Effect of Obesity among Hospitalized Cancer Patients with or without COVID-19 on a National Level
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database
2.2. Population
2.3. Outcomes
2.4. Variables
2.5. Statistical Analysis
- -
- Logistic regression models to estimate the effect of obesity on the risk of transfer to ICU, severe complications, and in-hospital mortality at inclusion.
- -
- Fine and Gray models to estimate the effect of obesity on the risk of severe complications within 90 days after discharge. This model takes into account the competing risk between severe complications and in-hospital mortality, as, death may prevent the observation of severe complications.
- -
- Cox models to estimate the effect of obesity on the risk of in-hospital mortality within 90 days after discharge.
3. Results
3.1. Patient Characteristics
3.2. Outcomes Depending on the Type of Tumor
3.3. Multivariate Analyses
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Organization Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. 2020. Available online: https://www.who.int/news-room/questions-and-answers/item/herd-immunity-lockdowns-and-covid-19 (accessed on 10 April 2021).
- Bénézit, F.; Loubet, P.; Galtier, F.; Pronier, C.; Lenzi, N.; Lesieur, Z.; Jouneau, S.; Lagathu, G.; L’Honneur, A.-S.; Foulongne, V.; et al. Non-influenza respiratory viruses in adult patients admitted with influenza-like illness: A 3-year prospective multicenter study. Infection 2020, 48, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Bernard Stoecklin, S.; Rolland, P.; Silue, Y.; Mailles, A.; Campese, C.; Simondon, A.; Mechain, M.; Meurice, L.; Nguyen, M.; Bassi, C.; et al. First cases of coronavirus disease 2019 (COVID-19) in France: Surveillance, investigations and control measures, January 2020. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 2020, 25, 2000094. [Google Scholar] [CrossRef] [Green Version]
- Bouadma, L.; Lescure, F.-X.; Lucet, J.-C.; Yazdanpanah, Y.; Timsit, J.-F. Severe SARS-CoV-2 infections: Practical considerations and management strategy for intensivists. Intensive Care Med. 2020, 46, 579–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piroth, L.; Cottenet, J.; Mariet, A.-S.; Bonniaud, P.; Blot, M.; Tubert-Bitter, P.; Quantin, C. Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: A nationwide, population-based retrospective cohort study. Lancet Respir. Med. 2021, 9, 251–259. [Google Scholar] [CrossRef]
- Sources Sources—Worldwide Data on COVID-19. Available online: https://www.ecdc.europa.eu/en/publications-data/sources-worldwide-data-covid-19 (accessed on 10 November 2022).
- Santé Publique France. L’épidémie de COVID-19 en Chiffres. Available online: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/articles/infection-au-nouveau-coronavirus-sars-cov-2-covid-19-france-et-monde#block-242818 (accessed on 4 October 2020).
- Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Zhu, F.; Xie, L.; Wang, C.; Wang, J.; Chen, R.; Jia, P.; Guan, H.Q.; Peng, L.; Chen, Y.; et al. Clinical characteristics of COVID-19-infected cancer patients: A retrospective case study in three hospitals within Wuhan, China. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 894–901. [Google Scholar] [CrossRef]
- Liu, W.; Tao, Z.-W.; Wang, L.; Yuan, M.-L.; Liu, K.; Zhou, L.; Wei, S.; Deng, Y.; Liu, J.; Liu, H.-G.; et al. Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease. Chin. Med. J. 2020, 133, 1032–1038. [Google Scholar] [CrossRef]
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Requiring Invasive Mechanical Ventilation. Obes. Silver Spring Md 2020, 28, 1195–1199. [Google Scholar] [CrossRef]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet Lond. Engl. 2020, 395, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Du, R.-H.; Liang, L.-R.; Yang, C.-Q.; Wang, W.; Cao, T.-Z.; Li, M.; Guo, G.-Y.; Du, J.; Zheng, C.-L.; Zhu, Q.; et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: A prospective cohort study. Eur. Respir. J. 2020, 55, 2000524. [Google Scholar] [CrossRef]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef]
- Wang, B.; Li, R.; Lu, Z.; Huang, Y. Does comorbidity increase the risk of patients with COVID-19: Evidence from meta-analysis. Aging 2020, 12, 6049–6057. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet Lond. Engl. 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Arayici, M.E.; Kipcak, N.; Kayacik, U.; Kelbat, C.; Keskin, D.; Kilicarslan, M.E.; Kilinc, A.V.; Kirgoz, S.; Kirilmaz, A.; Kizilkaya, M.A.; et al. Effects of SARS-CoV-2 infections in patients with cancer on mortality, ICU admission and incidence: A systematic review with meta-analysis involving 709,908 participants and 31,732 cancer patients. J. Cancer Res. Clin. Oncol. 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Sezer, H.; Bulut Canbaz, H.; Yurdakul, F.; Özserezli, B.; Yazıcı, D. Is obesity paradox valid for critically-ill COVID-19 patients with respiratory failure? Turk. Thorac. J. 2022, 23, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A.; Cottenet, J.; Bonniaud, P.; Piroth, L.; Arveux, P.; Tubert-Bitter, P.; Quantin, C. Comparison of Cancer Patients to Non-Cancer Patients among COVID-19 Inpatients at a National Level. Cancers 2021, 13, 1436. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Quinn, R.; Pradhan, K.; Fedorov, K.; Levitz, D.; Fromowitz, A.; Thakkar, A.; Shapiro, L.C.; Kabarriti, R.; Ruiz, R.E.; et al. Impact of COVID-19 on case fatality rate of patients with cancer during the Omicron wave. Cancer Cell 2022, 40, 343–345. [Google Scholar] [CrossRef]
- Liang, W.; Guan, W.; Chen, R.; Wang, W.; Li, J.; Xu, K.; Li, C.; Ai, Q.; Lu, W.; Liang, H.; et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020, 21, 335–337. [Google Scholar] [CrossRef]
- Pagès, P.-B.; Cottenet, J.; Mariet, A.-S.; Bernard, A.; Quantin, C. In-hospital mortality following lung cancer resection: Nationwide administrative database. Eur. Respir. J. 2016, 47, 1809–1817. [Google Scholar] [CrossRef]
- Park, R.; Wulff-Burchfield, E.; Sun, W.; Kasi, A. Is obesity a risk factor in cancer patients with COVID-19? Future Oncol. Lond. Engl. 2021, 17, 3541–3544. [Google Scholar] [CrossRef]
- Aboueshia, M.; Hussein, M.H.; Attia, A.S.; Swinford, A.; Miller, P.; Omar, M.; Toraih, E.A.; Saba, N.; Safah, H.; Duchesne, J.; et al. Cancer and COVID-19: Analysis of patient outcomes. Future Oncol. Lond. Engl. 2021, 17, 3499–3510. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Gottin, L.; Donadello, K.; Schweiger, V.; Nocini, R.; Taiana, M.; Zamboni, M.; Polati, E. Obesity as a risk factor for unfavourable outcomes in critically ill patients affected by Covid 19. Nutr. Metab. Cardiovasc. Dis. NMCD 2021, 31, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Piernas, C.; Astbury, N.M.; Hippisley-Cox, J.; O’Rahilly, S.; Aveyard, P.; Jebb, S.A. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: A prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021, 9, 350–359. [Google Scholar] [CrossRef]
- Robinson, K.N.; Saber, D.A. Obesity: Policy and Practice Recommendations for High-Risk Populations Influenced by the COVID-19 Pandemic. mSystems 2022, 7, e0008922. [Google Scholar] [CrossRef] [PubMed]
- Benderra, M.-A.; Aparicio, A.; Leblanc, J.; Wassermann, D.; Kempf, E.; Galula, G.; Bernaux, M.; Canellas, A.; Moreau, T.; Bellamine, A.; et al. Clinical Characteristics, Care Trajectories and Mortality Rate of SARS-CoV-2 Infected Cancer Patients: A Multicenter Cohort Study. Cancers 2021, 13, 4749. [Google Scholar] [CrossRef]
- Jee, J.; Foote, M.B.; Lumish, M.; Stonestrom, A.J.; Wills, B.; Narendra, V.; Avutu, V.; Murciano-Goroff, Y.R.; Chan, J.E.; Derkach, A.; et al. Chemotherapy and COVID-19 Outcomes in Patients With Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 3538–3546. [Google Scholar] [CrossRef] [PubMed]
- Kuderer, N.M.; Choueiri, T.K.; Shah, D.P.; Shyr, Y.; Rubinstein, S.M.; Rivera, D.R.; Shete, S.; Hsu, C.-Y.; Desai, A.; de Lima Lopes, G.; et al. Clinical impact of COVID-19 on patients with cancer (CCC19): A cohort study. Lancet Lond. Engl. 2020, 395, 1907–1918. [Google Scholar] [CrossRef]
- Park, R.; Wulff-Burchfield, E.M.; Mehta, K.; Sun, W.; Kasi, A. Prognostic impact of obesity in cancer patients with COVID-19 infection: A systematic review and meta-analysis. J. Clin. Oncol. 2021, 39, e18578. [Google Scholar] [CrossRef]
- Sanchez-Pina, J.M.; Rodríguez Rodriguez, M.; Castro Quismondo, N.; Gil Manso, R.; Colmenares, R.; Gil Alos, D.; Paciello, M.L.; Zafra, D.; Garcia-Sanchez, C.; Villegas, C.; et al. Clinical course and risk factors for mortality from COVID-19 in patients with haematological malignancies. Eur. J. Haematol. 2020, 105, 597–607. [Google Scholar] [CrossRef]
- Fox, T.A.; Troy-Barnes, E.; Kirkwood, A.A.; Chan, W.Y.; Day, J.W.; Chavda, S.J.; Kumar, E.A.; David, K.; Tomkins, O.; Sanchez, E.; et al. Clinical outcomes and risk factors for severe COVID-19 in patients with haematological disorders receiving chemo- or immunotherapy. Br. J. Haematol. 2020, 191, 194–206. [Google Scholar] [CrossRef]
- Vuagnat, A.; Jollant, F.; Abbar, M.; Hawton, K.; Quantin, C. Recurrence and mortality 1 year after hospital admission for non-fatal self-harm: A nationwide population-based study. Epidemiol. Psychiatr. Sci. 2019, 29, e20. [Google Scholar] [CrossRef]
- Jollant, F.; Goueslard, K.; Hawton, K.; Quantin, C. Self-harm, somatic disorders and mortality in the 3 years following a hospitalisation in psychiatry in adolescents and young adults. Evid. Based Ment. Health 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Goueslard, K.; Jollant, F.; Petit, J.M.; Quantin, C. Self-harm hospitalization following bariatric surgery in adolescents and young adults. Clin. Nutr. Edinb. Scotl. 2022, 41, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Quantin, C.; Yamdjieu Ngadeu, C.; Cottenet, J.; Escolano, S.; Bechraoui-Quantin, S.; Rozenberg, P.; Tubert-Bitter, P.; Gouyon, J.-B. Early exposure of pregnant women to non-steroidal anti-inflammatory drugs delivered outside hospitals and preterm birth risk: Nationwide cohort study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 1575–1584. [Google Scholar] [CrossRef]
- Goueslard, K.; Petit, J.-M.; Cottenet, J.; Chauvet-Gelinier, J.-C.; Jollant, F.; Quantin, C. Increased Risk of Rehospitalization for Acute Diabetes Complications and Suicide Attempts in Patients With Type 1 Diabetes and Comorbid Schizophrenia. Diabetes Care 2018, 41, 2316–2321. [Google Scholar] [CrossRef] [Green Version]
- Maitre, T.; Cottenet, J.; Beltramo, G.; Georges, M.; Blot, M.; Piroth, L.; Bonniaud, P.; Quantin, C. Increasing burden of noninfectious lung disease in persons living with HIV: A 7-year study using the French nationwide hospital administrative database. Eur. Respir. J. 2018, 52, 1800359. [Google Scholar] [CrossRef] [Green Version]
- Creuzot-Garcher, C.; Benzenine, E.; Mariet, A.-S.; de Lazzer, A.; Chiquet, C.; Bron, A.M.; Quantin, C. Incidence of Acute Postoperative Endophthalmitis after Cataract Surgery: A Nationwide Study in France from 2005 to 2014. Ophthalmology 2016, 123, 1414–1420. [Google Scholar] [CrossRef] [PubMed]
- Abdulmalak, C.; Cottenet, J.; Beltramo, G.; Georges, M.; Camus, P.; Bonniaud, P.; Quantin, C. Haemoptysis in adults: A 5-year study using the French nationwide hospital administrative database. Eur. Respir. J. 2015, 46, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Le Teuff, G.; Abrahamowicz, M.; Wynant, W.; Binquet, C.; Moreau, T.; Quantin, C. Flexible modeling of disease activity measures improved prognosis of disability progression in relapsing-remitting multiple sclerosis. J. Clin. Epidemiol. 2015, 68, 307–316. [Google Scholar] [CrossRef]
- Quantin, C.; Benzenine, E.; Velten, M.; Huet, F.; Farrington, C.P.; Tubert-Bitter, P. Self-controlled case series and misclassification bias induced by case selection from administrative hospital databases: Application to febrile convulsions in pediatric vaccine pharmacoepidemiology. Am. J. Epidemiol. 2013, 178, 1731–1739. [Google Scholar] [CrossRef]
- Lorgis, L.; Cottenet, J.; Molins, G.; Benzenine, E.; Zeller, M.; Aube, H.; Touzery, C.; Hamblin, J.; Gudjoncik, A.; Cottin, Y.; et al. Outcomes after acute myocardial infarction in HIV-infected patients: Analysis of data from a French nationwide hospital medical information database. Circulation 2013, 127, 1767–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jollant, F.; Roussot, A.; Corruble, E.; Chauvet-Gelinier, J.C.; Falissard, B.; Mikaeloff, Y.; Quantin, C. Prolonged impact of the COVID-19 pandemic on self-harm hospitalizations in France: A nationwide retrospective observational study. Eur. Psychiatry J. Assoc. Eur. Psychiatr. 2022, 65, e35. [Google Scholar] [CrossRef]
- Mariet, A.S.; Giroud, M.; Benzenine, E.; Cottenet, J.; Roussot, A.; Aho-Glélé, L.S.; Tubert-Bitter, P.; Béjot, Y.; Quantin, C. Hospitalizations for stroke in France during the COVID-19 pandemic before, during and after the national lockdown. Stroke 2020, 52, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Beltramo, G.; Cottenet, J.; Mariet, A.-S.; Georges, M.; Piroth, L.; Tubert-Bitter, P.; Bonniaud, P.; Quantin, C. Chronic respiratory diseases are predictors of severe outcome in COVID-19 hospitalised patients: A nationwide study. Eur. Respir. J. 2021, 58, 2004474. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Cottenet, J.; Mariet, A.-S.; Bechraoui-Quantin, S.; Rozenberg, P.; Gouyon, J.-B.; Quantin, C. Impact of the COVID-19 pandemic on preterm birth and stillbirth: A nationwide, population-based retrospective cohort study. Am. J. Obstet. Gynecol. 2021, 225, 347–348. [Google Scholar] [CrossRef] [PubMed]
- Quantin, C.; Tubert-Bitter, P. COVID-19 and social inequalities: A complex and dynamic interaction. Lancet Public Health 2022, 7, e204–e205. [Google Scholar] [CrossRef]
- Karila, L.; Roussot, A.; Mariet, A.-S.; Benyamina, A.; Falissard, B.; Mikaeloff, Y.; Quantin, C. Effects of the 2020 health crisis on acute alcohol intoxication: A nationwide retrospective observational study. Drug Alcohol Depend. 2021, 228, 109062. [Google Scholar] [CrossRef]
- Castelo-Branco, L.; Tsourti, Z.; Gennatas, S.; Rogado, J.; Sekacheva, M.; Viñal, D.; Lee, R.; Croitoru, A.; Vitorino, M.; Khallaf, S.; et al. COVID-19 in patients with cancer: First report of the ESMO international, registry-based, cohort study (ESMO-CoCARE). ESMO Open 2022, 7, 100499. [Google Scholar] [CrossRef]
- Abdoul Carime, N.; Cottenet, J.; Clerfond, G.; Eschalier, R.; Quilliot, D.; Eicher, J.-C.; Joly, B.; Quantin, C. Impact of nutritional status on heart failure mortality: A retrospective cohort study. Nutr. J. 2022, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bryere, J.; Dejardin, O.; Launay, L.; Colonna, M.; Grosclaude, P.; Launoy, G. French Network of Cancer Registries (FRANCIM) Socioeconomic status and site-specific cancer incidence, a Bayesian approach in a French Cancer Registries Network study. Eur. J. Cancer Prev. Off. J. Eur. Cancer Prev. Organ. ECP 2018, 27, 391–398. [Google Scholar] [CrossRef]
- Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern. Med. 2020, 180, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.Y.W.; Cazier, J.-B.; Starkey, T.; Briggs, S.E.W.; Arnold, R.; Bisht, V.; Booth, S.; Campton, N.A.; Cheng, V.W.T.; Collins, G.; et al. COVID-19 prevalence and mortality in patients with cancer and the effect of primary tumour subtype and patient demographics: A prospective cohort study. Lancet Oncol. 2020, 21, 1309–1316. [Google Scholar] [CrossRef]
- Arbel, Y.; Fialkoff, C.; Kerner, A.; Kerner, M. Can reduction in infection and mortality rates from coronavirus be explained by an obesity survival paradox? An analysis at the US statewide level. Int. J. Obes. 2005 2020, 44, 2339–2342. [Google Scholar] [CrossRef]
- Hakozaki, T.; Nolin-Lapalme, A.; Kogawa, M.; Okuma, Y.; Nakamura, S.; Moreau-Amaru, D.; Tamura, T.; Hosomi, Y.; Takeyama, H.; Richard, C.; et al. Cancer Cachexia among Patients with Advanced Non-Small-Cell Lung Cancer on Immunotherapy: An Observational Study with Exploratory Gut Microbiota Analysis. Cancers 2022, 14, 5405. [Google Scholar] [CrossRef]
- Fearon, K.; Arends, J.; Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 2013, 10, 90–99. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; Macdonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, V.C.; Martin, P.; Lewandowski, P.A. Cancer cachexia: Impact, mechanisms and emerging treatments. J. Cachexia Sarcopenia Muscle 2013, 4, 95–109. [Google Scholar] [CrossRef]
- Singh, R.; Rathore, S.S.; Khan, H.; Karale, S.; Chawla, Y.; Iqbal, K.; Bhurwal, A.; Tekin, A.; Jain, N.; Mehra, I.; et al. Association of Obesity With COVID-19 Severity and Mortality: An Updated Systemic Review, Meta-Analysis, and Meta-Regression. Front. Endocrinol. 2022, 13, 780872. [Google Scholar] [CrossRef]
- Lavie, C.J.; Coursin, D.B.; Long, M.T. The Obesity Paradox in Infections and Implications for COVID-19. Mayo Clin. Proc. 2021, 96, 518–520. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. OpenSAFELY: Factors associated with COVID-19 death in 17 million patients. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS ONE 2021, 16, e0247461. [Google Scholar] [CrossRef]
- Vulturar, D.-M.; Crivii, C.-B.; Orăsan, O.H.; Palade, E.; Buzoianu, A.-D.; Zehan, I.G.; Todea, D.A. Obesity Impact on SARS-CoV-2 Infection: Pros and Cons “Obesity Paradox”-A Systematic Review. J. Clin. Med. 2022, 11, 3844. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Foulon, S.; Bayle, A.; Gachot, B.; Pommeret, F.; Willekens, C.; Stoclin, A.; Merad, M.; Griscelli, F.; Lacroix, L.; et al. Determinants of the outcomes of patients with cancer infected with SARS-CoV-2: Results from the Gustave Roussy cohort. Nat. Cancer 2020, 1, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Goel, S.; Kabarriti, R.; Cole, D.; Goldfinger, M.; Acuna-Villaorduna, A.; Pradhan, K.; Thota, R.; Reissman, S.; Sparano, J.A.; et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020, 10, 935–941. [Google Scholar] [CrossRef]
- Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020, 370, 856–860. [Google Scholar] [CrossRef]
- McKinney, E.F.; Smith, K.G.C. Metabolic exhaustion in infection, cancer and autoimmunity. Nat. Immunol. 2018, 19, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Roncati, L.; Ligabue, G.; Fabbiani, L.; Malagoli, C.; Gallo, G.; Lusenti, B.; Nasillo, V.; Manenti, A.; Maiorana, A. Type 3 hypersensitivity in COVID-19 vasculitis. Clin. Immunol. Orlando Fla 2020, 217, 108487. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.; Aveyard, P.; Connock, M.; Wang, D.; Fry-Smith, A.; Barton, P. Effectiveness and safety of nicotine replacement therapy assisted reduction to stop smoking: Systematic review and meta-analysis. BMJ 2009, 338, b1024. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, M.; Jougla, E.; Fassa, M.; Padieu, R.; Quantin, C. The French public health information system. J. Int. Assoc. Stat. 2012, 28, 31–41. [Google Scholar]
- Setoguchi, S.; Solomon, D.H.; Glynn, R.J.; Cook, E.F.; Levin, R.; Schneeweiss, S. Agreement of diagnosis and its date for hematologic malignancies and solid tumors between medicare claims and cancer registry data. Cancer Causes Control 2007, 18, 561–569. [Google Scholar] [CrossRef]
No Obesity (1) | Obesity (2) | p-Value (1 vs. 2) | Standard Obesity (3) | Morbid Obesity (4) | Massive Obesity (5) | p-Value (1 vs. 3) | p-Value (1 vs. 4) | p-Value (1 vs. 5) | |
---|---|---|---|---|---|---|---|---|---|
N | 49,830 | 3260 | 2704 | 497 | 59 | ||||
Men, n(%) | 29,939 (60.08) | 1695 (51.99) | <0.01 | 1494 (55.25) | 182 (36.62) | 19 (32.20) | <0.01 | <0.01 | <0.01 |
Age, mean (std) | 72.58 (14.32) | 68.99 (11.61) | <0.01 | 69.43 (11.55) | 67.32 (11.64) | 62.88 (11.13) | <0.01 | <0.01 | <0.01 |
Age group (years) | <0.01 | <0.01 | <0.01 | <0.01 | |||||
≤40 | 1379 (2.77) | 55 (1.69) | 40 (1.48) | 12 (2.41) | 3 (5.08) | ||||
41–50 | 1817 (3.65) | 158 (4.85) | 124 (4.59) | 28 (5.63) | 6 (10.17) | ||||
51–80 | 30,644 (61.50) | 2550 (78.22) | 2105 (77.85) | 396 (79.68) | 49 (83.05) | ||||
81–90 | 12,846 (25.78) | 443 (13.59) | 386 (14.28) | 56 (11.27) | 1 (1.69) | ||||
>90 | 3144 (6.31) | 54 (1.66) | 49 (1.81) | 5 (1.01) | 0 | ||||
Chemotherapy, n(%) | 22,967 (46.09) | 1207 (37.02) | <0.01 | 1009 (37.32) | 174 (35.01) | 24 (40.68) | <0.01 | <0.01 | 0.40 |
Comorbidities, n(%) | |||||||||
Hypertension | 16,747 (33.61) | 1869 (57.33) | <0.01 | 1536 (56.80) | 296 (59.56) | 37 (62.71) | <0.01 | <0.01 | <0.01 |
Dementia | 2612 (5.24) | 81 (2.48) | <0.01 | 68 (2.51) | 13 (2.62) | 0 | <0.01 | <0.01 | 0.08 |
HIV | 191 (0.38) | 7 (0.21) | 0.13 | 6 (0.22) | 1 (0.20) | 0 | 0.18 | 1 | 1 |
Heart failure | 4467 (8.96) | 416 (12.76) | <0.01 | 316 (11.69) | 91 (18.31) | 9 (15.25) | <0.01 | <0.01 | 0.09 |
Chronic respiratory disease | 924 (1.85) | 154 (4.72) | <0.01 | 112 (4.14) | 38 (7.65) | 4 (6.78) | <0.01 | <0.01 | 0.02 |
Chronic kidney disease | 4767 (9.57) | 438 (13.44) | <0.01 | 363 (13.42) | 74 (14.89) | 1 (1.69) | <0.01 | <0.01 | 0.04 |
Cirrhosis | 1114 (2.24) | 133 (4.08) | <0.01 | 112 (4.14) | 17 (3.42) | 4 (6.78) | <0.01 | 0.08 | 0.04 |
Diabetes | 9275 (18.61) | 1320 (40.49) | <0.01 | 1064 (39.35) | 234 (47.08) | 22 (37.29) | <0.01 | <0.01 | <0.01 |
Peripheral vascular disease | 2315 (4.65) | 196 (6.01) | <0.01 | 166 (6.14) | 29 (5.84) | 1 (1.69) | <0.01 | 0.21 | 0.53 |
Dyslipidemia | 2533 (5.08) | 379 (11.63) | <0.01 | 315 (11.65) | 59 (11.87) | 5 (8.47) | <0.01 | <0.01 | 0.23 |
Deficiency Anemia | 2881 (5.78) | 223 (6.84) | 0.01 | 186 (6.88) | 33 (6.64) | 4 (6.78) | 0.02 | 0.42 | 0.78 |
COPD | 3674 (7.37) | 362 (11.10) | <0.01 | 300 (11.09) | 56 (11.27) | 6 (10.17) | <0.01 | 0.001 | 0.45 |
Pulmonary bacterial infection | 3149 (6.32) | 379 (11.63) | <0.01 | 331 (12.24) | 41 (8.25) | 7 (11.86) | <0.01 | 0.08 | 0.10 |
Outcomes, n(%) | |||||||||
Admission to ICU | 6753 (13.55) | 992 (30.43) | <0.01 | 825 (30.51) | 146 (29.38) | 21 (35.59) | <0.01 | <0.01 | <0.01 |
Severe complication during the inclusion stay | 33,599 (67.43) | 2589 (79.42) | <0.01 | 2154 (79.66) | 385 (77.46) | 50 (84.75) | <0.01 | <0.01 | <0.01 |
In-hospital mortality during the inclusion stay | 15,313 (30.73) | 805 (24.69) | <0.01 | 653 (24.15) | 132 (26.56) | 20 (33.90) | <0.01 | 0.04 | 0.60 |
Severe complication within 90 days | 36,583 (73.42) | 2724 (83.56) | <0.01 | 2262 (83.65) | 409 (82.29) | 53 (89.83) | <0.01 | <0.01 | <0.01 |
In-hospital mortality within 90 days | 19,377 (38.89) | 981 (30.09) | <0.01 | 801 (29.62) | 156 (31.39) | 24 (40.68) | <0.01 | <0.01 | 0.78 |
No Obesity (1) | Obesity (2) | p-Value (1 vs. 2) | Standard Obesity (3) | Morbid Obesity (4) | Massive Obesity (5) | p-Value (1 vs. 3) | p-Value (1 vs. 4) | p-Value (1 vs. 5) | |
---|---|---|---|---|---|---|---|---|---|
N | 49,830 | 3260 | 2704 | 497 | 59 | ||||
Hematological cancer, n(%) | 12,682 (25.45) | 857 (26.29) | 0.29 | 731 (27.03) | 110 (22.13) | 16 (27.12) | 0.07 | 0.09 | 0.77 |
Solid Cancer with metastasis, n(%) | 19,767 (39.67) | 1013 (31.07) | <0.01 | 840 (31.07) | 156 (31.39) | 17 (28.81) | <0.01 | <0.01 | 0.09 |
Solid Cancer with localized tumor, n(%) | 17,381 (34.88) | 1390 (42.64) | <0.01 | 1133 (41.90) | 231 (46.48) | 26 (44.07) | <0.01 | <0.01 | 0.14 |
Hematological Cancer | No Obesity (1) | Obesity (2) | p-Value (1 vs. 2) | Standard Obesity (3) | Morbid Obesity (4) | Massive Obesity (5) | p-Value (1 vs. 3) | p-Value (1 vs. 4) | p-Value (1 vs. 5) |
12,682 | 857 | 731 | 110 | 16 | |||||
Admission to ICU | 2770 (21.84) | 349 (40.72) | <0.01 | 295 (40.36) | 48 (43.64) | 6 (37.50) | <0.01 | <0.01 | 0.14 |
Severe complication during the inclusion stay | 8975 (70.77) | 703 (82.03) | <0.01 | 593 (81.12) | 94 (85.45) | 16 (100) | <0.01 | <0.01 | 0.01 |
In-hospital mortality during the inclusion stay | 3798 (29.95) | 238 (27.77) | 0.18 | 196 (26.81) | 34 (30.91) | 8 (50) | 0.07 | 0.83 | 0.10 |
Severe complication within 90 days | 9735 (76.76) | 730 (85.18) | <0.01 | 618 (84.54) | 96 (87.27) | 16 (100) | <0.01 | 0.01 | 0.03 |
In-hospital mortality within 90 days | 4528 (35.70) | 270 (31.51) | 0.01 | 222 (30.37) | 38 (34.55) | 10 (62.50) | <0.01 | 0.80 | 0.03 |
Solid Cancer with metastasis | |||||||||
19,767 | 1013 | 840 | 156 | 17 | |||||
Admission to ICU | 1727 (8.74) | 218 (21.52) | <0.01 | 181 (21.55) | 32 (20.51) | 5 (29.41) | <0.01 | <0.01 | 0.01 |
Severe complication during the inclusion stay | 12,788 (64.69) | 798 (78.78) | <0.01 | 671 (79.88) | 113 (72.44) | 14 (82.35) | <0.01 | 0.04 | 0.13 |
In-hospital mortality during the inclusion stay | 7281 (36.83) | 296 (29.22) | <0.01 | 236 (28.10) | 55 (35.26) | 5 (29.41) | <0.01 | 0.68 | 0.53 |
Severe complication within 90 days | 14,015 (70.90) | 851 (84.01) | <0.01 | 714 (85) | 123 (78.85) | 14 (82.35) | <0.01 | 0.03 | 0.43 |
In-hospital mortality within 90 days | 9570 (48.41) | 378 (37.31) | <0.01 | 305 (36.31) | 67 (42.95) | 6 (35.29) | <0.01 | 0.17 | 0.28 |
Solid Cancer with localized tumor | |||||||||
17,381 | 1390 | 1133 | 231 | 26 | |||||
Admission to ICU | 2256 (12.98) | 425 (30.58) | <0.01 | 349 (30.80) | 66 (28.57) | 10 (38.46) | <0.01 | <0.01 | <0.01 |
Severe complication during the inclusion stay | 11,836 (68.10) | 1088 (78.27) | <0.01 | 890 (78.55) | 178 (77.06) | 20 (76.92) | <0.01 | <0.01 | 0.33 |
In-hospital mortality during the inclusion stay | 4234 (24.36) | 271 (19.5) | <0.01 | 221 (19.51) | 43 (18.61) | 7 (26.92) | <0.01 | 0.04 | 0.76 |
Severe complication within 90 days | 12,833 (73.83) | 1143 (82.23) | <0.01 | 930 (82.08) | 190 (82.25) | 23 (88.46) | <0.01 | <0.01 | 0.09 |
In-hospital mortality within 90 days | 5279 (30.37) | 333 (23.96) | <0.01 | 274 (24.18) | 51 (22.08) | 8 (30.77) | <0.01 | 0.01 | 0.96 |
In-Hospital Mortality during the Stay * | Severe Complications during the Stay * | Intensive Care Support during the Stay * | In-Hospital Mortality within 90 Days ** | Severe Complications within 90 Days *** | |
---|---|---|---|---|---|
OR [95% CI] | OR [95% CI] | OR [95% CI] | HR [95% CI] | HR [95% CI] | |
All cancer | 0.783 [0.719–0.852] | 1.682 [1.531–1.847] | 2.130 [1.952–2.323] | 0.791 [0.741–0.844] | 1.117 [1.094–1.139] |
Hematological cancer | 0.977 [0.831–1.148] | 1.728 [1.424–2.096] | 1.909 [1.631–2.233] | 0.929 [0.820–1.053] | 1.093 [1.053–1.134] |
Solid Cancer with metastasis | 0.733 [0.636–0.844] | 1.791 [1.521–2.108] | 2.225 [1.877–2.639] | 0.762 [0.687–0.846] | 1.153 [1.113–1.195] |
Solid cancer with localized tumor | 0.814 [0.705–0.939] | 1.592 [1.378–1.840] | 2.053 [1.791–2.354] | 0.827 [0.738–0.925] | 1.101 [1.067–1.137] |
In-Hospital Mortality during the Stay * | Severe Complications during the Stay * | Intensive Care Support during the Stay * | In-Hospital Mortality within 90 Days ** | Severe Complications within 90 Days *** | |
---|---|---|---|---|---|
OR [95% CI] | OR [95% CI] | OR [95% CI] | HR [95% CI] | HR [95% CI] | |
All cancer | |||||
Standard obesity | 0.750 [0.684–0.823] | 1.714 [1.547–1.899] | 2.136 [1.944–2.347] | 0.772 [0.719–0.829] | 1.118 [1.095–1.143] |
Morbid obesity | 0.914 [0.745–1.121] | 1.433 [1.138–1.804] | 2.063 [1.674–2.543] | 0.860 [0.734–1.008] | 1.091 [1.039–1.146] |
Massive obesity | 1.401 [0.806–2.434] | 2.796 [1.320–5.922] | 2.378 [1.353–4.179] | 1.178 [0.789–1.759] | 1.251 [1.113–1.406] |
Hematological cancer | |||||
Standard obesity | 0.915 [0.768–1.090] | 1.599 [1.302–1.963] | 1.880 [1.587–2.226] | 0.887 [0.774–1.016] | 1.082 [1.040–1.127] |
Morbid obesity | 1.247 [0.819–1.899] | 2.462 [1.406–4.312] | 2.247 [1.505–3.353] | 1.073 [0.778–1.480] | 1.137 [1.040–1.243] |
Massive obesity | 3.094 [1.117–8.570] | 1.197 [0.409–3.503] | 2.202 [1.182–4.100] | 1.303 [1.135–1.497] | |
Solid Cancer with metastasis | |||||
Standard obesity | 0.690 [0.590–0.807] | 1.954 [1.632–2.341] | 2.260 [1.880–2.717] | 0.734 [0.654–0.824] | 1.175 [1.132–1.221] |
Morbid obesity | 0.991 [0.709–1.385] | 1.086 [0.735–1.607] | 1.982 [1.301–3.019] | 0.926 [0.727–1.179] | 1.035 [0.941–1.139] |
Massive obesity | 0.808 [0.283–2.311] | 2.482 [0.668–9.218] | 2.742 [0.912–8.246] | 0.757 [0.340–1.687] | 1.162 [0.89–1.517] |
Solid Cancer with localized tumor | |||||
Standard obesity | 0.793 [0.678–0.928] | 1.617 [1.380–1.895] | 2.067 [1.781–2.400] | 0.821 [0.725–0.928] | 1.096 [1.058–1.134] |
Morbid obesity | 0.863 [0.613–1.215] | 1.446 [1.028–2.035] | 1.881 [1.377–2.570] | 0.820 [0.622–1.083] | 1.112 [1.034–1.197] |
Massive obesity | 1.531 [0.618–3.794] | 1.847 [0.690–4.948] | 3.132 [1.366–7.181] | 1.183 [0.591–2.370] | 1.283 [1.065–1.546] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cottenet, J.; Tapia, S.; Arveux, P.; Bernard, A.; Dabakuyo-Yonli, T.S.; Quantin, C. Effect of Obesity among Hospitalized Cancer Patients with or without COVID-19 on a National Level. Cancers 2022, 14, 5660. https://doi.org/10.3390/cancers14225660
Cottenet J, Tapia S, Arveux P, Bernard A, Dabakuyo-Yonli TS, Quantin C. Effect of Obesity among Hospitalized Cancer Patients with or without COVID-19 on a National Level. Cancers. 2022; 14(22):5660. https://doi.org/10.3390/cancers14225660
Chicago/Turabian StyleCottenet, Jonathan, Solène Tapia, Patrick Arveux, Alain Bernard, Tienhan Sandrine Dabakuyo-Yonli, and Catherine Quantin. 2022. "Effect of Obesity among Hospitalized Cancer Patients with or without COVID-19 on a National Level" Cancers 14, no. 22: 5660. https://doi.org/10.3390/cancers14225660