carbopol 971 polymers | NR | Reduced lesion size and microscopic histological grade in 35% of patients | [164] |
Camptothecin | Polymeric nanoparticles | 33–40 microg/mL | Cyclodextrin derivative chitosan | 47–51% drug content | Increased oral bioavailability | [182] |
NE | NR | Poloxamer 188 | NR | Overcame the solubility and stability | [183] | |
Curcumin | Mucoadhesive NPs | 500 µg/mL | PCL + chitosan | NR | Improved bioavailability, decreased hydrolytic and photochemical degradation of curcumin | [176] |
Nanoniosomes | 16 μg | NR | NR | Overcame poor oral bioavailability, enhanced drug stability | [161] | |
D9 –Tetrahydrocannabinol, Cannabidiol | Microspheres | (9 wt%- drug loading) | PCL | NR | Reduced tumor growth by enhanced apoptosis and decreased cell proliferation and angiogenesis | [169] |
Genistein | NE | 2 mg/mL | Chia seed oil, DL-a-tocopherol | NR | Enhanced anticancer drug partitioning to oral mucosal membrane, targeted delivery of Genistein at the site of action | [175] |
Naringenin | NPs | 50 mg | EE:PVA | High encapsulation efficiency of 88 ± 2.7% | More potent anti-lipid peroxidative, antiproliferative and antioxidant potentials | [134] |
Paclitaxel | Mucoadhesive Sol-Gel system | 0.2 mg | Thermosensitive polymer pluronic F127 and mucoadhesive polymer polyethylene oxide | 90% of the drug over 3-day period; moreover, the release was sustained | Improved paclitaxel solubility, reduced toxicity | [184] |
Hydrogel | 6 mg/mL | Chitosan | Drug release was found to be 32.3 ± 1.3% in 24 h and 61.7 ± 2.6% in 72 h | Tumor volume was reduced up to 89.1 ± 3.5% | [173] | |
NPs | 150–230 mg/m2 frequency: 2–4 infusions every 3 weeks. | Albumin | NR | Clinical and radiologic objective response in the majority of patients (78%). Intraarterial infusion of paclitaxel in albumin nanoparticles proved reproducible and effective | [185] | |
Nanoliposomes hydrogel | 300 μg/mL | Lipids [lipids containing soya phosphatidylcholile, nitro benzoxadiazol-labeled phosphatidylethanolamine] | NR | Exhibited greater cytotoxicity and provide a higher drug concentration | [170] | |
Resveratrol | NPs | 5 µg/mL | PLGA-PEG-COOH | NR | Res-NP reduced the CSCs growth, metastasis, and angiogenesis by inhibiting the cytokines in CSCs enriched oral cancer cells niche | [138] |
Rose Bengal | Si NPs | (For Preparation—o 400 microM RB) | Aerosol AT | NR | Enhanced phototoxicity by enhanced uptake | [145] |
SIL | NPs | 15 μg/mL | EE 100, PVA | 24.1% of the entrapped SIL release in 6 h) (~79.2% of the drug released in 24 h | Enhanced cytotoxicity of SILNPs extensive DNA damage, increased MMP alteration | [156] |
Garlic | Garlic extract-modified titanium dioxide NPs | 10 mg/mL | NR | 60.76% | Exhibited cytotoxic activity against oral cancer cell line by decreasing the cell viability; the production of ROS led to decrease in cell viability | [129] |
Natural Products/Extract | Strategy for Bioavailability Augmentations | Conc./ Dose | Bioavailability Enhancement (Effect of ADMET) | Effect on Oral Cancer | Mechanisms | Reference | |
---|---|---|---|---|---|---|---|
Bioavailability of Normal Drug | Bioavailability of Novel Formulation | ||||||
Capsaicin | SNEDDS | 305.41 g/mol | 16.61 ± 3.64% | 3.6-fold increase in bioavailability | Antiproliferative effects | MMP disruption, caspase-3, caspase-7 and caspase-9 activation through an intrinsic apoptotic pathway and subsequently, apoptotic DNA fragmentation | [186] |
EGCG | NE | 200–800 mg | NR | The bioavailability was more than 2.78-fold | Inhibition of both cell proliferation and migration | Targets multiple signaling pathways, including the downregulation of EGFR and associated downstream signaling molecules | [187,188,189,190] |
Piperlongumine | NPs | 7.4–11.3 μM | NR | NR | Antiproliferative effects, cell cycle arrest and senescence | ↓PI3K/Akt/mTOR pathway, ↓ROS, ↑apoptosis, ↑G1 phase cell cycle arrest, ↑p21, ↑cleaved caspases-3, ↑PARP | [191,192] |
Bromelain | Lipid-polymer hybrid nanoparticles | 12.5–100 µg mL | NR | Maximum release of Bromelain from nanocarriers was obtained 30–35% after 5 days | Inhibited cell growth and proliferation | G1 cell cycle arrest, induced apoptosis | [26,193,194,195] |
Curcumin | Curcumin nanocrystals/NPs | 10 or 12 g/mL | 1% | Over 5 times from simple curcumin powder | Inhibit growth, invasion and metastasis | Inhibits the invasive ability and EMT by reducing the MMP-2 and MMP-9 expression, downregulation of EGFR expression | [196] |
Berberine | Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine | 100 or 300 mg/kg | <5% in plasma | 15% | Antimitotic and proapoptotic actions, along with distinct antiangiogenic and antimetastatic activities | Suppresses the mRNA expression of NFKB1 and PTGS2 and AURKA, BIRC5, and EGFR | [26,197] |
Honokiol | NPs | 0–150 mg/kg | NR | 53% of honokiol was released from the nanoparticles within 24 h | Antiproliferative effect | Blocks EMT through the modulation of Snail/Slug protein translation | [198] |
Evodiamine | Nanocomposite system comprising folic acid- modified graphene quantum dots | 1 mg | NR | Over 90% of drug was released in 72 h | Inhibited cell proliferation | Downregulates Mcl-1 expression, induces apoptosis mediated by a caspase-dependent pathway | [199] |
Gedunin | Chitosan- encapsulated gedunin | 1.5–50 µg/mL | NR | NR | 3 to 8-fold decrease | Modulates AR, PI3K/Akt, and NF-κB pathways to block angiogenesis | [200] |
Sinularin | Not found | NR | NR | NR | Selectively kill the oral cancer cells | Antiproliferative and apoptotic effects on oral cancer cells coupled with ROS generation and G2/M arrest | [201] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachdeva, A.; Dhawan, D.; Jain, G.K.; Yerer, M.B.; Collignon, T.E.; Tewari, D.; Bishayee, A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers 2023, 15, 268. https://doi.org/10.3390/cancers15010268
Sachdeva A, Dhawan D, Jain GK, Yerer MB, Collignon TE, Tewari D, Bishayee A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers. 2023; 15(1):268. https://doi.org/10.3390/cancers15010268
Chicago/Turabian StyleSachdeva, Alisha, Dimple Dhawan, Gaurav K. Jain, Mükerrem Betül Yerer, Taylor E. Collignon, Devesh Tewari, and Anupam Bishayee. 2023. "Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer" Cancers 15, no. 1: 268. https://doi.org/10.3390/cancers15010268
APA StyleSachdeva, A., Dhawan, D., Jain, G. K., Yerer, M. B., Collignon, T. E., Tewari, D., & Bishayee, A. (2023). Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers, 15(1), 268. https://doi.org/10.3390/cancers15010268