Isotoxic High-Dose Stereotactic Body Radiotherapy (iHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Radiation Therapy and Chemotherapy
2.3. Patient Characteristics
2.4. Clinical Outcomes
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Radiotherapy Treatments Characteristics
3.3. Oncological Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kleeff, J.; Korc, M.; Apte, M.; La Vecchia, C.; Johnson, C.; Biankin, A.; Neale, R.; Tempero, M.; Tuveson, D.; Hruban, R.; et al. Pancreatic cancer. Nat. Rev. Dis. Primers 2016, 2, 16022. [Google Scholar] [CrossRef] [PubMed]
- Belgian Cancer Registry: Cancer Burden in Belgium 2004–2017. Available online: https://kankerregister.org/media/docs/CancerBurdenfeb2020reduced.pdf (accessed on 16 August 2022).
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Balaban, E.P.; Mangu, P.B.; Khorana, A.A.; Shah, M.A.; Mukherjee, S.; Crane, C.H.; Javle, M.M.; Eads, J.R.; Allen, P.; Ko, A.H.; et al. Locally Advanced, Unresectable Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2016, 34, 2654–2668. [Google Scholar] [CrossRef] [PubMed]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Bouchart, C.; Navez, J.; Closset, J.; Hendlisz, A.; Van Gestel, D.; Moretti, L.; Van Laethem, J.L. Novel strategies using modern radiotherapy to improve pancreatic cancer outcomes: Toward a new standard? Ther. Adv. Med. Oncol. 2020, 12, 1758835920936093. [Google Scholar] [CrossRef]
- Bouchart, C.; Engelholm, J.L.; Closset, J.; Navez, J.; Loi, P.; Gökburun, Y.; De Grez, T.; Mans, L.; Hendlisz, A.; Bali, M.A.; et al. Isotoxic high-dose stereotactic body radiotherapy integrated in a total multimodal neoadjuvant strategy for the treatment of localized pancreatic ductal adenocarcinoma. Ther. Adv. Med. Oncol. 2021, 13, 17588359211045860. [Google Scholar] [CrossRef]
- Katz, M.H.; Shi, Q.; Meyers, J.; Herman, J.M.; Chuong, M.; Wolpin, B.M.; Ahmad, S.; Marsh, R.; Schwartz, L.; Behr, S.; et al. Efficacy of preoperative mFOLFIRINOX vs. mFOLFIRINOX plus hypofractionated radiotherapy for borderline resectable adenocarcinoma of the pancreas: The A021501 phase 2 randomized clinical trial. JAMA Oncol. 2022, 8, e222319. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, D.; Li, F.; Ju, X.; Cao, Y.; Shen, Y.; Cao, F.; Qing, S.; Fang, F.; Zhen, J.; et al. Prospective analysis of different combined regimens of stereotactic body radiation therapy and chemotherapy for locally advanced pancreatic cancer. Cancer Med. 2018, 7, 2913–2924. [Google Scholar] [CrossRef] [PubMed]
- Rudra, S.; Jiang, N.; Rosenberg, S.A.; Olsen, J.R.; Roach, M.C.; Wan, L.; Portelance, L.; Mellon, E.A.; Bruynzeel, A.; Lagerwaard, F.; et al. Using adaptive magnetic resonance image-guided radiation therapy for treatment of inoperable pancreatic cancer. Cancer Med. 2019, 8, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Cao, Y.; Su, T.; Zhu, X.; Ju, X.; Zhao, X.; Jiang, L.; Ye, Y.; Cao, F.; Qing, S.; et al. Failure patterns and outcomes of dose escalation of stereotactic body radiotherapy for locally advanced pancreatic cancer: A multicenter cohort study. Ther. Adv. Med. Oncol. 2020, 12, 1758835920977155. [Google Scholar] [CrossRef]
- Arcelli, A.; Guido, A.; Buwenge, M.; Simoni, N.; Mazzarotto, R.; Macchia, G.; Deodato, F.; Cilla, S.; Bonomo, P.; Scotti, V.; et al. Higher biologically effective dose predicts survival in SBRT of pancreatic cancer: A multicentric analysis (PAULA-1). Anticancer Res. 2020, 40, 465–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuong, M.D.; Bryant, J.; Mittauer, K.E.; Hall, M.; Kotecha, R.; Alvarez, D.; Romaguera, T.; Rubens, M.; Adamson, S.; Godley, A.; et al. Ablative 5-fraction stereotactic magnetic resonance-guided radiation therapy with on-table adpative replanning and elective nodal irradiation for inoperable pancreas cancer. Pract. Radiat. Oncol. 2021, 11, 134–147. [Google Scholar] [CrossRef]
- Simoni, N.; Micera, R.; Paiella, S.; Guariglia, S.; Zivelonghi, E.; Malleo, G.; Rossi, G.; Addari, L.; Giuliani, T.; Pollini, T.; et al. Hypofractionated stereotactic body radiation therapy with simultaneous integrated boost and simultaneous integrated protection in pancreatic ductal adenocarcinoma. Clin. Oncol. 2021, 33, e31–e38. [Google Scholar] [CrossRef]
- Figueiredo, M.; Bouchart, C.; Moretti, L.; Mans, L.; Engelholm, J.L.; Bali, M.A.; Van Laethem, J.L.; Eisendrath, P. EUS-guided placement of fiducial markers for stereotactic body radiation therapy in pancreatic cancer: Feasibility, security and a new quality score. EIO 2021, 09, E253–E257. [Google Scholar]
- Zindler, J.D.; Thomas, C.R., Jr.; Hahn, S.M.; Hoffmann, A.L.; Troost, E.G.C.; Lambin, P. Increasing the therapeutic ratio of stereotactic ablative radiotherapy by individualized isotoxic dose prescription. J. Natl. Cancer Inst. 2015, 108, dvj305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guidelines (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Hammel, P.; Huguet, F.; Van Laethem, J.L.; Goldstein, D.; Glimelius, B.; Artru, P.; Borbath, I.; Bouché, O.; Shannon, J.; André, T.; et al. Effect of Chemoradiotherapy vs. Chemotherapy on Survival in Patients with Locally Advanced Pancreatic Cancer Controlled after 4 Months of Gemcitabine with or without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA 2016, 315, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Fietkau, R.; Ghadimi, M.; Grützmann, R.; Wittel, U.A.; Jacobasch, L.; Uhl, W.; Croner, R.S.; Bechstein, W.O.; Neumann, U.P.; Waldschmidt, D.; et al. Randomized phase II trial of induction chemotherapy followed by chemoradiotherapy or chemotherapy alone fon nonresectable locally advanced pancreatic cancer: First results of the CONKO-007 trial. J. Clin. Oncol. 2022, 40, 4008. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.J.M.; van Dam, R.M.; et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: Results of the Dutch randomized phase III PREOPANC trial. J. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; van Dam, J.L.; Suker, M.; Janssen, Q.P.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: Long-term results of the Dutch randomized PREOPANC trial. J. Clin. Oncol. 2022, 40, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- de Geus, S.W.L.; Eskander, M.F.; Kasumova, G.G.; Ng, S.C.; Kent, T.S.; Mancias, J.D.; Callery, M.P.; Mahadevan, A.; Tseng, J.F. Stereotactic body radiotherapy for unresected pancreatic cancer: A nationwide review. Cancer 2017, 123, 4158–4167. [Google Scholar] [CrossRef] [PubMed]
- Tchelebi, L.T.; Lehrer, E.J.; Trifiletti, D.M.; Sharma, N.K.; Gusani, N.J.; Crane, C.H.; Zaorsky, N.G. Conventionally fractionated radiation therapy versus stereotactic body radiation therapy for locally advanced pancreatic cancer (CRiSP): An international systematic review and meta-analysis. Cancer 2020, 126, 2120–2131. [Google Scholar] [CrossRef]
- Shin, Y.S.; Park, H.H.; Park, J.H.; Seo, D.W.; Lee, S.S.; Yoo, C.; Kim, S.; Yoon, S.M.; Jung, J.; Kim, M.H.; et al. Stereotactic body radiation therapy versus concurrent chemoradiotherapy for locally advanced pancreatic cancer: A propensity score-matched analysis. Cancers 2022, 14, 1166. [Google Scholar] [CrossRef]
- Barhoumi, M.; Mornex, F.; Bonnetain, F.; Rougier, P.; Mariette, C.; Bouché, O.; Bosset, J.F.; Aparicio, T.; Mineur, L.; Azzedine, A.; et al. Locally advanced unresectable pancreatic cancer: Induction chemoradiotherapy followed by maintenance gemcitabine versus gemcitabine alone: Definitive results of the 2000–2001 FFCD/SFRO phase III trial. Cancer Radiothe. 2011, 15, 182–191. [Google Scholar] [CrossRef]
- Loehrer, P.; Feng, Y.; Cardenes, H.; Wagner, L.; Brell, J.M.; Cella, D.; Flynn, P.; Ramanathan, R.K.; Crane, C.H.; Alberts, S.R.; et al. Gemcitabine Alone versus Gemcitabine Plus Radiotherapy in Patients with Locally Advanced Pancreatic Cancer: An Eastern Cooperative Oncology Group Trial. J. Clin. Oncol. 2011, 29, 4105–4112. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.M.; Chang, D.T.; Goodman, K.A.; Dholakia, A.S.; Raman, S.P.; Hacker-Prietz, A.; Iacobuzio-Donahue, C.A.; Griffith, M.E.; Pawlik, T.M.; Pai, J.S.; et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 2015, 121, 1128–1137. [Google Scholar] [CrossRef]
- Quan, K.; Sutera, P.; Xu, K.; Bernard, M.E.; Burton, S.A.; Wegner, R.E.; Zeh, H.; Bahary, N.; Stoller, R.; Heron, D.E. Results of a prospective phase 2 clinical trial of induction gemcitabine/capecitabine followed by stereotactic ablative radiation therapy in borderline resectable or locally advanced pancreatic adenocarcinoma. Pract. Radiat. Oncol. 2018, 8, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation with Gemcitabine Versus Upfront Surgery in Patients with Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Suker, M.; Nuyttens, J.J.; Eskens, F.A.L.M.; Haberkorn, B.C.M.; Coene, P.P.L.O.; van der Harst, E.; Bonsing, B.A.; Vahrmeijer, A.L.; Mieog, J.S.D.; Swijnenburg, R.J.; et al. Efficacy and feasibility of stereotactic radiotherapy after folfirinox in patients with locally advanced pancreatic cancer (LAPC-1 trial). eClinicalMedicine 2019, 17, 100200. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardière, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conroy, T.; Hammel, P.; Hebbar, M.; Ben Abdelghani, M.; Wei, A.C.; Raoul, J.L.; Choné, L.; François, E.; Artu, P.; Biagi, J.J.; et al. FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N. Engl. J. Med. 2018, 379, 2395–2406. [Google Scholar] [CrossRef] [PubMed]
- Preoperative mFOLFIRINOX (or Gem-Nab-P) ± Isotoxic High-dose SBRT for Borderline Resectable Pancreatic Adenocarcinoma (STEREOPAC). Available online: https://clinicaltrials.gov/ct2/show/NCT05083247 (accessed on 8 September 2022).
Global Cohort (n = 82) | CRT Group (n = 41) | iHD-SBRT Group (n = 41) | p-Value Chi ² | |
---|---|---|---|---|
Gender | 0.264 | |||
Female (n = 35) | 42.7% | 48.8% | 36.6% | |
Male (n = 47) | 57.3% | 51.2% | 63.4% | |
Age (years) | 0.269 | |||
<60 (n = 41) | 50.0% | 56.1% | 43.9% | |
≥60 (n = 41) | 50.0% | 43.9% | 56.1% | |
CA19.9 values at diagnosis (kU/L) | 0.359 | |||
<200 (n = 52) | 63.4% | 58.5% | 68.3% | |
≥200 (n = 30) | 36.6% | 41.5% | 31.7% | |
Primary Site | 0.027 | |||
Head/uncus/isthmus (n = 59) | 72.0% | 61.0% | 82.9% | |
Body/tail (n = 23) | 28.0% | 39.0% | 17.1% | |
Tumour diameter (mm) | 0.824 | |||
<40 (n = 45) | 54.9% | 56.1% | 53.7% | |
≥40 (n = 37) | 45.1% | 43.9% | 46.3% | |
Staging TNM 8th ed. | 0.422 | |||
IB (n = 9) | 11.0% | 12.2% | 9.8% | |
II a/b (n = 19) | 23.2% | 17.1% | 29.3% | |
III (n = 54) | 65.8% | 70.7% | 60.9% | |
Resection status | 0.656 | |||
Borderline (n = 36) | 43.9% | 41.5% | 46.3% | |
Locally advanced (n = 46) | 56.1% | 58.5% | 53.7% | |
Number of induction CT cycles | <0.001 | |||
0–3 (n = 22) | 26.8% | 51.2% | 2.4% | |
4–8 (n = 48) | 58.6% | 39.0% | 78.0% | |
>8 (n = 12) | 14.6% | 9.8% | 19.5% | |
Time of induction (months) | 0.002 | |||
<2 (n = 22) | 26.8% | 43.9% | 9.8% | |
≥2– < 4 (n = 38) | 43.6% | 39.0% | 53.7% | |
≥4 (n = 22) | 26.8% | 17.1% | 36.5% | |
Type of induction CT | <0.001 | |||
None (n = 10) | 12.2% | 24.4% | 0.0% | |
mFFX/Gem-Np (n = 53) | 64.6% | 29.3% | 100.0% | |
Gem-based, other than Gem-Np (n = 19) | 23.2% | 46.3% | 0.0% | |
Oncological resection | <0.001 | |||
No (n = 59) | 72.0% | 90.2% | 53.7% | |
Yes (n = 23) | 28.0% | 9.8% | 46.3% | |
p-value Wilcoxon Test | ||||
Age (years), median [IQR] | 60.2 (53.0–67.7) | 58.0 (53.0–67.0) | 61.5 (54.0–69.6) | 0.228 |
CA19.9 value at diagnosis (kU/L), median [IQR] | 86.4 (14.3–502.0) | 160.0 (21.42–582.5) | 60.4 (9.0–210.0) | 0.312 |
Tumour diameter (mm), median [IQR] | 37.5 (32.0–45.0) | 38.0 (33.0–45.0) | 37.0 (32.0–44.0) | 0.442 |
Number of CT cycles (induction), median [IQR] | 6 (3–8) | 3 (0–5) | 7 (6–8) | <0.001 |
Time of induction (months), median [IQR] | 2.8 (1.9–4.2) | 2.1 (0.8–3.3) | 3.7 (2.6–4.6) | <0.001 |
Number of RT fractions, median [IQR] | 14 (5–25) | 25 (25–28) | 5 (5–5) | <0.001 |
iHD-SBRT (n = 41) | CRT (n = 41) | p-Value Wilcoxon Test | |
---|---|---|---|
PTV1 | |||
Median volume, cm3 (IQR) | 99.6 (77.0–121.9) | 422.7 (277.2–691.3) | <0.001 |
Mean dose (Gy), median (IQR) | 37.7 (35.7–39.2) | 50.2 (47.8–52.9) | <0.001 |
Related BED10 (Gy), median (IQR) | 66.1 (61.2–69.9) | 60.3 (57.0–63.4) | <0.001 |
SIB-PTV (PTV3) | |||
Median volume, cm3 (IQR) | 71.4 (61.5–94.5) | / | / |
Mean dose (Gy), median (IQR) | 40.7 (39.4–42.0) | / | / |
Related BED10 (Gy), median (IQR) | 73.8 (70.5–77.3) | / | / |
Dmax | |||
Mean Dmax (Gy), median (IQR) | 52.0 (49.1–52.5) | 56.4 (51.7–61.6) | <0.001 |
Related BED10 (Gy), median (IQR) | 106.1 (97.3–107.6) | 68.4 (61.3–7.4.6) | <0.001 |
HR (CI 95%) | p-Value | |
---|---|---|
Gender | 0.611 | |
Female | 1 | |
Male | 1.13 (0.70 to 1.83) | |
Age (years) | 0.838 | |
<60 | 1 | |
≥60 | 1.05 (0.65 to 1.69) | |
CA19.9 values at diagnosis (kU/L) | 0.990 | |
<200 | 1 | |
≥200 | 0.99 (0.61 to 1.63) | |
Primary Site | 0.851 | |
Head/uncus/isthmus | 1 | |
Body/tail | 1.05 (0.63 to 1.76) | |
Tumour diameter (mm) | 0.776 | |
<40 | 1 | |
≥40 | 0.93 (0.58 to 1.50) | |
Staging TNM 8th ed. | 0.874 | |
IB | 1 | |
II A/B | 1.08 (0.46 to 2.52) | |
III | 0.93 (0.44 to 1.97) | |
Resection status | 0.277 | |
Borderline | 1 | |
Locally advanced | 0.77 (0.47 to 1.24) | |
Number of induction CT cycles | 0.001 | |
0–3 | 1 | |
4–8 | 0.47 (0.27 to 0.81) | |
>8 | 0.23 (0.09 to 0.54) | |
Time of induction (months) | 0.005 | |
<2 | 1 | |
≥2 & <4 | 0.46 (0.26 to 0.81) | |
≥4 | 0.38 (0.20 to 0.72) | |
Type of induction CT | 0.025 | |
None | 1 | |
Gem-based (except Gem/Np) | 0.69 (0.31 to 1.51) | |
mFFX/Gem-Np | 0.42 (0.20 to 0.84) | |
Type of Radiotherapy | <0.001 | |
CRT | 1 | |
iHD-SBRT | 0.39 (0.24 to 0.64) | |
Oncological resection | 0.009 | |
No | 1 | |
Yes | 0.47 (0.27 to 0.83) |
Variables | Model 1 HR Adjusted (CI 95%) | p-Value | Model 2 HR Adjusted (CI 95%) | p-Value |
---|---|---|---|---|
Type of RT | 0.007 | 0.014 | ||
CRT | 1 | 1 | ||
iHD-SBRT | 0.46 (0.26 to 0.81) | 0.39 (0.18 to 0.83) |
Study | Study Design | Type of RT | N | Res. Status | Dose (Gy)/# | Chemotherapy | RR (%) | R0 RR (0 mm, %) | 1y-LC (%) | mOS (months) |
---|---|---|---|---|---|---|---|---|---|---|
Current study | Retro | iHD-SBRT CRT | 41 41 | BR (46%) LA BR (41.5%) LA | 35–40/5 (SIB TVI up to 53 Gy) 45–60 Gy/25–30 | I: mFFX or Gem-Np C: / I: gem-based (46%), mFFx/Gem-Np (29%), none (25%) C: Gem-based or 5FU | 46.3 9.8 | 73.7 33.3 | 75.8% 39.3% | 22.5 15.9 |
Barhoumi et al., 2013 [25] | Phase III | CRT | Arm B: 59 | LA | 60/30 | I: / C = 5-FU/cisplatin | 3 | NR | NR | 11.1 |
Herman et al., 2015 [27] | Phase II | SBRT | 49 | LA | 33/5 | I: gem C: gem | 8 | 100 | 78 | 13.9 |
Hammel et al., 2016 [18] | Phase III | CRT | Arm D: 133 | LA | 54/30 | I: gem +/− erlotinb C: capecitabine | 3 | 61 | NR | 15.2 |
Quan et al., 2017 [28] | Phase II | SBRT | 35 | BR (54%) LAPC | 36/3 | I: gem/capecitabine (4 cycles) C: / | 33 | 91.7 | 70.5 | 18.3 |
Jang et al., 2018 * [29] | Phase II/III | CRT | Arm B: 27 | BR | 54/30 | I: / C: Gem | 63 | 82.4 | 21 | |
Suker et al., 2019 [30] | Phase II | SBRT | 50 | LA | 40/5 | I: mFFX | 12 | 100 | NR | 15 |
Versteijne et al., 2020 [20] | Phase III | CRT | Arm B: 119 | R, BR | 36/15 | I: / C: gem | 61 | 71 | 16 | |
Simoni et al., 2021 [14] | Observational | SBRT | 59 | BR (46%) LA | 25–30/5 (SIB TVI 50 Gy) | I: mFFX or Gem-Np (6 to 12 cycles). C: / | 59.4 | 57.1 | 79.7 | 30.2 |
Fietkau et al., 2022 (Abstract) [19] | Phase III | CRT | Arm B: 168 | LA | 50.4/28 | I: Gem C: Gem | 36.3 | 25 | NR | 2-Yr OS: 34.8% |
Katz et al., 2022 * [8] | Random. Phase II | SBRT | Arm B: 40 | BR | 25–33/5 (SIB TVI up to 40 Gy) | I: mFFX (7 cycles) C: / | 51 | 33 | NR | 17.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manderlier, M.; Navez, J.; Hein, M.; Engelholm, J.-L.; Closset, J.; Bali, M.A.; Van Gestel, D.; Moretti, L.; Van Laethem, J.-L.; Bouchart, C. Isotoxic High-Dose Stereotactic Body Radiotherapy (iHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation. Cancers 2022, 14, 5730. https://doi.org/10.3390/cancers14235730
Manderlier M, Navez J, Hein M, Engelholm J-L, Closset J, Bali MA, Van Gestel D, Moretti L, Van Laethem J-L, Bouchart C. Isotoxic High-Dose Stereotactic Body Radiotherapy (iHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation. Cancers. 2022; 14(23):5730. https://doi.org/10.3390/cancers14235730
Chicago/Turabian StyleManderlier, Martin, Julie Navez, Matthieu Hein, Jean-Luc Engelholm, Jean Closset, Maria Antonietta Bali, Dirk Van Gestel, Luigi Moretti, Jean-Luc Van Laethem, and Christelle Bouchart. 2022. "Isotoxic High-Dose Stereotactic Body Radiotherapy (iHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation" Cancers 14, no. 23: 5730. https://doi.org/10.3390/cancers14235730
APA StyleManderlier, M., Navez, J., Hein, M., Engelholm, J. -L., Closset, J., Bali, M. A., Van Gestel, D., Moretti, L., Van Laethem, J. -L., & Bouchart, C. (2022). Isotoxic High-Dose Stereotactic Body Radiotherapy (iHD-SBRT) Versus Conventional Chemoradiotherapy for Localized Pancreatic Cancer: A Single Cancer Center Evaluation. Cancers, 14(23), 5730. https://doi.org/10.3390/cancers14235730