Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Intraoperative Magnetic Resonance Imaging
3.2. Awake vs. Asleep Cortical and Subcortical Mapping
3.3. Fluorescence-Guided Imaging
3.4. Combined and Other Adjuvant Modalities
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Larjavaara, S.; Mäntylä, R.; Salminen, T.; Haapasalo, H.; Raitanen, J.; Jääskeläinen, J.; Auvinen, A. Incidence of Gliomas by Anatomic Location. Neuro Oncol. 2007, 9, 319–325. [Google Scholar] [CrossRef] [PubMed]
- La Torre, D.; Maugeri, R.; Angileri, F.F.; Pezzino, G.; Conti, A.; Cardali, S.M.; Calisto, A.; Sciarrone, G.; Misefari, A.; Germanò, A.; et al. Human Leukocyte Antigen Frequency in Human High-Grade Gliomas: A Case-Control Study in Sicily. Neurosurgery 2009, 64, 1082–1088; discussion 1088–1089. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, M.; Shubham, S.; Mandal, K.; Trivedi, V.; Chauhan, R.; Naseera, S. Survival and Prognostic Factors for Glioblastoma Multiforme: Retrospective Single-Institutional Study. Indian J. Cancer 2017, 54, 362–367. [Google Scholar] [CrossRef]
- McGirt, M.J.; Chaichana, K.L.; Gathinji, M.; Attenello, F.J.; Than, K.; Olivi, A.; Weingart, J.D.; Brem, H.; Quiñones-Hinojosa, A.R. Independent Association of Extent of Resection with Survival in Patients with Malignant Brain Astrocytoma. J. Neurosurg. 2009, 110, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Yong, R.L.; Lonser, R.R. Surgery for Glioblastoma Multiforme: Striking a Balance. World Neurosurg. 2011, 76, 528–530. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A Multivariate Analysis of 416 Patients with Glioblastoma Multiforme: Prognosis, Extent of Resection, and Survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Schupper, A.J.; Yong, R.L.; Hadjipanayis, C.G. The Neurosurgeon’s Armamentarium for Gliomas: An Update on Intraoperative Technologies to Improve Extent of Resection. J. Clin. Med. 2021, 10, 236. [Google Scholar] [CrossRef]
- Chaichana, K.L.; Jusue-Torres, I.; Navarro-Ramirez, R.; Raza, S.M.; Pascual-Gallego, M.; Ibrahim, A.; Hernandez-Hermann, M.; Gomez, L.; Ye, X.; Weingart, J.D.; et al. Establishing Percent Resection and Residual Volume Thresholds Affecting Survival and Recurrence for Patients with Newly Diagnosed Intracranial Glioblastoma. Neuro Oncol. 2014, 16, 113–122. [Google Scholar] [CrossRef]
- De Benedictis, A.; Moritz-Gasser, S.; Duffau, H. Awake Mapping Optimizes the Extent of Resection for Low-Grade Gliomas in Eloquent Areas. Neurosurgery 2010, 66, 1074–1084; discussion 1084. [Google Scholar] [CrossRef]
- Morshed, R.A.; Young, J.S.; Lee, A.T.; Hervey-Jumper, S.L. Functional Mapping for Glioma Surgery, Part 2: Intraoperative Mapping Tools. Neurosurg. Clin. N. Am. 2021, 32, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Knauth, M.; Wirtz, C.R.; Tronnier, V.M.; Aras, N.; Kunze, S.; Sartor, K. Intraoperative MR Imaging Increases the Extent of Tumor Resection in Patients with High-Grade Gliomas. AJNR Am. J. Neuroradiol. 1999, 20, 1642–1646. [Google Scholar] [PubMed]
- Krivosheya, D.; Rao, G.; Tummala, S.; Kumar, V.; Suki, D.; Bastos, D.C.A.; Prabhu, S.S. Impact of Multi-Modality Monitoring Using Direct Electrical Stimulation to Determine Corticospinal Tract Shift and Integrity in Tumors Using the Intraoperative MRI. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2021, 82, 375–380. [Google Scholar] [CrossRef]
- Coburger, J.; Segovia von Riehm, J.; Ganslandt, O.; Wirtz, C.R.; Renovanz, M. Is There an Indication for Intraoperative MRI in Subtotal Resection of Glioblastoma? A Multicenter Retrospective Comparative Analysis. World Neurosurg. 2018, 110, e389–e397. [Google Scholar] [CrossRef]
- Scherer, M.; Jungk, C.; Younsi, A.; Kickingereder, P.; Müller, S.; Unterberg, A. Factors Triggering an Additional Resection and Determining Residual Tumor Volume on Intraoperative MRI: Analysis from a Prospective Single-Center Registry of Supratentorial Gliomas. Neurosurg. Focus 2016, 40, E4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhnt, D.; Becker, A.; Ganslandt, O.; Bauer, M.; Buchfelder, M.; Nimsky, C. Correlation of the Extent of Tumor Volume Resection and Patient Survival in Surgery of Glioblastoma Multiforme with High-Field Intraoperative MRI Guidance. Neuro Oncol. 2011, 13, 1339–1348. [Google Scholar] [CrossRef] [Green Version]
- Senft, C.; Bink, A.; Franz, K.; Vatter, H.; Gasser, T.; Seifert, V. Intraoperative MRI Guidance and Extent of Resection in Glioma Surgery: A Randomised, Controlled Trial. Lancet Oncol. 2011, 12, 997–1003. [Google Scholar] [CrossRef]
- Hatiboglu, M.A.; Weinberg, J.S.; Suki, D.; Rao, G.; Prabhu, S.S.; Shah, K.; Jackson, E.; Sawaya, R. Impact of Intraoperative High-Field Magnetic Resonance Imaging Guidance on Glioma Surgery: A Prospective Volumetric Analysis. Neurosurgery 2009, 64, 1073–1081; discussion 1081. [Google Scholar] [CrossRef]
- Kubben, P.L.; Scholtes, F.; Schijns, O.E.M.G.; Ter Laak-Poort, M.P.; Teernstra, O.P.M.; Kessels, A.G.H.; van Overbeeke, J.J.; Martin, D.H.; van Santbrink, H. Intraoperative Magnetic Resonance Imaging versus Standard Neuronavigation for the Neurosurgical Treatment of Glioblastoma: A Randomized Controlled Trial. Surg. Neurol. Int. 2014, 5, 70. [Google Scholar] [CrossRef]
- Shah, A.S.; Sylvester, P.T.; Yahanda, A.T.; Vellimana, A.K.; Dunn, G.P.; Evans, J.; Rich, K.M.; Dowling, J.L.; Leuthardt, E.C.; Dacey, R.G.; et al. Intraoperative MRI for Newly Diagnosed Supratentorial Glioblastoma: A Multicenter-Registry Comparative Study to Conventional Surgery. J. Neurosurg. 2020, 135, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Abraham, P.; Sarkar, R.; Brandel, M.G.; Wali, A.R.; Rennert, R.C.; Lopez Ramos, C.; Padwal, J.; Steinberg, J.A.; Santiago-Dieppa, D.R.; Cheung, V.; et al. Cost-Effectiveness of Intraoperative MRI for Treatment of High-Grade Gliomas. Radiology 2019, 291, 689–697. [Google Scholar] [CrossRef] [PubMed]
- Bello, L.; Riva, M.; Fava, E.; Ferpozzi, V.; Castellano, A.; Raneri, F.; Pessina, F.; Bizzi, A.; Falini, A.; Cerri, G. Tailoring Neurophysiological Strategies with Clinical Context Enhances Resection and Safety and Expands Indications in Gliomas Involving Motor Pathways. Neuro Oncol. 2014, 16, 1110–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Witt Hamer, P.C.; Robles, S.G.; Zwinderman, A.H.; Duffau, H.; Berger, M.S. Impact of Intraoperative Stimulation Brain Mapping on Glioma Surgery Outcome: A Meta-Analysis. J. Clin. Oncol. 2012, 30, 2559–2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feyissa, A.M.; Worrell, G.A.; Tatum, W.O.; Mahato, D.; Brinkmann, B.H.; Rosenfeld, S.S.; ReFaey, K.; Bechtle, P.S.; Quinones-Hinojosa, A. High-Frequency Oscillations in Awake Patients Undergoing Brain Tumor-Related Epilepsy Surgery. Neurology 2018, 90, e1119–e1125. [Google Scholar] [CrossRef] [PubMed]
- Eseonu, C.I.; Rincon-Torroella, J.; ReFaey, K.; Lee, Y.M.; Nangiana, J.; Vivas-Buitrago, T.; Quiñones-Hinojosa, A. Awake Craniotomy vs Craniotomy Under General Anesthesia for Perirolandic Gliomas: Evaluating Perioperative Complications and Extent of Resection. Neurosurgery 2017, 81, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Motomura, K.; Chalise, L.; Ohka, F.; Aoki, K.; Tanahashi, K.; Hirano, M.; Nishikawa, T.; Yamaguchi, J.; Shimizu, H.; Wakabayashi, T.; et al. Impact of the Extent of Resection on the Survival of Patients with Grade II and III Gliomas Using Awake Brain Mapping. J. Neurooncol. 2021, 153, 361–372. [Google Scholar] [CrossRef]
- Morsy, A.A.; Ismail, A.M.; Nasr, Y.M.; Waly, S.H.; Abdelhameed, E.A. Predictors of Stimulation-Induced Seizures during Perirolandic Glioma Resection Using Intraoperative Mapping Techniques. Surg. Neurol. Int. 2021, 12, 117. [Google Scholar] [CrossRef]
- Gogos, A.J.; Young, J.S.; Morshed, R.A.; Avalos, L.N.; Noss, R.S.; Villanueva-Meyer, J.E.; Hervey-Jumper, S.L.; Berger, M.S. Triple Motor Mapping: Transcranial, Bipolar, and Monopolar Mapping for Supratentorial Glioma Resection Adjacent to Motor Pathways. J. Neurosurg. 2020, 134, 1728–1737. [Google Scholar] [CrossRef]
- Burks, J.D.; Bonney, P.A.; Conner, A.K.; Glenn, C.A.; Briggs, R.G.; Battiste, J.D.; McCoy, T.; O’Donoghue, D.L.; Wu, D.H.; Sughrue, M.E. A Method for Safely Resecting Anterior Butterfly Gliomas: The Surgical Anatomy of the Default Mode Network and the Relevance of Its Preservation. J. Neurosurg. 2017, 126, 1795–1811. [Google Scholar] [CrossRef]
- Nossek, E.; Korn, A.; Shahar, T.; Kanner, A.A.; Yaffe, H.; Marcovici, D.; Ben-Harosh, C.; Ben Ami, H.; Weinstein, M.; Shapira-Lichter, I.; et al. Intraoperative Mapping and Monitoring of the Corticospinal Tracts with Neurophysiological Assessment and 3-Dimensional Ultrasonography-Based Navigation. Clinical Article. J. Neurosurg. 2011, 114, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Schucht, P.; Seidel, K.; Beck, J.; Murek, M.; Jilch, A.; Wiest, R.; Fung, C.; Raabe, A. Intraoperative Monopolar Mapping during 5-ALA-Guided Resections of Glioblastomas Adjacent to Motor Eloquent Areas: Evaluation of Resection Rates and Neurological Outcome. Neurosurg. Focus 2014, 37, E16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavreul, A.; Aubin, G.; Delion, M.; Lemée, J.-M.; Ter Minassian, A.; Menei, P. What Effects Does Awake Craniotomy Have on Functional and Survival Outcomes for Glioblastoma Patients? J. Neurooncol. 2021, 151, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Puglisi, G.; Conti Nibali, M.; Viganò, L.; Sciortino, T.; Gay, L.; Leonetti, A.; Zito, P.; Riva, M.; Bello, L. Asleep or Awake Motor Mapping for Resection of Perirolandic Glioma in the Nondominant Hemisphere? Development and Validation of a Multimodal Score to Tailor the Surgical Strategy. J. Neurosurg. 2022, 136, 16–29. [Google Scholar] [CrossRef]
- Giamouriadis, A.; Lavrador, J.P.; Bhangoo, R.; Ashkan, K.; Vergani, F. How Many Patients Require Brain Mapping in an Adult Neuro-Oncology Service? Neurosurg. Rev. 2020, 43, 729–738. [Google Scholar] [CrossRef]
- Li, Y.-C.; Chiu, H.-Y.; Lin, Y.-J.; Chen, K.-T.; Hsu, P.-W.; Huang, Y.-C.; Chen, P.-Y.; Wei, K.-C. The Merits of Awake Craniotomy for Glioblastoma in the Left Hemispheric Eloquent Area: One Institution Experience. Clin. Neurol. Neurosurg. 2021, 200, 106343. [Google Scholar] [CrossRef]
- Alimohamadi, M.; Shirani, M.; Shariat Moharari, R.; Pour-Rashidi, A.; Ketabchi, M.; Khajavi, M.; Arami, M.; Amirjamshidi, A. Application of Awake Craniotomy and Intraoperative Brain Mapping for Surgical Resection of Insular Gliomas of the Dominant Hemisphere. World Neurosurg. 2016, 92, 151–158. [Google Scholar] [CrossRef]
- Duffau, H.; Lopes, M.; Arthuis, F.; Bitar, A.; Sichez, J.-P.; Van Effenterre, R.; Capelle, L. Contribution of Intraoperative Electrical Stimulations in Surgery of Low Grade Gliomas: A Comparative Study between Two Series without (1985–96) and with (1996–2003) Functional Mapping in the Same Institution. J. Neurol. Neurosurg. Psychiatry 2005, 76, 845–851. [Google Scholar] [CrossRef] [Green Version]
- Martino, J.; Gomez, E.; Bilbao, J.L.; Dueñas, J.C.; Vázquez-Barquero, A. Cost-Utility of Maximal Safe Resection of WHO Grade II Gliomas within Eloquent Areas. Acta Neurochir. 2013, 155, 41–50. [Google Scholar] [CrossRef]
- Sacko, O.; Lauwers-Cances, V.; Brauge, D.; Sesay, M.; Brenner, A.; Roux, F.-E. Awake Craniotomy vs Surgery under General Anesthesia for Resection of Supratentorial Lesions. Neurosurgery 2011, 68, 1192–1198; discussion 1198–1199. [Google Scholar] [CrossRef]
- Skrap, M.; Mondani, M.; Tomasino, B.; Weis, L.; Budai, R.; Pauletto, G.; Eleopra, R.; Fadiga, L.; Ius, T. Surgery of Insular Nonenhancing Gliomas: Volumetric Analysis of Tumoral Resection, Clinical Outcome, and Survival in a Consecutive Series of 66 Cases. Neurosurgery 2012, 70, 1081–1093; discussion 1093–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schucht, P.; Ghareeb, F.; Duffau, H. Surgery for Low-Grade Glioma Infiltrating the Central Cerebral Region: Location as a Predictive Factor for Neurological Deficit, Epileptological Outcome, and Quality of Life. J. Neurosurg. 2013, 119, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Eseonu, C.I.; Rincon-Torroella, J.; Lee, Y.M.; ReFaey, K.; Tripathi, P.; Quinones-Hinojosa, A. Intraoperative Seizures in Awake Craniotomy for Perirolandic Glioma Resections That Undergo Cortical Mapping. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2018, 79, 239–246. [Google Scholar] [CrossRef]
- Motomura, K.; Natsume, A.; Iijima, K.; Kuramitsu, S.; Fujii, M.; Yamamoto, T.; Maesawa, S.; Sugiura, J.; Wakabayashi, T. Surgical Benefits of Combined Awake Craniotomy and Intraoperative Magnetic Resonance Imaging for Gliomas Associated with Eloquent Areas. J. Neurosurg. 2017, 127, 790–797. [Google Scholar] [CrossRef]
- Saito, T.; Muragaki, Y.; Tamura, M.; Maruyama, T.; Nitta, M.; Tsuzuki, S.; Fukuchi, S.; Ohashi, M.; Kawamata, T. Awake Craniotomy with Transcortical Motor Evoked Potential Monitoring for Resection of Gliomas in the Precentral Gyrus: Utility for Predicting Motor Function. J. Neurosurg. 2019, 132, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Magill, S.T.; Han, S.J.; Li, J.; Berger, M.S. Resection of Primary Motor Cortex Tumors: Feasibility and Surgical Outcomes. J. Neurosurg. 2018, 129, 961–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.; Shah, A.H.; Bregy, A.; Shah, N.H.; Thambuswamy, M.; Barbarite, E.; Fuhrman, T.; Komotar, R.J. Awake Craniotomy for Brain Tumor Resection: The Rule Rather than the Exception? J. Neurosurg. Anesth. 2013, 25, 240–247. [Google Scholar] [CrossRef]
- Gerritsen, J.K.W.; Viëtor, C.L.; Rizopoulos, D.; Schouten, J.W.; Klimek, M.; Dirven, C.M.F.; Vincent, A.J.-P.E. Awake Craniotomy versus Craniotomy under General Anesthesia without Surgery Adjuncts for Supratentorial Glioblastoma in Eloquent Areas: A Retrospective Matched Case-Control Study. Acta Neurochir. 2019, 161, 307–315. [Google Scholar] [CrossRef]
- Li, Y.; Rey-Dios, R.; Roberts, D.W.; Valdés, P.A.; Cohen-Gadol, A.A. Intraoperative Fluorescence-Guided Resection of High-Grade Gliomas: A Comparison of the Present Techniques and Evolution of Future Strategies. World Neurosurg. 2014, 82, 175–185. [Google Scholar] [CrossRef]
- Zeppa, P.; De Marco, R.; Monticelli, M.; Massara, A.; Bianconi, A.; Di Perna, G.; Greco Crasto, S.; Cofano, F.; Melcarne, A.; Lanotte, M.M.; et al. Fluorescence-Guided Surgery in Glioblastoma: 5-ALA, SF or Both? Differences between Fluorescent Dyes in 99 Consecutive Cases. Brain Sci. 2022, 12, 555. [Google Scholar] [CrossRef]
- Nabavi, A.; Thurm, H.; Zountsas, B.; Pietsch, T.; Lanfermann, H.; Pichlmeier, U.; Mehdorn, M.; 5-ALA Recurrent Glioma Study Group. Five-Aminolevulinic Acid for Fluorescence-Guided Resection of Recurrent Malignant Gliomas: A Phase Ii Study. Neurosurgery 2009, 65, 1070–1076; discussion 1076–1077. [Google Scholar] [CrossRef] [PubMed]
- Díez Valle, R.; Tejada Solis, S.; Idoate Gastearena, M.A.; García de Eulate, R.; Domínguez Echávarri, P.; Aristu Mendiroz, J. Surgery Guided by 5-Aminolevulinic Fluorescence in Glioblastoma: Volumetric Analysis of Extent of Resection in Single-Center Experience. J. Neurooncol. 2011, 102, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Stummer, W.; Pichlmeier, U.; Meinel, T.; Wiestler, O.D.; Zanella, F.; Reulen, H.-J.; ALA-Glioma Study Group. Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. Lancet Oncol. 2006, 7, 392–401. [Google Scholar] [CrossRef]
- Koc, K.; Anik, I.; Cabuk, B.; Ceylan, S. Fluorescein Sodium-Guided Surgery in Glioblastoma Multiforme: A Prospective Evaluation. Br. J. Neurosurg. 2008, 22, 99–103. [Google Scholar] [CrossRef]
- Neira, J.A.; Ung, T.H.; Sims, J.S.; Malone, H.R.; Chow, D.S.; Samanamud, J.L.; Zanazzi, G.J.; Guo, X.; Bowden, S.G.; Zhao, B.; et al. Aggressive Resection at the Infiltrative Margins of Glioblastoma Facilitated by Intraoperative Fluorescein Guidance. J. Neurosurg. 2017, 127, 111–122. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Broggi, M.; Schebesch, K.-M.; Höhne, J.; Cavallo, C.; De Laurentis, C.; Eoli, M.; Anghileri, E.; Servida, M.; Boffano, C.; et al. Fluorescein-Guided Surgery for Resection of High-Grade Gliomas: A Multicentric Prospective Phase II Study (FLUOGLIO). Clin. Cancer Res. 2018, 24, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, G.; Kiesel, B.; Woehrer, A.; Traub-Weidinger, T.; Preusser, M.; Marosi, C.; Prayer, D.; Hainfellner, J.A.; Knosp, E.; Wolfsberger, S. 5-Aminolevulinic Acid Induced Fluorescence Is a Powerful Intraoperative Marker for Precise Histopathological Grading of Gliomas with Non-Significant Contrast-Enhancement. PLoS ONE 2013, 8, e76988. [Google Scholar] [CrossRef] [Green Version]
- Widhalm, G.; Wolfsberger, S.; Minchev, G.; Woehrer, A.; Krssak, M.; Czech, T.; Prayer, D.; Asenbaum, S.; Hainfellner, J.A.; Knosp, E. 5-Aminolevulinic Acid Is a Promising Marker for Detection of Anaplastic Foci in Diffusely Infiltrating Gliomas with Nonsignificant Contrast Enhancement. Cancer 2010, 116, 1545–1552. [Google Scholar] [CrossRef]
- Chan, D.T.M.; Yi-Pin Sonia, H.; Poon, W.S. 5-Aminolevulinic Acid Fluorescence Guided Resection of Malignant Glioma: Hong Kong Experience. Asian J. Surg. 2018, 41, 467–472. [Google Scholar] [CrossRef]
- Chen, B.; Wang, H.; Ge, P.; Zhao, J.; Li, W.; Gu, H.; Wang, G.; Luo, Y.; Chen, D. Gross Total Resection of Glioma with the Intraoperative Fluorescence-Guidance of Fluorescein Sodium. Int. J. Med. Sci. 2012, 9, 708–714. [Google Scholar] [CrossRef]
- Diaz, R.J.; Dios, R.R.; Hattab, E.M.; Burrell, K.; Rakopoulos, P.; Sabha, N.; Hawkins, C.; Zadeh, G.; Rutka, J.T.; Cohen-Gadol, A.A. Study of the Biodistribution of Fluorescein in Glioma-Infiltrated Mouse Brain and Histopathological Correlation of Intraoperative Findings in High-Grade Gliomas Resected under Fluorescein Fluorescence Guidance. J. Neurosurg. 2015, 122, 1360–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catapano, G.; Sgulò, F.G.; Seneca, V.; Lepore, G.; Columbano, L.; di Nuzzo, G. Fluorescein-Guided Surgery for High-Grade Glioma Resection: An Intraoperative “Contrast-Enhancer”. World Neurosurg. 2017, 104, 239–247. [Google Scholar] [CrossRef]
- Francaviglia, N.; Iacopino, D.G.; Costantino, G.; Villa, A.; Impallaria, P.; Meli, F.; Maugeri, R. Fluorescein for Resection of High-Grade Gliomas: A Safety Study Control in a Single Center and Review of the Literature. Surg. Neurol. Int. 2017, 8, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixidor, P.; Arráez, M.Á.; Villalba, G.; Garcia, R.; Tardáguila, M.; González, J.J.; Rimbau, J.; Vidal, X.; Montané, E. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study. PLoS ONE 2016, 11, e0149244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwake, M.; Stummer, W.; Suero Molina, E.J.; Wölfer, J. Simultaneous Fluorescein Sodium and 5-ALA in Fluorescence-Guided Glioma Surgery. Acta Neurochir. 2015, 157, 877–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Wu, J.; Wang, C.; Liu, H.; Dong, X.; Shi, C.; Shi, C.; Liu, Y.; Teng, L.; Han, D.; et al. Intraoperative Fluorescence-Guided Resection of High-Grade Malignant Gliomas Using 5-Aminolevulinic Acid-Induced Porphyrins: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS ONE 2013, 8, e63682. [Google Scholar] [CrossRef]
- Yamada, S.; Muragaki, Y.; Maruyama, T.; Komori, T.; Okada, Y. Role of Neurochemical Navigation with 5-Aminolevulinic Acid during Intraoperative MRI-Guided Resection of Intracranial Malignant Gliomas. Clin. Neurol. Neurosurg. 2015, 130, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Maesawa, S.; Fujii, M.; Nakahara, N.; Watanabe, T.; Wakabayashi, T.; Yoshida, J. Intraoperative Tractography and Motor Evoked Potential (MEP) Monitoring in Surgery for Gliomas around the Corticospinal Tract. World Neurosurg. 2010, 74, 153–161. [Google Scholar] [CrossRef]
- Maldaun, M.V.C.; Khawja, S.N.; Levine, N.B.; Rao, G.; Lang, F.F.; Weinberg, J.S.; Tummala, S.; Cowles, C.E.; Ferson, D.; Nguyen, A.-T.; et al. Awake Craniotomy for Gliomas in a High-Field Intraoperative Magnetic Resonance Imaging Suite: Analysis of 42 Cases. J. Neurosurg. 2014, 121, 810–817. [Google Scholar] [CrossRef]
- Zhuang, D.-X.; Wu, J.-S.; Yao, C.-J.; Qiu, T.-M.; Lu, J.-F.; Zhu, F.-P.; Xu, G.; Zhu, W.; Zhou, L.-F. Intraoperative Multi-Information-Guided Resection of Dominant-Sided Insular Gliomas in a 3-T Intraoperative Magnetic Resonance Imaging Integrated Neurosurgical Suite. World Neurosurg. 2016, 89, 84–92. [Google Scholar] [CrossRef]
- Ghinda, D.; Zhang, N.; Lu, J.; Yao, C.-J.; Yuan, S.; Wu, J.-S. Contribution of Combined Intraoperative Electrophysiological Investigation with 3-T Intraoperative MRI for Awake Cerebral Glioma Surgery: Comprehensive Review of the Clinical Implications and Radiological Outcomes. Neurosurg. Focus 2016, 40, E14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leuthardt, E.C.; Lim, C.C.H.; Shah, M.N.; Evans, J.A.; Rich, K.M.; Dacey, R.G.; Tempelhoff, R.; Chicoine, M.R. Use of Movable High-Field-Strength Intraoperative Magnetic Resonance Imaging with Awake Craniotomies for Resection of Gliomas: Preliminary Experience. Neurosurgery 2011, 69, 194–205; discussion 205-206. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, J.; Yao, C.; Zhuang, D.; Qiu, T.; Hu, X.; Zhang, J.; Gong, X.; Liang, W.; Mao, Y.; et al. Awake Language Mapping and 3-Tesla Intraoperative MRI-Guided Volumetric Resection for Gliomas in Language Areas. J. Clin. Neurosci. 2013, 20, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- White, T.; Zavarella, S.; Jarchin, L.; Nardi, D.; Schaffer, S.; Schulder, M. Combined Brain Mapping and Compact Intraoperative MRI for Brain Tumor Resection. Stereotact. Funct. Neurosurg. 2018, 96, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Whiting, B.B.; Lee, B.S.; Mahadev, V.; Borghei-Razavi, H.; Ahuja, S.; Jia, X.; Mohammadi, A.M.; Barnett, G.H.; Angelov, L.; Rajan, S.; et al. Combined Use of Minimal Access Craniotomy, Intraoperative Magnetic Resonance Imaging, and Awake Functional Mapping for the Resection of Gliomas in 61 Patients. J. Neurosurg. 2019, 132, 159–167. [Google Scholar] [CrossRef]
- Peruzzi, P.; Bergese, S.D.; Viloria, A.; Puente, E.G.; Abdel-Rasoul, M.; Chiocca, E.A. A Retrospective Cohort-Matched Comparison of Conscious Sedation versus General Anesthesia for Supratentorial Glioma Resection. Clinical Article. J. Neurosurg. 2011, 114, 633–639. [Google Scholar] [CrossRef]
- Tuominen, J.; Yrjänä, S.; Ukkonen, A.; Koivukangas, J. Awake Craniotomy May Further Improve Neurological Outcome of Intraoperative MRI-Guided Brain Tumor Surgery. Acta Neurochir. 2013, 155, 1805–1812. [Google Scholar] [CrossRef]
- Roder, C.; Bisdas, S.; Ebner, F.H.; Honegger, J.; Naegele, T.; Ernemann, U.; Tatagiba, M. Maximizing the Extent of Resection and Survival Benefit of Patients in Glioblastoma Surgery: High-Field IMRI versus Conventional and 5-ALA-Assisted Surgery. Eur. J. Surg. Oncol. 2014, 40, 297–304. [Google Scholar] [CrossRef]
- Coburger, J.; Hagel, V.; Wirtz, C.R.; König, R. Surgery for Glioblastoma: Impact of the Combined Use of 5-Aminolevulinic Acid and Intraoperative MRI on Extent of Resection and Survival. PLoS ONE 2015, 10, e0131872. [Google Scholar] [CrossRef] [Green Version]
- Schatlo, B.; Fandino, J.; Smoll, N.R.; Wetzel, O.; Remonda, L.; Marbacher, S.; Perrig, W.; Landolt, H.; Fathi, A.-R. Outcomes after Combined Use of Intraoperative MRI and 5-Aminolevulinic Acid in High-Grade Glioma Surgery. Neuro Oncol. 2015, 17, 1560–1567. [Google Scholar] [CrossRef]
- Feigl, G.C.; Ritz, R.; Moraes, M.; Klein, J.; Ramina, K.; Gharabaghi, A.; Krischek, B.; Danz, S.; Bornemann, A.; Liebsch, M.; et al. Resection of Malignant Brain Tumors in Eloquent Cortical Areas: A New Multimodal Approach Combining 5-Aminolevulinic Acid and Intraoperative Monitoring. J. Neurosurg. 2010, 113, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Tsugu, A.; Ishizaka, H.; Mizokami, Y.; Osada, T.; Baba, T.; Yoshiyama, M.; Nishiyama, J.; Matsumae, M. Impact of the Combination of 5-Aminolevulinic Acid-Induced Fluorescence with Intraoperative Magnetic Resonance Imaging-Guided Surgery for Glioma. World Neurosurg. 2011, 76, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Della Puppa, A.; De Pellegrin, S.; d’Avella, E.; Gioffrè, G.; Rossetto, M.; Gerardi, A.; Lombardi, G.; Manara, R.; Munari, M.; Saladini, M.; et al. 5-Aminolevulinic Acid (5-ALA) Fluorescence Guided Surgery of High-Grade Gliomas in Eloquent Areas Assisted by Functional Mapping. Our Experience and Review of the Literature. Acta Neurochir. 2013, 155, 965–972; discussion 972. [Google Scholar] [CrossRef] [PubMed]
- Pichierri, A.; Bradley, M.; Iyer, V. Intraoperative Magnetic Resonance Imaging-Guided Glioma Resections in Awake or Asleep Settings and Feasibility in the Context of a Public Health System. World Neurosurg. X 2019, 3, 100022. [Google Scholar] [CrossRef]
- Morin, F.; Courtecuisse, H.; Reinertsen, I.; Le Lann, F.; Palombi, O.; Payan, Y.; Chabanas, M. Brain-Shift Compensation Using Intraoperative Ultrasound and Constraint-Based Biomechanical Simulation. Med. Image Anal. 2017, 40, 133–153. [Google Scholar] [CrossRef] [Green Version]
- Prada, F.; Bene, M.D.; Fornaro, R.; Vetrano, I.G.; Martegani, A.; Aiani, L.; Sconfienza, L.M.; Mauri, G.; Solbiati, L.; Pollo, B.; et al. Identification of Residual Tumor with Intraoperative Contrast-Enhanced Ultrasound during Glioblastoma Resection. Neurosurg. Focus 2016, 40, E7. [Google Scholar] [CrossRef] [Green Version]
- Neidert, M.C.; Hostettler, I.C.; Burkhardt, J.-K.; Mohme, M.; Held, U.; Kofmehl, R.; Eisele, G.; Woernle, C.M.; Regli, L.; Bozinov, O. The Influence of Intraoperative Resection Control Modalities on Survival Following Gross Total Resection of Glioblastoma. Neurosurg. Rev. 2016, 39, 401–409. [Google Scholar] [CrossRef]
- Freudiger, C.W.; Min, W.; Saar, B.G.; Lu, S.; Holtom, G.R.; He, C.; Tsai, J.C.; Kang, J.X.; Xie, X.S. Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 2008, 322, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Orringer, D.A.; Freudiger, C.W.; Ramkissoon, S.; Liu, X.; Lau, D.; Golby, A.J.; Norton, I.; Hayashi, M.; Agar, N.Y.R.; et al. Rapid, Label-Free Detection of Brain Tumors with Stimulated Raman Scattering Microscopy. Sci. Transl. Med. 2013, 5, 201ra119. [Google Scholar] [CrossRef] [Green Version]
- Ji, M.; Lewis, S.; Camelo-Piragua, S.; Ramkissoon, S.H.; Snuderl, M.; Venneti, S.; Fisher-Hubbard, A.; Garrard, M.; Fu, D.; Wang, A.C.; et al. Detection of Human Brain Tumor Infiltration with Quantitative Stimulated Raman Scattering Microscopy. Sci. Transl. Med. 2015, 7, 309ra163. [Google Scholar] [CrossRef]
- Garzon-Muvdi, T.; Kut, C.; Li, X.; Chaichana, K.L. Intraoperative Imaging Techniques for Glioma Surgery. Future Oncol. 2017, 13, 1731–1745. [Google Scholar] [CrossRef] [PubMed]
- Gravesteijn, B.Y.; Keizer, M.E.; Vincent, A.J.P.E.; Schouten, J.W.; Stolker, R.J.; Klimek, M. Awake Craniotomy versus Craniotomy under General Anesthesia for the Surgical Treatment of Insular Glioma: Choices and Outcomes. Neurol. Res. 2018, 40, 87–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krieg, S.M.; Shiban, E.; Droese, D.; Gempt, J.; Buchmann, N.; Pape, H.; Ryang, Y.-M.; Meyer, B.; Ringel, F. Predictive Value and Safety of Intraoperative Neurophysiological Monitoring with Motor Evoked Potentials in Glioma Surgery. Neurosurgery 2012, 70, 1060–1070; discussion 1070-1071. [Google Scholar] [CrossRef] [PubMed]
- Przybylowski, C.J.; Hervey-Jumper, S.L.; Sanai, N. Surgical Strategy for Insular Glioma. J. Neurooncol. 2021, 151, 491–497. [Google Scholar] [CrossRef]
- Jaber, M.; Wölfer, J.; Ewelt, C.; Holling, M.; Hasselblatt, M.; Niederstadt, T.; Zoubi, T.; Weckesser, M.; Stummer, W. The Value of 5-Aminolevulinic Acid in Low-Grade Gliomas and High-Grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors. Neurosurgery 2016, 78, 401–411; discussion 411. [Google Scholar] [CrossRef] [Green Version]
- Lau, D.; Hervey-Jumper, S.L.; Chang, S.; Molinaro, A.M.; McDermott, M.W.; Phillips, J.J.; Berger, M.S. A Prospective Phase II Clinical Trial of 5-Aminolevulinic Acid to Assess the Correlation of Intraoperative Fluorescence Intensity and Degree of Histologic Cellularity during Resection of High-Grade Gliomas. J. Neurosurg. 2016, 124, 1300–1309. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.S.; Salinas, R.; Lee, J.Y.K. Indocyanine-Green for Fluorescence-Guided Surgery of Brain Tumors: Evidence, Techniques, and Practical Experience. Front. Surg. 2019, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Yashin, K.; Bonsanto, M.M.; Achkasova, K.; Zolotova, A.; Wael, A.-M.; Kiseleva, E.; Moiseev, A.; Medyanik, I.; Kravets, L.; Huber, R.; et al. OCT-Guided Surgery for Gliomas: Current Concept and Future Perspectives. Diagnostics 2022, 12, 335. [Google Scholar] [CrossRef]
- Dasenbrock, H.H.; See, A.P.; Smalley, R.J.; Bi, W.L.; Dolati, P.; Frerichs, K.U.; Golby, A.J.; Chiocca, E.A.; Aziz-Sultan, M.A. Frameless Stereotactic Navigation during Insular Glioma Resection Using Fusion of Three-Dimensional Rotational Angiography and Magnetic Resonance Imaging. World Neurosurg. 2019, 126, 322–330. [Google Scholar] [CrossRef]
- Shalan, M.E.; Soliman, A.Y.; Nassar, I.A.; Alarabawy, R.A. Surgical Planning in Patients with Brain Glioma Using Diffusion Tensor MR Imaging and Tractography. Egypt. J. Radiol. Nucl. Med. 2021, 52, 110. [Google Scholar] [CrossRef]
Study (Years) | Study Period | Study Design | Tumors | Histology | Location | Extent of Resection | Overall Survival | Complications |
---|---|---|---|---|---|---|---|---|
Coburger et al. (2017) [15] | 2008–2013 | Retrospective | 62 | GBM | Non-specific | EOR 78 ± 4.0% | - | 9 (27%) complications 2 (6%) CSF leak, 2 (6%) bleeding, 3 (9%) ischemia, 1 (3%) infection 1 (3%) hydrocephalus |
Scherer et al. (2016) [16] | 2011–2014 | Prospective | 224 | 141 (62.9%) GBM, 83 (37.1%) lower-grade gliomas | Frontal, temporal, parietal, occipital, intraventricular | 70% underwent additional resection after iMRI | - | 15 (6.7%) permanent neurological deficits |
Kuhnt et al. (2011) [17] | 2002–2008 | Retrospective | 135 | GBM | Supratentorial | Residual tumor in 88 patients. Further resection was performed in 19 patients. GTR for 9 patients increased from 47 (34.8%) to 56 (41.5%) patients. | Mean OS in patients with GTR (EOR > 98%) = 14 months compared to 9 months in EOR < 98%) | 1 (0.7%) permanent language deficit |
Senft et al. (2011) [18] | 2007–2010 | Prospective | 49 | 46 (93.9%) GBM, 3 (6.1%) lower-grade gliomas | Non-specific | GTR 23/24 (96%) in the iMRI group, and 17/25 (68%) in the control group. | Median PFS: 226 days (95% CI 0–454) in the iMRI group and 154 days (60–248) in the conventional group | 5 (10.2%) permanent neurological deficits |
Hatiboglu et al. (2009) [19] | 2006–2007 | Prospective | 46 | 29 (63.0%) GBM, 17 (37.0%) lower-grade gliomas | Non-specific | EOR increased from 76% (range, 35%-97%) to 96% (range, 48%-100%) 29 patients had GTR, 15 (52%) due to iMRI | - | 4/46 (9%) permanent neurological deficits (3 hemiparesis and 1 visual deficit) |
Kubben et al. (2014) [20] | 2010–2012 | Prospective | 14 | GBM | Supratentorial | Residual tumor volume: control group median IQR (6.5%, 2.5–14.75%), iMRI group (13%, 3.75–27.75%) | iMRI: median (IQR) = 396 (191–599) days, control: 472 (244–619) days | - |
Shah et al. (2020) [21] | 1996–2008 | Retrospective | 640 | GBM | Non-specific | Additional resection was performed in 104/122 with STR after iMRI, | Median OS was 17.0 months for patients with and without iMRI. iMRI was not associated with increased OS | Use of iMRI was not associated with increased rate of new permanent neurological deficit |
Study (Years) | Study Period | Study Design | Tumors | Histology | Location | Mapping | Extent of Resection | Overall Survival | Complications |
---|---|---|---|---|---|---|---|---|---|
(A): General Anesthesia | |||||||||
Gogos et al. (2020) [19] | 2018–2019 | Prospective | 58 | 37 (62.7%) GBM, 21 (37.3%) lower-grade gliomas | Frontal, temporal, parietal, insula | GA | Median EOR 98.0% | - | 2 (3.4%) permanent neurological deficits |
Schucht et al. (2014) [32] | 2010–2014 | Retrospective | 67 | GBM | Proximity to corticospinal tract | GA | Complete resection in 49/67 (73%) | - | 3 (4%) persisting postoperative motor deficits |
Duffau et al. (2005) [38] | 1985–1996 and 1996–2003 | Retrospective | 222 | Lower-grade gliomas | Eloquent areas | 122 (54.9%) GA | Total resection: GA monitoring 31 (25.4%), no GA monitoring 6 (6%) | Survival: in GA monitoring: 11 (9.0%), non-GA monitoring: 43 (43%) | - |
(B): Awake Craniotomy | |||||||||
Motomura et al. (2021) [27] | 2012–2020 | Retrospective | 126 | Lower-grade gliomas | Frontal, insular, temporal, parietal, occipital | AC | Median EOR 93.1% >100% (=supratotal resection) 15 (11.9%) 100% (=gross total resection) 32 (25.4%) ≥90%, <100% (=subtotal resection) 27 (21.4%) <90% (=partial resection) 52 (41.3%) | - | 5 (4.0%) permanent speech disturbance 9 (7.1%) permanent motor disturbance |
Burks et al. (2017) [30] | 2012–2015 | Retrospective | 15 | 11 (73%) GBM, 4 (26%) lower-grade gliomas | Non-specific | AC | 100% (GTR) 12 (80%) 90%–99% (NTR)1 (7%) 70%–89% (STR) 2 (13%) | 4 died (26.6%) | 1 (7%) abulia 1 (7%) hemorrhage 1 (7%) Infection |
Clavreul et al. (2021) [33] | 2004–2019 | Retrospective | 46 | GBM | Non-specific | AC | Complete resection in 28 (61%) | Median PFS was 6.8 months (CI 6.1; 9.7) and median OS was 17.6 months (CI 14.8; 34.1). | 3 (6.5%) new motor deficits |
Alimohamadi et al. (2016) [37] | 2015–2016 | Retrospective | 10 | 3 (30%) GBM, 7 (70%) lower-grade gliomas | Non-specific | AC | 73–100% EOR | - | 1 (10%) deteriorated aphasia |
Martino et al. (2013) [39] | 2009–2011 | Retrospective | 22 | Lower-grade gliomas | SMA, premotor, posterior temporal | 11 (50%) AC | With monitoring: EOR (%) 91.7%, GTR 5 (45.5%), NTR 4 (36.4%), STR 2 (18.2%) without monitoring: EOR (%) 48.7%, GTR 0, NTR 4 (36.4%), STR 7 (63.6%), | 5.3 years (3.5–7) monitoring 3.7 years (3.5–4) no monitoring | 1 (9.1%) in AC (mild dysphasia), and 5 (45.5%) in no monitoring group (4 dysphasia, 3 hemiparesis). |
Schucht et al. (2013) [42] | 2007–2010 | Retrospective | 64 | Lower-grade gliomas | Central, frontal | AC | Median EOR 92% (range 80–97%) | - | 3 (9.1%) in central and 2 (6.5%) in frontal |
Saito et al. (2019) [45] | 2000–2018 | Retrospective | 30 | 3 (10.0%) GBM, 27 (90%) low-grade gliomas | Precentral gyrus | AC | EOR, Mean 93% (range = 75–100) | - | 8 (26.6%) motor decline |
Motomura et al. (2017) [44] | 2012–2014 | Retrospective | 33 | 4 (12.1%) GBM, 29 (87.9%) lower-grade gliomas | Frontal, insular, parietal, temporal, occipital | AC | EOR ≥ 90% 15 (45.5%), <90% 18 (54.5%) increased rate of EOR due to iMRI in 16 patients by mean (SD) 15.8 (12.2) | - | 3 (9.0%) permanent neurological deficits |
Eseonu et al. (2018) [43] | 2015–2016 | Retrospective | 57 | 17 (29.8) GBM, 40 (70.2%) low-grade gliomas | Peri-Rolandic motor area | AC (33 positive mapping (PM), 24 negative mapping (NM)) | EOR 87.8% (7.1%) in positive monitoring, 92.4 (9.4%) in NM HG, positive monitoring: 85.7 (9.4%), HG, negative monitoring: 90.7 (10.2%). LG, positive monitoring: 90.8 (10.4%), LG, negative monitoring: 97.0 (5.2%) | - | 3 (9.2%) in PM |
(C): General Anesthesia and Awake Craniotomy | |||||||||
Morsy et al. (2021) [28] | 2014–2019 | Retrospective | 64 | 26 (40.6%) GBM, 48 (59.4%) lower-grade gliomas | Peri-Rolandic | 40 (62.5%) AC, 24 (37.5%) GA | AC: EOR mean (SD) 92.03 (3.1) GTR > 98% 18 (45%) NTR > 90–98 14 (35%) STR 50–90% 8 (20%) GA: EOR, mean (SD) 90.05 (3.9) GTR > 98% 7 (29.2%) NTR > 90–98 8 (33.3%) STR 50–90% 9 (37.5%) | - | AC: 2 (5%), GA: 2 (8.3%) permanent neuro deficit |
Nossek et al. (2011) [31] | 2007–2009 | Retrospective | 55 | 22 (40%) GBM, 33 (60%) lower-grade gliomas | Frontal, parietal, temporal | 35 (63.7%) AC, 20 (36.3%) GA | GTR 39 (71%) STR 16 (29%) | - | 7 (12.7%) patients had varying degrees of permanent motor deficits |
Rossi et al. (2021) [34] | 2018–2019 | Retrospective | 135 | High-grade gliomas 73 (35%), low-grade gliomas 48 (54%) | Peri-Rolandic | 66 (49%) AC, 69 (51%) GA | 95% mean EOR (94% vs. 96% AC) | - | - |
2018–2019 | Prospective | 52 | High-grade gliomas 16 (31%), low-grade gliomas 34 (65%) | Peri-Rolandic | 35 (67%) AC, 17 (33%) GA | 97% mean EOR in both AC and sleep | - | - | |
Giamouriadis et al. (2020) [35] | 2017 | Prospective | 48 | 26 (56.5%) GBM, 32 (43.5%) lower-grade gliomas | Frontal, insular, temporal, parietal, occipital. | 16 (33.3%) AC, 32 (66.6%) GA | GA: GTR 27 (84.3%) STR 1 (3.1%) near GTR 3 (9.3%) AC: STR 0 near GTR 4 (25%) GTR 12 (75%) | - | GA: 1 (3.1%) permanent deficit AC: 2 (12.5%) permanent deficits |
Eseonu et al. (2017) [47] | 2005–2015 | Retrospective | 58 | 11 (18.9%) GBM, 47 (81.1%) lower-grade gliomas | Peri-Rolandic | 27 (46.5%) AC, 31 (53.4%) GA | AC: mean (SD) EOR 86.3% (20.5%), GA: mean (SD) EOR 79.6% (23.1%) | - | - |
Li et al. (2021) [48] | 2008–2019 | Retrospective | 109 | GBM | Primary motor cortex, primary sensory cortex, premotor cortex, language cortex | 48 (44.0) AC, 61 (55.9%) GA | GA: mean (SD) EOR: 90.2% (7.44) Gross total (>95%), 28 (45.9) Subtotal (85–95%), 18 (29.5) AC: EOR: mean (SD) EOR: 94.9% (5.73) Gross total (>95%), 40 (83.3) Subtotal (85–95%), 6 (12.5) Partial (< 85%), 2 (4.2) Partial (< 85%), 15 (24.6) | AC: mean PFS 23.2 months mean OS 28.1 months GA: mean PFS was 18.9 months mean OS 23.4 months | Permanent motor 3 (9.7%) in AC vs. 3 (11.1%) in GA language deficit: 2 (6.5%) in AC vs. 4 (14.8%) in GA |
Sacko et al. (2011) [40] | 2002–2007 | Prospective | 575 | 120 GBM, 455 lower-grade gliomas | Frontal, temporal, parietal, occipital | 214 (37.2%) AC, 316 (62.8%) GA | AC: 37% total, 45% subtotal. GA 52% total, 34% subtotal | - | Permanent neurological deficit: AC 20 (9.3%), and GA: 26 (8.2%) |
Skrap et al. (2012) [41] | 2000–2010 | Retrospective | 66 | Lower-grade gliomas | Insular | 46 (69.9%) AC, 23 (30.1%) GA | Median EOR 80% EOR 90%, n = 22 (33.3%) EOR 70%-90%, n = 30 (45.4%) EOR 70%, n = 14 (21.2%) | - | 4 (6%) permanent deficits |
Magill et al. (2018) [46] | 1998–2016 | Retrospective | 49 | 15 (28.3) GBM, 34 low-grade gliomas | Primary motor cortex | 34 (64.2%) AC, 19 (35.8%) GA | GTR 27 (50.9%) STR 26 (49.1%) Mean EOR 91% (range = 41–100) | - | 20 (37.7%) permanent deficits |
Study (Years) | Study Period | Study Design | Tumors | Histology | Location | Modality | Extent of Resection | Overall Survival | Complications |
---|---|---|---|---|---|---|---|---|---|
(A): Fluorescein sodium | |||||||||
Koc et al. (2008) [54] | 2003–2006 | Prospective | 80 | GBM | Non-specific | 47 (58.7%) fluorescein sodium | GTR: 39 (83%) fluorescein sodium vs. 18 (55%) in control group. | No difference in median survival | - |
Neira et al. (2017) [55] | 2013–2014 | Retrospective | 32 | High-grade gliomas (3–4) | Non-specific | Fluorescein sodium | 27 (84%) GTR | - | - |
Acerbi et al. (2018) [56] | 2011 | Prospective | 46 | High-grade gliomas | Non-specific | Fluorescein sodium | 38 (82.6%) complete resections | PFS-6 and PFS-12 were 56.6% and 15.2%. Median survival was 12 months | - |
Chen et al. (2012) [60] | 2010–2011 | Prospective | 10 | 3 (30%) GBM, 7 (70%) lower-grade gliomas | Non-specific | Fluorescein sodium | 8/10 (80%) GTR | 7.2 PFS months vs. 5.4 in the control group | 1/12 (8.3%) permanent hemiplegia in the control group |
Diaz et al. (2015) [61] | - | Prospective | 12 | GBM | Non-specific | Fluorescein sodium | 12/12 (100%) GTR | - | - |
Catapano et al. (2017) [62] | 2016–2017 | Retrospective | 48 | GBM | Non-specific | 23 (47.9%) fluorescein sodium | 19/23 (82.6%) GTR vs. 9/25 (36%) in the control group | - | - |
Francaviglia et al. (2017) [63] | 2015–2016 | Retrospective | 47 | 33 (70.2%) GBM, 14 (29.8%) lower-grade gliomas | Non-specific | Fluorescein sodium | 39/47 (83%) | - | 6 (12.7%) hemorrhage with permanent hemiparesis 4 (8.5%) Seizures 1 (2.1%) Hydrocephalus 1 (2.1%) Sepsis |
(B): 5-ALA | |||||||||
Stummer et al. (2006) [53] | 1999–2004 | Prospective | 322 | 237 (73.6%) GBM, 85 (26.4%) lower-grade gliomas | Non-specific | 139 (43.1%) 5-ALA | GTR: 50 (36%) in 5-ALA group, 49 (27%) in the control group. | 6-month PFS: 5-ALA: 57 (41.0%) vs. 39 (21.1%) in controls. | - |
Nabavi et al. (2009) [51] | 2003–2005 | Prospective | 36 | 21 (58.3%) GBM, 15 (41.7%) lower-grade gliomas | Non-specific | 5-ALA | 7/36 (19.4%) GTR | - | - |
Diez Valle et al. (2011) [52] | 2007–2009 | Prospective | 36 | GBM | Non-specific | 5-ALA | 30 (83.3%) complete resections | PFS 6.5 months (95% CI 3.8–9.2) for newly diagnosed GBM, and 5.3 months (95% CI 4.4–6.2) for recurrent cases | - |
Widhalm et al. (2010) [58] | 2008–2009 | Prospective | 17 | Lower-grade gliomas | Frontal, central, temporal, occipital, parietal, insular, thalamus | 5-ALA | 14/17 (82%) GTR | - | - |
Widhalm et al. (2013) [57] | 2008–2012 | Prospective | 59 | Lower-grade gliomas | Frontal, central, temporal, occipital, parietal, insular, thalamus | 5-ALA | 38/59 (64%) GTR | - | - |
Chan et al. (2018) [59] | 2011–2016 | Retrospective | 16 | 10 (62.5%) GBM, 6 (37.5%) lower-grade gliomas | Non-specific | 5-ALA | 9/16 (56.2%) GTR | - | - |
Teixidor et al. (2016) [64] | 2010–2014 | Prospective | 77 | 66 (85.7%) GBM, 11 (14.3%) lower-grade gliomas | Non-specific | 5-ALA | 42 (54%) complete resections | Six-month PFS in 45 (58%) and median overall survival was 14.2 months | No serious adverse events were reported |
(C): Fluorescein Sodium and 5-ALA | |||||||||
Zeppa et al. (2022) [50] | 2018–2021 | Retrospective | 99 | GBM | Precentral, postcentral, temporo-insular | 40 (40.4%) 5-ALA, 44 (44.4%) fluorescein sodium, 15 (15.2%) both | Total resection: 18/40 (45%%) 5-ALA, 21/44 (47.7%) in fluorescein sodium, and 6/15 (40%) in both | Mean (SD) OS 14.9 (9.91) months. mean OS in 5-ALA: 20 (16), SF: 12.3 (5.7), both 18.1 (11.9) months | - |
Study (Years) | Study Period | Study Design | Tumors | Histology | Location | Modality | Extent of Resection | Overall Survival | Complications |
---|---|---|---|---|---|---|---|---|---|
Maldaun et al. (2014) [69] | 2010–2011 | Retrospective | 41 | 9 (21.4%) GBM, 33 (78.6%) lower-grade gliomas | Frontal, temporal, parietal, insular | iMRI + AC | Median EOR overall was 90%, and gross total resection (EOR ≥ 95%) 17 (40.5%). After viewing the first MR images after initial resection, further resection was performed in 17 cases (40.5%); the mean EOR in these cases increased from 56% to 67% after further resection | - | Neurologic deficits 11 (26.2%) |
Maesawa et al. (2010) [68] | 2007–2008 | Retrospective | 28 | Lower-grade gliomas | Proximity to corticospinal tract | iMRI, intraoperative tractography mapping | 24 (85.7%) STR | - | 1 (3.5%) permanent motor deficit |
Zhuang et al. (2016) [70] | 2011–2013 | Retrospective | 30 | 6 (20%) GBM, 24 (80%) lower-grade gliomas | Dominant insular lobe | iMRI, + AC or GA mapping | iMRI increased resection from 90 to 93% in all cases, and 88% to 92% in low-grade gliomas. The use of iMRI also resulted in an increase in the percentage of gross and near-total resection from 53% to 77% | - | 3 (11%) permanent language, 2 (7.1%) motor deficits |
Ghinda et al. (2016) [71] | 2011–2015 | Retrospective | 106 | 25 (23.6%) GBM, 81 (76.4%) lower-grade gliomas | Frontal, parietal, temporal, insular | iMRI, + AC | Mean EOR 92%, complete resection was achieved in 64 (60.4%). 30 (28.3%) patients underwent further resection after initial iMRI scanning, with 10.1% increase in mean EOR | - | - |
Leuthardt et al. (2011) [72] | 2008 | Retrospective | 12 | 3 (25%) GBM, 9 (75%) lower-grade gliomas | Eloquent areas | iMRI, + AC | 5 (41.6%) GTR, 2 (16.6%) NTR, and 5 (41.6%) STR | - | 1 (8.3%) with worse outcome |
Lu et al. (2013) [73] | 2011 | Retrospective | 30 | 11 (36.6%) high-grade gliomas, 19 (63.3%) low-grade gliomas | Eloquent areas | iMRI, + GA mapping | Median EOR significantly increased from 92.5% (range, 75.1–97.0%) to 100% (range, 92.6–100%) 11 (36.6%) additional tumor removal | - | 1 (3.3%) permanent deficit |
White (2018) [74] | 2001–2016 | Retrospective | 36 | 17 (47.2%) GBM, 19 (52.7%) lower-grade gliomas | Left hemisphere | iMRI, + AC | 20 (55.6%) GTR, 19 (53%) further resections under iMRI | - | 3 (8.3%) permanent deficits |
Whiting et al. (2019) [75] | 2010–2017 | Retrospective | 62 | 18 (29.0%) GBM, 43 (69.3%) lower-grade gliomas | Frontal, temporal, parietal, insular | iMRI, + AC | 41 (85.4%) had additional resection due to MRI. Median EOR 98.5% | - | 2 (3.2%) residual speech difficulty, and 2 (3.2%) permanent weakness postoperatively |
Peruzzi et al. (2011) [76] | 2006–2008 | Retrospective | 44 | 28 (63.6%) GBM, 16 (36.3%) lower-grade gliomas | Frontal, temporal, parietal, occipital | iMRI, + AC/GA mapping | GTR in all patients | - | - |
Tuominen et al. (2013) [77] | - | Retrospective | 40 | 10 (25%) GBM, 30 (75%) lower-grade gliomas | Frontal, temporal, parietal | 20 (50%) iMRI + AC, 20 (50%) iMRI | GTR: 10 (50%) iMRI + AC 11 (55%) iMRI | - | 1 (5%) permanent neurological deficit iMRI + AC 4 (20%) permanent neurological deficit iMRI |
Roder et al. (2014) [78] | 2010–2012 | Retrospective | 117 | GBM | Non-specific | 66 (56.4%) 5-ALA, 27 (23.0%) iMRI, 19 (16.2%) iMRI and 5-ALA | iMRI EOR 53%, 5 ALA combined with iMRI increased EOR | - | 11 (9.4%) permanent severe deficits |
Coburger et al. (2015) [79] | 2012–2014 | Prospective | 116 | GBM | Non-specific | 59 (50.8%) iMRI (Group 1), 57 (49.2%) 5-ALA and MRI (Group 2) | mean EOR 97.4% (87–100) iMRI, 99.7% (97–100) iMRI + 5-ALA GTR: 27 (82%) iMRI, 33 (100%) iMRI + 5-ALA | Median PFS (CI95%)Group 1: 6 months (2.4–9.6), Group 2: 6 months (4.6–7.4) OS (CI95%) Group 1: 17 months (7.6–26.4) Group 2: 18 (15.2–20.8) | 7 (21%) iMRI, 11 (27%) iMRI+ 5-ALA |
Schatlo et al. (2015) [80] | 2003–2011 | Retrospective | 200 | 166 (83%) GBM, 44 (17%) lower-grade gliomas | Non-specific | 58 (29%) 5-ALA only, 55 (27.5%) iMRI + 5-ALA, 87 (43.5%) neither. | 5-ALA enhanced the achievement of gross total resection. GTR 25 (45%) with iMRI vs. 43 (30%) without iMRi | Median overall survival 13.8 months in the non-iMRI group and 17.9 months in the iMRI group, with no effect on PFS | - |
Feigl et al. (2010) [81] | 2007–2009 | Prospective | 36 | 15 (41.6%) GBM, 21 (58.3%) lower-grade gliomas | Frontal, temporal, parietal, insular, cerebellar | 5-ALA, GA mapping | 16/25 (64%) GTR | - | 2 (1%) hemiparesis, and 1 (0.5%) homonymous hemianopia |
Tsugu et al. (2011) [82] | 2005–2009 | Retrospective | 33 | 20 (60.6%) GBM, 13 (39.4%) lower-grade gliomas | Non-specific | 23 (69.6%) 5-ALA, 10 (30.4%) 5-ALA + MRI | GTR: 6/11 (54.5%) 5-ALA only 4/10 (40%) 5-ALA + iMRI | - | - |
Della Puppa et al. (2013) [83] | 2011–2012 | Prospective | 31 | 25 (80.6%) GBM, 6 (19.4%) lower-grade gliomas | Insular, frontal, temporal, language area | 5-ALA with GA (N = 25, 80.6%) or AC (N = 6, 19.4%) mapping | GTR 23/31 (74%) | - | 1 (3%) severe morbidity |
Yamada et al. (2015) [67] | 2004–2007 | Prospective | 99 | 67 (67.6%) GBM, 32 (32.4%) lower-grade gliomas | Non-specific | 5-ALA + iMRI | GTR 51/99 (52%) | - | - |
Pichierri et al. (2019) [84] | 2014–2018 | Retrospective | 92 | 28 (30.5%) GBM, 64 (69.5%) lower-grade gliomas | Frontal, temporal, occipital, parietal, insular, cerebellar | 26 (28.3%) iMRI (G1), 20 (21.7%) iMRI + AC (G2), 46 (50%) control (G3) | Group 1: Grade 2 GTR 46%, Grade 3 GTR 57%, Grade 4 GTR 63%. Group 2: Grade 2 GTR 55%, Grade 3 GTR 66%, Grade 4 GTR 41%, Group 3: Grade 2 GTR 41%, Grade 3 GTR 30%, Grade 4 GTR 36% | - | Memory/cognition 1(4%) G1, 1(4%) G2, 5(10.8%) G3. Parietal syndrome 1 (5%) G2, Hemiparesis 2 (4.3%) G3, Dysphasia 2 (4.3%) G3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chanbour, H.; Chotai, S. Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes. Cancers 2022, 14, 5705. https://doi.org/10.3390/cancers14225705
Chanbour H, Chotai S. Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes. Cancers. 2022; 14(22):5705. https://doi.org/10.3390/cancers14225705
Chicago/Turabian StyleChanbour, Hani, and Silky Chotai. 2022. "Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes" Cancers 14, no. 22: 5705. https://doi.org/10.3390/cancers14225705
APA StyleChanbour, H., & Chotai, S. (2022). Review of Intraoperative Adjuncts for Maximal Safe Resection of Gliomas and Its Impact on Outcomes. Cancers, 14(22), 5705. https://doi.org/10.3390/cancers14225705