Current Applications of Artificial Intelligence to Classify Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Protocol
2.2. Inclusion and Exclusion Criteria
2.3. Screening
2.4. Parameters Extracted from the Included Studies
3. Results
3.1. Overview of Studies Exploring the Role of Artificial Intelligence in the Classification of Cervcial Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma
3.2. Detailed Presentation of Studies Exploring the Role of Artificial Intelligence in the Classification of Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma in Anti-Chronological Order
3.2.1. Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification
3.2.2. Cystic Cervical Lymph Nodes of Papillary Thyroid Carcinoma, Tuberculosis, and Human Papillomavirus Positive Oropharyngeal Squamous Cell Carcinoma: Utility of Deep Learning in Their Differentiation on CT
3.2.3. Nodal-Based Radiomics Analysis for Identifying Cervical Lymph Node Metastasis at Levels I and II in Patients with Oral Squamous Cell Carcinoma Using Contrast-Enhanced Computed Tomography
3.2.4. Attention Guided Lymph Node Malignancy Prediction in Head and Neck Cancer
3.2.5. Predicting Lymph Node Metastasis in Patients with Oropharyngeal Cancer by Using a Convolutional Neural Network with Associated Epistemic and Aleatoric Uncertainty
3.2.6. Multi-INSTITUTIONAL Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma
3.2.7. Dual-Energy CT Texture Analysis with Machine Learning for the Evaluation and Characterization of Cervical Lymphadenopathy
3.2.8. CT Evaluation of Extranodal Extension of Cervical Lymph Node Metastases in Patients with Oral Squamous Cell Carcinoma Using Deep Learning Classification
3.2.9. Combining Many-Objective Radiomics and 3D Convolutional Neural Network through Evidential Reasoning to Predict Lymph Node Metastasis in Head and Neck Cancer and Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-Objective Radiomics and 3-Dimensioal Convolutional Neural Network through Evidential Reasoning
3.2.10. Contrast-Enhanced Computed Tomography Image Assessment of Cervical Lymph Node Metastasis in Patients with Oral Cancer by Using a Deep Learning System of Artificial Intelligence
3.2.11. Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks
3.2.12. Automatic Detection and Classification of Nasopharyngeal Carcinoma on PET/CT with Support Vector Machine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Encyclopedia, S.C. Locally Advanced Head, Neck Cancers. Available online: https://encyclopedia.pub/entry/7608 (accessed on 30 May 2022).
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Dejaco, D.; Uprimny, C.; Widmann, G.; Riedl, D.; Moser, P.; Arnold, C.; Steinblicher, T.B.; Kofler, B.; Schartinger, V.H.; Virgolini, I.; et al. Response evaluation of cervical lymph nodes after chemoradiation in patients with head and neck cancer—Does additional [18F]FDG-PET-CT help? Cancer Imaging 2020, 20, 69. [Google Scholar] [CrossRef] [PubMed]
- Schüttrumpf, L.; Marschner, S.; Scheu, K.; Hess, J.; Rietzler, S.; Walch, A.; Baumeister, P.; Kirchner, T.; Ganswindt, U.; Zitzelsberger, H.; et al. Definitive chemoradiotherapy in patients with squamous cell cancers of the head and neck—Results from an unselected cohort of the clinical cooperation group “Personalized Radiotherapy in Head and Neck Cancer”. Radiat Oncol. 2020, 15, 7. [Google Scholar] [CrossRef]
- Bardosi, Z.R.; Dejaco, D.; Santer, M.; Kloppenburg, M.; Mangesius, S.; Widmann, G.; Ganswindt, U.; Rumpold, G.; Riechelmann, H.; Freysinger, W. Benchmarking Eliminative Radiomic Feature Selection for Head and Neck Lymph Node Classification. Cancers 2022, 14, 477. [Google Scholar] [CrossRef]
- Faisal, M.; Dhanani, R.; Ullah, S.; Bakar, M.A.; Irfan, N.; Malik, I.M.; Loya, A.; Boban, E.M.; Hussain, R.; Jamshed, A. Prognostic outcomes of treatment naïve oral tongue squamous cell carcinoma (OTSCC): A comprehensive analysis of 14 years. Eur. Arch. Otorhinolaryngol. 2021, 278, 3045–3053. [Google Scholar] [CrossRef]
- Meccariello, G.; Maniaci, A.; Bianchi, G.; Cammaroto, G.; Iannella, G.; Catalano, A.; Sgarzani, R.; De Vito, A.; Capaccio, P.; Pelucchi, S.; et al. Neck dissection and trans oral robotic surgery for oropharyngeal squamous cell carcinoma. Auris Nasus Larynx 2022, 49, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Mermod, M.; Tolstonog, G.; Simon, C.; Monnier, Y. Extracapsular spread in head and neck squamous cell carcinoma: A systematic review and meta-analysis. Oral Oncol. 2016, 62, 60–71. [Google Scholar] [CrossRef]
- Heppt, W.; Haels, J.; Lenarz, T.; Mende, U.; Gademann, G. Detection and assessment of cervical lymph node metastases in head-neck tumors. A comparison of methods. Laryngorhinootologie 1989, 68, 327–332. [Google Scholar] [CrossRef]
- Xu, J.J.; Campbell, G.; Alsaffar, H.; Brandt, M.G.; Doyle, P.C.; Glicksman, J.T.; Fung, K. Lymphadenopathy: Defining a palpable lymph node. Head Neck 2015, 37, 177–181. [Google Scholar] [CrossRef]
- Abdalla, A.S.; Sheybani, N.D.; Khan, S.A. Clinical Role of Positron Emission Tomography/Computed Tomography Imaging in Head and Neck Squamous Cell Carcinoma. PET Clin. 2022, 17, 213–222. [Google Scholar] [CrossRef]
- Abdel Razek, A.A.K.; Elsebaie, N.A.; Gamaleldin, O.A.; AbdelKhalek, A.; Mukherji, S.K. Role of MR Imaging in Head and Neck Squamous Cell Carcinoma. Magn. Reson. Imaging Clin. N. Am. 2022, 30, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gage, K.L.; Thomas, K.; Jeong, D.; Stallworth, D.G.; Arrington, J.A. Multimodal Imaging of Head and Neck Squamous Cell Carcinoma. Cancer Control 2017, 24, 172–179. [Google Scholar] [CrossRef] [PubMed]
- de Bondt, R.B.J.; Nelemans, P.J.; Bakers, F.; Casselman, J.W.; Peutz-Kootstra, C.; Kremer, B.; Hofman, P.A.M.; Beets-Tan, R.G.H. Morphological MRI criteria improve the detection of lymph node metastases in head and neck squamous cell carcinoma: Multivariate logistic regression analysis of MRI features of cervical lymph nodes. Eur. Radiol. 2009, 19, 626–633. [Google Scholar] [CrossRef] [Green Version]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Kitajima, K.; Suenaga, Y.; Minamikawa, T.; Komori, T.; Otsuki, N.; Nibu, K.I.; Sasaki, R.; Itoh, T.; Sugimura, K. Clinical significance of SUVmax in (18)F-FDG PET/CT scan for detecting nodal metastases in patients with oral squamous cell carcinoma. Springerplus 2015, 4, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noij, D.P.; Martens, R.M.; Koopman, T.; Hoekstra, O.S.; Comans, E.F.I.; Zwezerijnen, B.; de Bree, R.; de Graaf, P.; Castelijns, J.A. Use of Diffusion-Weighted Imaging and (18)F-Fluorodeoxyglucose Positron Emission Tomography Combined With Computed Tomography in the Response Assessment for (Chemo)radiotherapy in Head and Neck Squamous Cell Carcinoma. Clin. Oncol. 2018, 30, 780–792. [Google Scholar] [CrossRef]
- Url, C.; Schartinger, V.H.; Riechelmann, H.; Glückert, R.; Maier, H.; Trumpp, M.; Widmann, G. Radiological detection of extracapsular spread in head and neck squamous cell carcinoma (HNSCC) cervical metastases. Eur. J. Radiol. 2013, 82, 1783–1787. [Google Scholar] [CrossRef]
- van den Brekel, M.W.; Stel, H.V.; Castelijns, J.A.; Nauta, J.J.; van der Valk, I.; Meyer, C.J.; Snow, G.B. Cervical lymph node metastasis: Assessment of radiologic criteria. Radiology 1990, 177, 379–384. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar] [CrossRef]
- Wong, A.J.; Kanwar, A.; Mohamed, A.S.; Fuller, C.D. Radiomics in head and neck cancer: From exploration to application. Transl. Cancer Res. 2016, 5, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Tam, R.; Cadrin-Chênevert, A.; Guest, W.; Chong, J.; Barfett, J.; Chepelev, L.; Cairns, R.; Mitchell, J.R.; Cicero, M.D.; et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology. Can Assoc. Radiol. J. 2018, 69, 120–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fh, T.; Cyw, C.; Eyw, C. Radiomics AI prediction for head and neck squamous cell carcinoma (HNSCC) prognosis and recurrence with target volume approach. BJR Open 2021, 3, 20200073. [Google Scholar] [CrossRef] [PubMed]
- Jaremko, J.L.; Azar, M.; Bromwich, R.; Lum, A.; Cheong, L.H.A.; Gibert, M.; Laviolette, F.; Gray, B.; Reinhold, C.; Cicero, M.; et al. Canadian Association of Radiologists White Paper on Ethical and Legal Issues Related to Artificial Intelligence in Radiology. Can Assoc. Radiol. J. 2019, 70, 107–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, N.; Ju, C.; Kong, T.; Mukherji, S.K. Artificial Intelligence in Head and Neck Imaging. Semin. Ultrasound CT MR 2022, 43, 170–175. [Google Scholar] [CrossRef]
- Alabi, R.O.; Youssef, O.; Pirinen, M.; Elmusrati, M.; Mäkitie, A.A.; Leivo, I.; Almangush, A. Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review. Artif. Intell. Med. 2021, 115, 102060. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Y.; Wang, Y.; Jiang, S.; Fan, R.; Zhang, H.; Jiang, W. Application of radiomics and machine learning in head and neck cancers. Int. J. Biol. Sci. 2021, 17, 475–486. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Health NIo. Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 30 May 2022).
- Health NIo. PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/?db=PubMed (accessed on 30 May 2022).
- Google. Google Scholar. Available online: https://scholar.google.com/ (accessed on 30 May 2022).
- Clarivate. Web of Science. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 30 May 2022).
- Onoue, K.; Fujima, N.; Andreu-Arasa, V.C.; Setty, B.N.; Sakai, O. Cystic cervical lymph nodes of papillary thyroid carcinoma, tuberculosis and human papillomavirus positive oropharyngeal squamous cell carcinoma: Utility of deep learning in their differentiation on CT. Am. J. Otolaryngol. 2021, 42, 103026. [Google Scholar] [CrossRef]
- Tomita, H.; Yamashiro, T.; Heianna, J.; Naksone, T.; Kimura, Y.; Mimura, H.; Murayama, S. Nodal-based radiomics analysis for identifying cervical lymph node metastasis at levels I and II in patients with oral squamous cell carcinoma using contrast-enhanced computed tomography. Eur. Radiol. 2021, 31, 7440–7449. [Google Scholar] [CrossRef]
- Chen, L.; Dohopolski, M.; Zhou, Z.; Wang, K.; Wang, R.; Sher, D.; Wang, J. Attention Guided Lymph Node Malignancy Prediction in Head and Neck Cancer. Int. J. Radiat Oncol. Biol. Phys. 2021, 110, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Dohopolski, M.; Chen, L.; Sher, D.; Wang, J. Predicting lymph node metastasis in patients with oropharyngeal cancer by using a convolutional neural network with associated epistemic and aleatoric uncertainty. Phys. Med. Biol. 2020, 65, 225002. [Google Scholar] [CrossRef] [PubMed]
- Kann, B.H.; Hicks, D.F.; Payabvash, S.; Mahajan, A.; Du, J.; Gupta, V.; Park, H.S.; Yu, J.B.; Yarbrough, W.G.; Burtness, B.A.; et al. Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2020, 38, 1304–1311. [Google Scholar] [CrossRef]
- Seidler, M.; Forghani, B.; Reinhold, C.; Pérez-Lara, A.; Romero-Sanchez, G.; Muthukrishnan, N.; Wichmann, J.L.; Melki, G.; Yu, E.; Forhani, R. Dual-Energy CT Texture Analysis With Machine Learning for the Evaluation and Characterization of Cervical Lymphadenopathy. Comput. Struct. Biotechnol. J. 2019, 17, 1009–1015. [Google Scholar] [CrossRef]
- Ariji, Y.; Sugita, Y.; Nagao, T.; Nakayama, A.; Fukuda, M.; Kise, Y.; Nozawa, M.; Nishiyama, M.; Katumata, A.; Ariji, E. CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification. Oral. Radiol. 2020, 36, 148–155. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, L.; Sher, D.; Zhang, Q.; Shah, J.; Pham, N.; Jiang, S.; Wang, J. Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensioal Convolutional Neural Network through Evidential Reasoning. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 2018, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Z.; Sher, D.; Zhang, Q.; Shah, J.; Pham, N.; Jiang, S.; Wang, J. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys. Med. Biol. 2019, 64, 075011. [Google Scholar] [CrossRef]
- Ariji, Y.; Fukuda, M.; Kise, Y.; Nozawa, M.; Yanashita, Y.; Fujita, H.; Katsumata, A.; Ariji, E. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2019, 127, 458–463. [Google Scholar] [CrossRef]
- Kann, B.H.; Aneja, S.; Loganadane, G.V.; Kelly, J.R.; Smith, S.M.; Decker, R.H.; Yu, J.B.; Park, H.S.; Yarbrough, W.G.; Malhotra, A.; et al. Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks. Sci. Rep. 2018, 8, 14036. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Khong, P.L.; Chan, T. Automatic detection and classification of nasopharyngeal carcinoma on PET/CT with support vector machine. Int. J. Comput. Assist. Radiol. Surg. 2012, 7, 635–646. [Google Scholar] [CrossRef]
Criteria | Yes 1 | No |
---|---|---|
1. Was the research or objective in this paper clearly stated? | 1 point | 0 points |
2. Was the study population clearly specified and defined? | 1 point | 0 points |
3. Was the participation rate of eligible persons at least 50%? | 1 point | 0 points |
4. Were all the subjects selected or recruited from the same or similar populations? Were inclusion and exclusion criteria for being in the study prespecified and applied uniformly to all participants? | 1 point | 0 points |
5. Was a sample size justification, power description, or variance and effect estimate provided? | 1 point | 0 points |
6. For the analyses in this paper, were the exposure(s) of interest measured prior to the outcome(s) being measured? | 1 point | 0 points |
7. Was the timeframe sufficient, such that one could reasonably expect to see an association between exposure and outcome if it existed? 8. For exposures that can vary in amount or level, did the study examine different levels of the exposure as related to the outcome? | 1 point | 0 points |
9. Were the exposure measures clearly defined, valid, reliable, and implemented consistently across all study participants? | 1 point | 0 points |
10. Was the exposure(s) assessed more than once over time? | 1 point | 0 points |
11. Were the outcome measures clearly defined, valid, reliable, and implemented consistently across all study participants? | 1 point | 0 points |
12. Were the outcome assessors blinded to the exposure status of participants? | 1 point | 0 points |
13. Was the loss to follow-up after baseline 20% or less? | 1 point | 0 points |
14. Were key potential confounding variables measured and adjusted statistically for their impact on the relationship between exposure(s) and outcome(s)? | 1 point | 0 points |
Author, Year, Country | Tumor Site | Imaging Modality | No. Patients | No. cN+/pN+ LNs | No. LN-Training | No. LNs-Validation | No. LNs-Testing | Type of AI (Subtypes) | Sensitivity | Specificity | Diagnostic Accuracy | AUC | NIH Quality Sum | NIH Quality Grade |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bardosi, 2022, Austria | oral, pharynx, larynx, CUP | CT | 28 | 182 of 252 | 252 | n.a. | n.a. | ML (EFS) | n.a. | n.a. | 0.87/0.96 | n.a. | 8 | poor |
Onoue, 2021, US, Japan | oropharynx | CT | 19 | 60 of 60 | 45 | n.a. | 15 | DL (CNN) | n.a. | n.a. | 0.76 | n.a. | 10 | fair |
Tomita, 2021, Japan | oral | CT | 23 | 51 of 201 | 141 | 60 | n.a. | ML (SVM) | 0.70–0.90 | 0.95 | 0.87–0.90 | 0.82–0.93 | 12 | good |
Chen, 2021, US, China | oropharynx | PET-CT | 129 | 171 of 791 | 3 × 25–26 | 1 × 25–26 | 1 × 25–26 | DL (agCNN + CNN) | 0.91 | 0.93 | 0.92 | 0.98 | 12 | good |
Dohopolski, 2020, US | oropharynx | PET-CT | 120 | 171 of 791 | 479 | 125 | 187 | DL (CNN) | 0.94 | 0.90 | n.a. | 0.99 | 12 | good |
Kann, 2019, US, Canada | oral, pharynx, larynx, glands | CT | 414 | 38 of 200 | 2875 | 270 | 144 | DL (CNN) | 0.71–0.82 | 0.85–0.91 | 0.83–0.89 | 0.84–0.90 | 13 | good |
Seidler, 2019, Canada | n.a. | DE-CT | 20 | 31 of 176 | 49 | 0 | 21 | ML (RF, GBM) | 0.89 | 0.82–0.91 | 0.85–0.90 | 0.96–0.97 | 10 | fair |
Ariji, 2019, Japan | oral | CT | 51 | 22 of 143 | 114 | 0 | 29 | DL (CNN) | 0.67 | 0.90 | 0.84 | 0.82 | 11 | good |
Chen, 2020, US, China | oral, pharynx | PET-CT | 59 | 107 of 236 | 170 | 0 | 66 | DL (CNN + MOR) | n.a. | n.a. | 0.88 | 0.95 | 11 | good |
Chen, 2018, US, China | oral | CT | 45 | 127 of 441 | 4 × 87–88 | 1 × 87–88 | 1 × 87–88 | DL | 0.75 | 0.81 | 0.78 | 0.80 | 11 | good |
Ariji, 2018, Japan | oral, pharynx | PET-CT | 41 | 107 of 236 | 170 | 0 | 66 | DL | n.a. | n.a. | 0.88 | 0.95 | 12 | good |
Kann, 2018, US | oral, pharynx, larynx, glands | CT | 270 | 273 of 653 | 417 | 105 | 131 | DL | 0.84/0.88 | 0.87/0.85 | 0.86/0.86 | 0.91/0.91 | 13 | good |
Wu, 2012, Hong Kong | nasopharynx | PET-CT | 10 | n.a. | n.a. | n.a. | n.a. | ML (SVM) | 0.90 | n.a. | n.a. | n.a. | 8 | poor |
Author, Year, Country | Study Type, No. of Centers | Tumor Site | No. of Patients | No. of +LNs (Training, Validation, Test) | Imaging | Segmentation | LN Classifier | Reference | Training Set AI (Accuracy) | Test Set AI (Accuracy) | Conclusion | NIH Quality (NIH Score) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bardosi, 2022, Austria | retrospective monocentric | pharynx, larynx, CUP | 28 | 182 cN+ of 252 LNs | CT | manual, 3D | HNSCC; cN+, cN-, ECS+ | radiologist label | ML EFS (0.96) | ML EFS (0.96) | EFS-algorithms appeared to be useful to retain high diagnostic accuracy with only 10% of the extracted features | Poor (8/14) |
Onoue, 2021, US, Japan | retrospective, monocentric | oropharynx | 19 | 60 pN+ of 60 cN+ (45, n.a., 15) | CT | manual, 2D | HNSCC; pN+ vs. thyroid cancer vs. tuberculosis | histopathology of neck dissection | DL (0.88) | DL (0.76) | DL potent support tool to differentiate pathologic cervical LNs | fair (10/14) |
Tomita, 2021, Japan | retrospective, monocentric | oral cavity | 23 | 51 pN+ of 201 cN+ (141, 60, n.a.) | CT | manual, 3D | HNSCC; pN+ vs. pN− | histopathology of neck dissection | ML SVM (0.90–0.91) | ML SVM (0.87–0.90) | ML can differentiate pathologic from non-pathologic cervical LNs | Good (12/14) |
Chen, 2021, US, China | retrospective, monocentric | oropharynx | 129 | 171 pN+ of 791 cN+ (25 × 3, 25 × 1, 25 × 1) | PET-CT | manual and automated, 3D | HNSCC; pN+ vs. pN− | histopathology of neck dissection | DL agCNN, cCNN, (0.92) | DL agCNN, cCNN (0.92) | agCNN without accurate LN segmentation outperforms conventional CNNs in LN classification | Good (12/14) |
Dohopolski, 2020, US | retrospective, monocentric | oropharynx | 129 | 171 pN+ of 791 cN+ (479, 125, 187) | PET-CT | manual, n.a. | HNSCC; pN+ vs. pN-− | histopathology of neck dissection | DL (0.43–0.99) | DL (0.91) | assigning measures of uncertainty to CNN improves accuracy of LN classification | good (12/14) |
Kann, 2019, US, Canada | retrospective, multicentric (n = 8) | oral cavity, oropharynx, larynx, glands | 144 | 38 ECS+ of 200 pN+ (0, 0, 200) | CT | manual, 3D | HNSCC; ECS+ vs. ECS− | histopathology of neck dissection | DL (0.86) | DL (0.83–0.89) | DL successfully identified ECS on pretreatment CTs | good (13/14) |
Seidler, 2019, Canada | retrospective, monocentric | n.a. | 20 | 31 pN+ of 176 cN+ (49, 0, 21) | CT | manual, 2D | HNSCC; pN+ vs. pN−; HNSCC vs. lymphoma vs. inflammatory | histopathology of neck dissection | ML (6 features) (RF 0.96, GBM 0.98) | ML (6 features) (RF 0.85, GBM 0.90) | ML assisted texture analysis aids in distinguishing different nodal pathologies | Fair (10/14) |
Ariji, 2019 Japan | retrospective, monocentric | oral cavity | 51 | 33 ECS+ of 143 pN+ (114, 0, 29) | CT | manual, 2D | HNSCC; ECS+ vs. ECS− | histopathology of neck dissection | DL (n.a.) | DL (0.84) | DL diagnostic performance in distinguishing ECS outperforms shape-based ECS criteria | Good (11/14) |
Chen, 2020, US, China | retrospective, monocentric | oral cavity, pharynx | 59 | 107 cN+ of 266 LNs (170, 66, 0) | PET-CT | manual, n.a. | HNSCC; cN-, cN+/−, cN+ | radiologists label | DL hybrid (0.88) | DL hybrid (0.88) | Hybrid method of DL and many-objective-radiomics provides more accuracy for predicting LN metastases | good (11/14) |
Chen, 2018, US, China | retrospective, monocentric | oral cavity, pharynx | 59 | 107 cN+ of 266 LNs (170, 66, 0) | PET-CT | manual, n.a. | HNSCC; cN-, cN+/−, cN+ | radiologists label | DL hybrid + ER (0.88) | DL hybrid + ER (0.88) | Hybrid method of DL and many-objective-radiomics with evidential reasoning provides more accuracy for predicting LN metastases | good (11/14) |
Ariji, 2018, Japan | retrospective, monocentric | oral cavity | 45 | 127 pN+ of 441 cN+ (1 × 88, 1 × 88, 3 × 88) | CT | manual, 2D | HNSCC; pN+ vs. pN−; | histopathology of neck dissection | DL (0.78) | DL (0.78) | DL yielded diagnostic results similar to those of radiologists | good (12/14) |
Kann, 2018, US | retrospective, monocentric | oral cavity, pharynx, larynx, glands | 258 | 273 pN+ of 653 LNs (417, 105, 131) | CT | manual, 3D | HNSCC; pN−, pN+, ECS+ | histopathology of neck dissection | DL (0.86) | DL (0.86) | DL has the potential for use as a clinical decision-making tool | Good (13/14) |
Wu, 2012, Hong Kong | retrospective monocentric | nasopharynx | 10 | n.a.; 25 sets of image slices (4:1 ratio training to testing) | PET-CT | manual, 2D | HNSCC; malignant vs. non-malignant | radiologist label | ML SVM (n.a.) | ML SVM (n.a.) | ML has the potential to accurately classify suspect hypermetabolic lesions in NPC | Poor (8/14) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santer, M.; Kloppenburg, M.; Gottfried, T.M.; Runge, A.; Schmutzhard, J.; Vorbach, S.M.; Mangesius, J.; Riedl, D.; Mangesius, S.; Widmann, G.; et al. Current Applications of Artificial Intelligence to Classify Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma—A Systematic Review. Cancers 2022, 14, 5397. https://doi.org/10.3390/cancers14215397
Santer M, Kloppenburg M, Gottfried TM, Runge A, Schmutzhard J, Vorbach SM, Mangesius J, Riedl D, Mangesius S, Widmann G, et al. Current Applications of Artificial Intelligence to Classify Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma—A Systematic Review. Cancers. 2022; 14(21):5397. https://doi.org/10.3390/cancers14215397
Chicago/Turabian StyleSanter, Matthias, Marcel Kloppenburg, Timo Maria Gottfried, Annette Runge, Joachim Schmutzhard, Samuel Moritz Vorbach, Julian Mangesius, David Riedl, Stephanie Mangesius, Gerlig Widmann, and et al. 2022. "Current Applications of Artificial Intelligence to Classify Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma—A Systematic Review" Cancers 14, no. 21: 5397. https://doi.org/10.3390/cancers14215397
APA StyleSanter, M., Kloppenburg, M., Gottfried, T. M., Runge, A., Schmutzhard, J., Vorbach, S. M., Mangesius, J., Riedl, D., Mangesius, S., Widmann, G., Riechelmann, H., Dejaco, D., & Freysinger, W. (2022). Current Applications of Artificial Intelligence to Classify Cervical Lymph Nodes in Patients with Head and Neck Squamous Cell Carcinoma—A Systematic Review. Cancers, 14(21), 5397. https://doi.org/10.3390/cancers14215397