Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning
Abstract
:Simple Summary
Abstract
1. Introduction
- We use a black-hat filter to efficiently clean the dataset and thus improve DNN accuracy efficiently. As our algorithm removes noise while reducing the size of the dataset, we call it the “Squeeze algorithm”;
- The architecture provides high accuracy (99.36%) and minimum loss of information with the transfer learning approach;
- The model was implemented and tested on an Internet of Things (IoT) device (Raspberry Pi 4) with a spy camera and NeoPixel 8-bit LED ring. The model is lightweight, precise, and optimized for IoT devices;
- The Squeeze-MNet outperforms the VGG16, MobileNetV2, and Inception V3 architectures.
2. Literature Review and Related Work
3. Methodology
3.1. Duplicate Removal and Dataset Preprocessing
3.2. Hair Removal Using the Squeeze Algorithm
3.3. Augmentation
- Zoom range = 0.15%,
- Shear range = 0.15°,
- Horizontal flip = True,
- Fill mode = nearest,
- Width shift range = 0.2°.
3.4. Model Architecture
4. Result and Discussion
4.1. Experimental Setup
4.2. Hair Removal Algorithm
4.3. Squeeze-MNet Model Analysis
4.4. Hyper-Parameters Tuning
- Optimizers: Adam
- Learning Rate: 0.001
- Weight Decay Values: 0.001
- Dense Layers Level: 3
4.5. Comparative Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- A receiver operating characteristic curve, or ROC curve, is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The area under the curve is called AUC-ROC.
- Learning curves are plots that show changes in learning performance over time in terms of experience. Learning curves of model performance on the train and validation datasets can be used to diagnose an underfit, overfit, or well-fit model. Learning curves of model performance can be used to diagnose whether the train or validation datasets are not relatively representative of the problem domain.
- The rectified linear activation function, or ReLU for short, is a piecewise linear function that will output the input directly if it is positive; otherwise, it will output zero. It has become the default activation function for many types of neural networks because a model that uses it is easier to train and often achieves better performance.
- One way to increase performance even further is to train (or “fine-tune”) the weights of the top layers of the pre-trained model alongside the training of the classifier added. The training process will force the weights to be tuned from generic feature maps to features associated specifically with the dataset.
- Underfitting means that a model makes accurate, but initially incorrect, predictions. In this case, the training error is large and the validation/test error is large, too.
- Overfitting means that a model makes inaccurate predictions. In this case, the train error is very small and the validation/test error is large.
References
- Ansari, U.B. Skin Cancer Detection Using Image Processing. Int. Res. J. Eng. Technol. 2017, 4, 2875–2881. [Google Scholar]
- Goyal, M.; Knackstedt, T.; Yan, S.; Hassanpour, S. Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities. Comput. Biol. Med. 2020, 127, 104065. [Google Scholar] [CrossRef] [PubMed]
- Leiter, U.; Claus, G. Epidemiology of melanoma and nonmelanoma skin cancer—The role of sunlight. In Sunlight Vitamin D and Skin Cancer; Springer: New York, NY, USA, 2008; pp. 89–103. [Google Scholar]
- The Skin Cancer Foundation. Available online: https://www.skincancer.org/ (accessed on 15 October 2020).
- How Much Does a Biopsy Cost? CostHelper. Available online: https://health.costhelper.com (accessed on 20 October 2020).
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Shinde, R.; Alam, M.; Park, S.; Park, S.; Kim, N. Intelligent IoT (IIoT) Device to Identifying Suspected COVID-19 Infections Using Sensor Fusion Algorithm and Real-Time Mask Detection Based on the Enhanced MobileNetV2 Model. Healthcare 2022, 10, 454. [Google Scholar] [CrossRef]
- Jacobs, C.; Ginneken, B. Google’s lung cancer AI: A promising tool that needs further validation. Nat. Rev. Clin. Oncol. 2019, 16, 532–533. [Google Scholar] [CrossRef]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef]
- Polap, D. Analysis of Skin Marks Through the Use of Intelligent Things. IEEE Access 2019, 7, 149355–149363. [Google Scholar] [CrossRef]
- Shirazi, A.Z.; Fornaciari, E.; Bagherian, N.S.; Ebert, L.M.; Koszyca, B.; Gomez, G.A. DeepSurvNet: Deep survival convolutional network for brain cancer survival rate classification based on histopathological images. Med. Biol. Eng. Comput. 2020, 58, 1031–1045. [Google Scholar] [CrossRef] [Green Version]
- Abràmoff, M.; Lavin, P.; Birch, M. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic reti-nopathy in primary care offices. NPJ Digit. Med. 2018, 1, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; El-Sappagh, S.; Ali, F.; Imran, M.; Abuhmed, T. Multitask Deep Learning for Cost-Effective Prediction of Patient’s Length of Stay and Readmission State Using Multimodal Physical Activity Sensory Data. IEEE J. Biomed. Health Informatics 2022, 26, 5793–5804. [Google Scholar] [CrossRef]
- Subhan, F.; Aziz, M.A.; Khan, I.U.; Fayaz, M.; Wozniak, M.; Shafi, J.; Ijaz, M.F. Cancerous Tumor Controlled Treatment Using Search Heuristic (GA)-Based Sliding Mode and Synergetic Controller. Cancers 2022, 14, 4191. [Google Scholar] [CrossRef] [PubMed]
- ISIC Archive. International Skin Imaging Collaboration. Available online: https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main (accessed on 3 June 2022).
- Robert, F.; Darrell, R.; Alfred, W. Early Detection of Malignant Melanoma: The Role of Physician Examination and Self-Examination of the Skin. A Cancer J. Clin. 1985, 35, 130–151. [Google Scholar]
- Abbasi, N.R.; Shaw, H.M.; Rigel, D.S.; Friedman, R.; McCarthy, W.H.; Osman; Kopf, A.W.; Polsky, D. Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria. J. Am. Med. Assoc. 2004, 292, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.D.; Elewski, B. The ABCDEF Rule: Combining the “ABCDE Rule” and the “Ugly Duckling Sign” in an Effort to Improve Patient Self-Screening Examinations. J. Clin. Aesthetic Derm. 2015, 8, 15–25. [Google Scholar]
- Ain, Q.U.; Xue, B.; Al-Sahaf, H.; Zhang, M. Genetic Programming for Feature Selection and Feature Construction in Skin Cancer Image Classification. In Proceedings of the Pacific Rim International Conference on Artificial Intelligence, Nanjing, China, 28–31 August 2018; pp. 732–745. [Google Scholar] [CrossRef]
- Shahi, P.; Yadav, S.; Singh, N.; Singh, N.P. Melanoma skin cancer detection using various classifiers. In Proceedings of the 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Go-rakhpur, India, 2–4 November 2018. [Google Scholar]
- Dey, N.; Rajinikanth, A.; Shour, S.; Tavares, M.R. Social group optimization supported segmentation and evaluation of skin melanoma images. Symmetry 2018, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Fröhling, S.; et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur. J. Cancer 2019, 111, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Leyva, J.A.; Guerra-Rosas, E.; Alvarez-Borrego, J. Multi-Class Diagnosis of Skin Lesions Using the Fourier Spectral Information of Images on Additive Color Model by Artificial Neural Network. IEEE Access 2021, 9, 35207–35216. [Google Scholar] [CrossRef]
- Albahar, M.A. Skin Lesion Classification Using Convolutional Neural Network With Novel Regularizer. IEEE Access 2019, 7, 38306–38313. [Google Scholar] [CrossRef]
- Sharma, A.K.; Tiwari, S.; Aggarwal, G.; Goenka, N.; Kumar, A.; Chakrabarti, P.; Chakrabarti, T.; Gono, R.; Leonowicz, Z.; Jasinski, M. Dermatologist-Level Classification of Skin Cancer Using Cascaded Ensembling of Convolutional Neural Network and Handcrafted Features Based Deep Neural Network. IEEE Access 2022, 10, 17920–17932. [Google Scholar] [CrossRef]
- Rehman, M.U.; Khan, S.H.; Danish, R.; Abbas, Z.; Zafar, A. Classification of Skin Lesion by Interference of Segmentation and Convolution Neural Network. In Proceedings of the 2nd International Conference on Engineering Innovation (ICEI), Bangkok, Thailand, 5–7 July 2018. [Google Scholar]
- Talavera-Martinez, L.; Bibiloni, P.; Gonzalez-Hidalgo, M. Hair Segmentation and Removal in Dermoscopic Images Using Deep Learning. IEEE Access 2020, 9, 2694–2704. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, S.; Wang, S.; Zhang, J.; Guo, J. Skin Lesion Classification by Multi-View Filtered Transfer Learning. IEEE Access 2021, 9, 66052–66061. [Google Scholar] [CrossRef]
- Mahbod, A.; Schaefer, G.; Wang, C.; Ecker, R.; Dorffner, G.; Ellinger, I. Investigating and Exploiting Image Resolution for Transfer Learning-based Skin Lesion Classification. arXiv 2021, 1, 4047–4053. [Google Scholar] [CrossRef]
- Kassem, M.A.; Hosny, K.M.; Fouad, M.M. Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning. IEEE Access 2020, 8, 114822–114832. [Google Scholar] [CrossRef]
- Hosny, K.M.; Kassem, M.A.; Foaud, M.M. Classification of skin lesions using transfer learning and augmentation with Alex-net. PLoS ONE 2019, 14, e0217293. [Google Scholar] [CrossRef] [Green Version]
- Alqudah, A.M.; Alquraan, H.; Abu Qasmieh, I. Segmented and Non-Segmented Skin Lesions Classification Using Transfer Learning and Adaptive Moment Learning Rate Technique Using Pretrained Convolutional Neural Network. J. Biomim. Biomater. Biomed. Eng. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Hosny, K.M.; Kassem, M.A.; Fouad, M.M. Classification of Skin Lesions into Seven Classes Using Transfer Learning with AlexNet. J. Digit. Imaging 2020, 33, 1325–1334. [Google Scholar] [CrossRef]
- Jain, S.; Singhania, U.; Tripathy, B.; Nasr, E.; Aboudaif, M.; Kamrani, A. Deep Learning-Based Transfer Learning for Classi-fication of Skin Cancer. Sensors 2021, 23, 8142. [Google Scholar] [CrossRef]
- Kondaveeti, H.K.; Edupuganti, P. Skin Cancer Classification using Transfer Learning. In Proceedings of the IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldhana, India, 30 December 2020. [Google Scholar]
- Skin Cancer Malignant vs benign. Available online: https://www.kaggle.com/datasets/abhikray/skin-cancer-malignant-vs-benign?select=test (accessed on 20 March 2022).
- Kim, D.; Hong, B.-W. Unsupervised Feature Elimination via Generative Adversarial Networks: Application to Hair Removal in Melanoma Classification. IEEE Access 2021, 9, 42610–42620. [Google Scholar] [CrossRef]
- Jaworek, J.; Ryszard, T. Hair removal from dermoscopic color images. Bio-Algorithms Med-Syst. 2013, 9, pp. 53–58. [Google Scholar]
- Soans, R.V.; Fukumizu, Y. Improved Facial Keypoint Regression Using Attention Modules. In Proceedings of the Communi-cations in Computer and Information Science, Frontiers of Computer Vision, Hiroshima, Japan, 21–22 February 2022. [Google Scholar]
- Ramteke, N.; Jain, S. ABCD rule based automatic computer-aided skin cancer. Int. J. Comput. Technol. Appl. 2013, 4, 691–697. [Google Scholar]
- Dang, T.; Prasath, B.; Hieu, L.; Nguyen, H. Melanoma Skin Cancer Detection Method Based on Adaptive Principal Curvature, Colour Normalisation and Feature Extraction with the ABCD Rule. J. Digit. Imaging 2020, 33, 574–585. [Google Scholar]
- Bandic, J.; Kovacevic, S.; Karabeg, R.; Lazarov, A.; Opric, D. Teledermoscopy for Skin Cancer Prevention: A Comparative Study of Clinical and Teledermoscopic Diagnosis. Acta Inform. Med. 2020, 28, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Manoj, K.; Mohammed, A.; Rayed, A.; Purushottam, S.; Vikas, D. A DE-ANN Inspired Skin Cancer Detection Approach Using Fuzzy C-Means Clustering. Mob. Netw. Appl. 2020, 25, 1319–1329. [Google Scholar]
- Adegun, A.; Viriri, S. FCN-Based DenseNet Framework for Automated Detection and Classification of Skin Lesions in Der-moscopy Images. IEEE Access 2020, 8, 150377–150396. [Google Scholar] [CrossRef]
- Pham, T.-C.; Doucet, A.; Luong, C.-M.; Tran, C.-T.; Hoang, V.-D. Improving Skin-Disease Classification Based on Customized Loss Function Combined With Balanced Mini-Batch Logic and Real-Time Image Augmentation. IEEE Access 2020, 8, 150725–150737. [Google Scholar] [CrossRef]
- Diaz, S.; Krohmer, T.; Moreira, A.; Godoy, S.E.; Figueroa, M. An Instrument for Accurate and Non-Invasive Screening of Skin Cancer Based on Multimodal Imaging. IEEE Access 2019, 7, 176646–176657. [Google Scholar] [CrossRef]
- Mazoure, B.; Mazoure, A.; Bédard, J.; Makarenkov, V. DUNEScan: A web server for uncertainty estimation in skin cancer detection with deep neural networks. Sci. Rep. 2022, 12, 179. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, R.; Afzal, S.; Rehman, A.U.; Gul, S.; Baber, J.; Bakhtyar, M.; Mehmood, I.; Song, O.-Y.; Maqsood, M. Region-of-Interest Based Transfer Learning Assisted Framework for Skin Cancer Detection. IEEE Access 2020, 8, 147858–147871. [Google Scholar] [CrossRef]
- Saleh, A.; Nudrat, N.; Aun, I.; Muhammad, H.Y.; Muhammad, T.M. Melanoma Lesion Detection and Segmentation using YOLOv4-DarkNet and Active Contour. IEEE Access 2020, 8, 198403–198414. [Google Scholar]
- Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [Google Scholar] [CrossRef]
Model | Accuracy (%) | Average Precision (AP) | Recall | Training Time (s) | Model Size (KB) | Total Parameter | ROC-AUC (%) |
---|---|---|---|---|---|---|---|
MobileNetV2 | 85 | 89 | 87 | 1637.3 | 56,139 | 6,273,202 | 0.937 |
VGG-16 | 85 | 88 | 86 | 17,048.34 | 76,385 | 16,321,458 | 0.94 |
InceptionV3 | 80 | 83 | 88 | 5272.85 | 1,24,095 | 25,080,722 | 0.908 |
InceptionResNetV2 | 84 | 84 | 87 | 8945.21 | 2,42,301 | 56,795,474 | 0.929 |
Xception | 82.2 | 84 | 84 | 6391.65 | 157,050 | 27,285,146 | 0.51 |
MobileNet | 88 | 90 | 88 | 1885.62 | 50,439 | 6,441,266 | 0.949 |
MobileNetV3Small | 74 | 82 | 90 | 1521.64 | 7074 | 1,596,642 | 0.829 |
MobilenetV3Large | 76 | 79 | 86 | 1854.94 | 17,859 | 4,309,490 | 0.844 |
Squeeze-MNet(Proposed) | 99.36 | 98 | 99 | 2271.60 | 50,439 | 6,441,266 | 0.989 |
Optimizer | Learning Rate | Weight Decay Value | Dense Layer Level | Time/ Epoch (s) | Accuracy | F1-Score | Recall |
---|---|---|---|---|---|---|---|
Adam | 0.001 | 0.001 | 3 | 804 | 99.56 | 98 | 99 |
Adam | 0.001 | 0.01 | 3 | 809 | 98.01 | 98.05 | 97.00 |
Adam | 0.01 | 0.01 | 3 | 801 | 65.42 | 95.45 | 96.02 |
SGD | 0.001 | 0.001 | 3 | 802 | 97.07 | 92.30 | 99.01 |
SGD | 0.001 | 0.01 | 3 | 806 | 95.23 | 89.11 | 97.08 |
SGD | 0.01 | 0.01 | 3 | 800 | 92.48 | 88.70 | 96.12 |
RMSprop | 0.001 | 0.001 | 3 | 815 | 98.96 | 97.08 | 96.99 |
RMSprop | 0.001 | 0.01 | 3 | 802 | 95.40 | 92.49 | 93.00 |
RMSprop | 0.01 | 0.01 | 3 | 806 | 93.23 | 91.09 | 91.89 |
Author | Method | Accuracy (%) | ROC-AUC | Dataset | IoT Compatible |
---|---|---|---|---|---|
Nilkamal et al. [40] | ABCD | 90 | - | - | yes |
Dang et al. [41] | ABCD | 96.6 | - | ISIC | Yes |
Bandic et al. [42] | ABCDE | 81.82 | - | 121 skin lesions | Yes |
Kumar et al. [43] | ANN | 97.4 | - | HAM10000 & PH2 | Yes |
López-Leyva et al. [24] | ANN | 99.23 | 97 | Edinburgh Dermofit Library | Yes |
Adekanmi et al. [44] | FCN-Densenet | 98 | 99 | HAM10000 | No |
Pham et al. [45] | EfficientNetB4-CLF | 89.97 | - | CIFAR-10 | No |
Silvana et al. [46] | IR camera & segmentation | 91.5 | - | 400 images | Yes |
Andre et al. [6] | CNN-PA | 72.1 | 91 | Edinburgh Dermofit Library | Yes |
Uzama et al. [1] | GLCM-SVM | 95 | - | 20 images | Yes |
Bogdan et al. [47] | Deep uncertainty Estimation for skin cancer | 98 | - | ISIC | |
Rehan et al. [48] | K-mean-CNN | 97.9 & 97.4 | - | DermIS & DermQuest | Yes |
Saleh et al. [49] | YOLOv4 | 98.9 | - | ISIC 2018&2016 | No |
Parvathaneri et al. [50] | MobilenetV2-LSTM | 90.72 | - | HAM10000 | Yes |
Marwan [24] | CNN | 97.5 | 93 | ISIC | Yes |
Proposed | Squeeze-MNet | 99.56 | 98.4 | ISIC | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinde, R.K.; Alam, M.S.; Hossain, M.B.; Md Imtiaz, S.; Kim, J.; Padwal, A.A.; Kim, N. Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning. Cancers 2023, 15, 12. https://doi.org/10.3390/cancers15010012
Shinde RK, Alam MS, Hossain MB, Md Imtiaz S, Kim J, Padwal AA, Kim N. Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning. Cancers. 2023; 15(1):12. https://doi.org/10.3390/cancers15010012
Chicago/Turabian StyleShinde, Rupali Kiran, Md. Shahinur Alam, Md. Biddut Hossain, Shariar Md Imtiaz, JoonHyun Kim, Anuja Anil Padwal, and Nam Kim. 2023. "Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning" Cancers 15, no. 1: 12. https://doi.org/10.3390/cancers15010012
APA StyleShinde, R. K., Alam, M. S., Hossain, M. B., Md Imtiaz, S., Kim, J., Padwal, A. A., & Kim, N. (2023). Squeeze-MNet: Precise Skin Cancer Detection Model for Low Computing IoT Devices Using Transfer Learning. Cancers, 15(1), 12. https://doi.org/10.3390/cancers15010012