Epigenetic Reprogramming of Kaposi’s Sarcoma-Associated Herpesvirus during Hypoxic Reactivation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plasmid Constructs, Cell Culture, Transfection, RNA Isolation, cDNA Synthesis, and Real-Time PCR
2.2. Western Blot
2.3. Pulse Field Gel Electrophoresis and Southern Blot
2.4. Single Molecule Analysis of Replicated DNA
2.4.1. KSHV Genome Spreading and Detection
2.4.2. Immunostaining and Fluorescence in Situ Hybridization
2.5. ChIP, ChIP-Sequencing, and ChIP-qPCR
2.6. Statistical Analysis
3. Results
3.1. Hypoxia Induces Enrichment of Modified Histone Proteins on the KSHV Genome
3.2. KSHV Induces Expression of Modified Histone Proteins under Hypoxic Conditions
3.3. KSHV Modulates DNA Methyl Transferases in Hypoxia
3.4. KSHV-Encoded Antigens Modulates Expression of Histone Proteins and DNA Methylases
3.5. Preferential Utilization of KSHV Replication Origins during Hypoxic Reactivation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, M.; Yang, W.S.; Yeh, W.W.; Kao, C.H.; Chang, P.C. Epigenetic Regulation of Kaposi’s Sarcoma-Associated Herpesvirus Latency. Front. Microbiol. 2020, 11, 850. [Google Scholar] [CrossRef] [PubMed]
- Aneja, K.K.; Yuan, Y. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update. Front. Microbiol. 2017, 8, 613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toth, Z.; Maglinte, D.T.; Lee, S.H.; Lee, H.R.; Wong, L.Y.; Brulois, K.F.; Lee, S.; Buckley, J.D.; Laird, P.W.; Marquez, V.E.; et al. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog. 2010, 6, e1001013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, L.; Dai, L.; Wang, S.; Qin, Z. Kaposi’s sarcoma-associated herpesvirus and extracellular vesicles. J. Med. Virol. 2021, 93, 3294–3299. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Pantanowitz, L.; Casper, C.; Stebbing, J.; Dezube, B.J. HIV/AIDS: Epidemiology, pathophysiology, and treatment of Kaposi sarcoma-associated herpesvirus disease: Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Clin. Infect. Dis. 2008, 47, 1209–1215. [Google Scholar] [CrossRef]
- Uppal, T.; Banerjee, S.; Sun, Z.; Verma, S.C.; Robertson, E.S. KSHV LANA--the master regulator of KSHV latency. Viruses 2014, 6, 4961–4998. [Google Scholar] [CrossRef] [Green Version]
- Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi sarcoma. Nat. Rev. Dis. Primers 2019, 5, 9. [Google Scholar] [CrossRef]
- Purushothaman, P.; Dabral, P.; Gupta, N.; Sarkar, R.; Verma, S.C. KSHV Genome Replication and Maintenance. Front. Microbiol. 2016, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Brulois, K.; Wong, L.; Jung, J.U. Modulation of Immune System by Kaposi’s Sarcoma-Associated Herpesvirus: Lessons from Viral Evasion Strategies. Front. Microbiol. 2012, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.R.; Lee, S.; Chaudhary, P.M.; Gill, P.; Jung, J.U. Immune evasion by Kaposi’s sarcoma-associated herpesvirus. Future Microbiol. 2010, 5, 1349–1365. [Google Scholar] [CrossRef]
- Toth, Z.; Brulois, K.; Jung, J.U. The chromatin landscape of Kaposi’s sarcoma-associated herpesvirus. Viruses 2013, 5, 1346–1373. [Google Scholar] [CrossRef]
- Frohlich, J.; Grundhoff, A. Epigenetic control in Kaposi sarcoma-associated herpesvirus infection and associated disease. Semin. Immunopathol. 2020, 42, 143–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Speck, S.H.; Ganem, D. Viral latency and its regulation: Lessons from the gamma-herpesviruses. Cell Host Microbe 2010, 8, 100–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechtel, J.T.; Liang, Y.; Hvidding, J.; Ganem, D. Host range of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J. Virol. 2003, 77, 6474–6481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grundhoff, A.; Ganem, D. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Investig. 2004, 113, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Pantry, S.N.; Medveczky, P.G. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus replication. Semin. Cancer Biol. 2009, 19, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Gorres, K.L.; Daigle, D.; Mohanram, S.; Miller, G. Activation and repression of Epstein-Barr Virus and Kaposi’s sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J. Virol. 2014, 88, 8028–8044. [Google Scholar] [CrossRef] [Green Version]
- Darst, R.P.; Haecker, I.; Pardo, C.E.; Renne, R.; Kladde, M.P. Epigenetic diversity of Kaposi’s sarcoma-associated herpesvirus. Nucleic Acids Res. 2013, 41, 2993–3009. [Google Scholar] [CrossRef]
- Kumar Singh, R.; Pei, Y.; Bose, D.; Lamplugh, Z.L.; Sun, K.; Yuan, Y.; Lieberman, P.; You, J.; Robertson, E.S. KSHV-encoded vCyclin can modulate HIF1alpha levels to promote DNA replication in hypoxia. Elife 2021, 10, e57436. [Google Scholar] [CrossRef]
- Singh, R.K.; Lamplugh, Z.L.; Lang, F.; Yuan, Y.; Lieberman, P.; You, J.; Robertson, E.S. KSHV-encoded LANA protects the cellular replication machinery from hypoxia induced degradation. PLoS Pathog. 2019, 15, e1008025. [Google Scholar] [CrossRef] [PubMed]
- Gunther, T.; Grundhoff, A. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog. 2010, 6, e1000935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, H.C.; Lu, J.; Verma, S.C.; Banerjee, S.; Mehta, D.; Robertson, E.S. Kaposi’s sarcoma-associated herpesvirus genome programming during the early stages of primary infection of peripheral blood mononuclear cells. mBio 2014, 5, e02261-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Tan, X.; Wang, X.; Wang, X.; Yang, L.; Robertson, E.S.; Lan, K. Epigenetic Landscape of Kaposi’s Sarcoma-Associated Herpesvirus Genome in Classic Kaposi’s Sarcoma Tissues. PLoS Pathog. 2017, 13, e1006167. [Google Scholar] [CrossRef] [Green Version]
- Ng, N.; Purshouse, K.; Foskolou, I.P.; Olcina, M.M.; Hammond, E.M. Challenges to DNA replication in hypoxic conditions. FEBS J. 2018, 285, 1563–1571. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.; Rainey, M.; Santocanale, C.; Gardner, L.B. Hypoxic activation of ATR and the suppression of the initiation of DNA replication through cdc6 degradation. Oncogene 2012, 31, 4076–4084. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Simon, M.C. Regulation of transcription and translation by hypoxia. Cancer Biol. Ther. 2004, 3, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Chee, N.T.; Lohse, I.; Brothers, S.P. mRNA-to-protein translation in hypoxia. Mol. Cancer 2019, 18, 49. [Google Scholar] [CrossRef] [Green Version]
- Uniacke, J.; Holterman, C.E.; Lachance, G.; Franovic, A.; Jacob, M.D.; Fabian, M.R.; Payette, J.; Holcik, M.; Pause, A.; Lee, S. An oxygen-regulated switch in the protein synthesis machinery. Nature 2012, 486, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Solaini, G.; Baracca, A.; Lenaz, G.; Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. Biochim. Biophys. Acta 2010, 1797, 1171–1177. [Google Scholar] [CrossRef]
- Tracy, K.; Dibling, B.C.; Spike, B.T.; Knabb, J.R.; Schumacker, P.; Macleod, K.F. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol. Cell Biol. 2007, 27, 6229–6242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Bosch-Marce, M.; Shimoda, L.A.; Tan, Y.S.; Baek, J.H.; Wesley, J.B.; Gonzalez, F.J.; Semenza, G.L. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 2008, 283, 10892–10903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Lang, F.; Pei, Y.; Jha, H.C.; Robertson, E.S. Metabolic reprogramming of Kaposi’s sarcoma associated herpes virus infected B-cells in hypoxia. PLoS Pathog. 2018, 14, e1007062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.K.; Bose, D.; Robertson, E.S. HIF1alpha-Regulated Expression of the Fatty Acid Binding Protein Family Is Important for Hypoxic Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2021, 95. [Google Scholar] [CrossRef]
- Verma, S.C.; Lu, J.; Cai, Q.; Kosiyatrakul, S.; McDowell, M.E.; Schildkraut, C.L.; Robertson, E.S. Single molecule analysis of replicated DNA reveals the usage of multiple KSHV genome regions for latent replication. PLoS Pathog. 2011, 7, e1002365. [Google Scholar] [CrossRef] [Green Version]
- Uchida, T.; Rossignol, F.; Matthay, M.A.; Mounier, R.; Couette, S.; Clottes, E.; Clerici, C. Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: Implication of natural antisense HIF-1alpha. J. Biol. Chem. 2004, 279, 14871–14878. [Google Scholar] [CrossRef] [Green Version]
- El Guerrab, A.; Cayre, A.; Kwiatkowski, F.; Privat, M.; Rossignol, J.M.; Rossignol, F.; Penault-Llorca, F.; Bignon, Y.J. Quantification of hypoxia-related gene expression as a potential approach for clinical outcome prediction in breast cancer. PLoS ONE 2017, 12, e0175960. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lagunoff, M. Establishment and maintenance of Kaposi’s sarcoma-associated herpesvirus latency in B cells. J. Virol. 2005, 79, 14383–14391. [Google Scholar] [CrossRef] [Green Version]
- Arvanitakis, L.; Mesri, E.A.; Nador, R.G.; Said, J.W.; Asch, A.S.; Knowles, D.M.; Cesarman, E. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. Blood 1996, 88, 2648–2654. [Google Scholar] [CrossRef] [Green Version]
- Sodhi, A.; Montaner, S.; Patel, V.; Zohar, M.; Bais, C.; Mesri, E.A.; Gutkind, J.S. The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res. 2000, 60, 4873–4880. [Google Scholar]
- Sun, Q.; Tsurimoto, T.; Juillard, F.; Li, L.; Li, S.; De Leon Vazquez, E.; Chen, S.; Kaye, K. Kaposi’s sarcoma-associated herpesvirus LANA recruits the DNA polymerase clamp loader to mediate efficient replication and virus persistence. Proc. Natl. Acad. Sci. USA 2014, 111, 11816–11821. [Google Scholar] [CrossRef] [PubMed]
- Muzi-Falconi, M.; Giannattasio, M.; Foiani, M.; Plevani, P. The DNA polymerase alpha-primase complex: Multiple functions and interactions. Sci. World J. 2003, 3, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonenberger, M.J.; Kovacs, W.J. Hypoxia signaling pathways: Modulators of oxygen-related organelles. Front. Cell Dev. Biol. 2015, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Sendoel, A.; Hengartner, M.O. Apoptotic cell death under hypoxia. Physiology 2014, 29, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, D.A.; Rinderknecht, A.S.; Zoeteweij, J.P.; Aoki, Y.; Read-Connole, E.L.; Tosato, G.; Blauvelt, A.; Yarchoan, R. Hypoxia induces lytic replication of Kaposi sarcoma-associated herpesvirus. Blood 2001, 97, 3244–3250. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Lan, K.; Verma, S.C.; Si, H.; Lin, D.; Robertson, E.S. Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J. Virol. 2006, 80, 7965–7975. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Majerciak, V.; Zheng, Z.M.; Lan, K. Towards Better Understanding of KSHV Life Cycle: From Transcription and Posttranscriptional Regulations to Pathogenesis. Virol. Sin. 2019, 34, 135–161. [Google Scholar] [CrossRef] [Green Version]
- Cai, Q.; Murakami, M.; Si, H.; Robertson, E.S. A potential alpha-helix motif in the amino terminus of LANA encoded by Kaposi’s sarcoma-associated herpesvirus is critical for nuclear accumulation of HIF-1alpha in normoxia. J. Virol. 2007, 81, 10413–10423. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.L.; Li, H.; Wang, Y.; Zhu, F.X.; Kudchodkar, S.; Yuan, Y. Kaposi’s sarcoma-associated herpesvirus lytic origin (ori-Lyt)-dependent DNA replication: Identification of the ori-Lyt and association of K8 bZip protein with the origin. J. Virol. 2003, 77, 5578–5588. [Google Scholar] [CrossRef] [Green Version]
- Sattler, C.; Steer, B.; Adler, H. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo. PLoS Pathog. 2016, 12, e1005510. [Google Scholar] [CrossRef]
DNA Pol 1A Hypoxia | ||||||||
---|---|---|---|---|---|---|---|---|
Region | Center of Peak | Length | Peak Shape Score | p-Value | 5′ Gene | 5′ Distance | 3′ Gene | 3′ Distance |
953..1028 | 994 | 76 | 1.61 | 0.05 | K1 | 0 | ORF4 | 23 |
4689..4752 | 4721 | 64 | 1.54 | 0.06 | ORF6 | 0 | ORF7 | 1841 |
5314..5381 | 5345 | 68 | 1.69 | 0.05 | ORF6 | 0 | ORF7 | 1212 |
21,219..21,293 | 21,259 | 75 | 1.36 | 0.09 | ORF70 | 182 | K4 | 0 |
22,634..22,704 | 22,669 | 71 | 1.54 | 0.06 | K4.1 | 172 | K4.2 | 0 |
23,466..23,536 | 23,501 | 71 | 2.74 | 3.09 × 10−3 | K4.2 | 387 | K5 | 2328 |
25,739..25,802 | 25,769 | 64 | 1.38 | 0.08 | K4.2 | 2660 | K5 | 62 |
30,816..30,888 | 30,850 | 73 | 1.56 | 0.06 | ORF16 | 0 | ORF17.5 | 0 |
58,907..58,979 | 58,942 | 73 | 3.33 | 4.35 × 10−4 | ORF38 | 0 | ORF39 | 20 |
68,333..68,405 | 68,367 | 73 | 1.91 | 0.03 | ORF44 | 933 | ORF45 | 0 |
85,615..85,692 | 85,650 | 78 | 1.53 | 0.06 | vIRF-1 | 199 | vIRF-4 | 413 |
90,920..90,989 | 90,951 | 70 | 1.67 | 0.05 | vIRF-4 | 1747 | vIRF-3 | 0 |
119,641..119,713 | 119,675 | 73 | 2.37 | 8.83 × 10−3 | HHV8_gs02 | 33 | HHV8_gs03 | 520 |
124,840..124,931 | 124,897 | 92 | 1.53 | 0.06 | HHV8GK18_gp82 | 1024 | HHV8GK18_gp81 | 0 |
126,233..126,318 | 126,284 | 86 | 4.39 | 5.71 × 10−6 | HHV8GK18_gp82 | 2417 | HHV8GK18_gp81 | 0 |
135,235..135,325 | 135,291 | 91 | 1.34 | 0.09 | K15 | 0 |
DNA Pol 1A Normoxia | ||||||||
---|---|---|---|---|---|---|---|---|
Region | Center of Peak | Length | Peak Shape Score | p-Value | 5′ Gene | 5′ Distance | 3′ Gene | 3′ Distance |
2434..2511 | 2461 | 78 | 1.69 | 0.05 | ORF4 | 0 | ORF6 | 667 |
4688..4761 | 4712 | 74 | 1.69 | 0.05 | ORF6 | 0 | ORF7 | 1832 |
5308..5387 | 5344 | 80 | 2.59 | 4.78 × 10−3 | ORF6 | 0 | ORF7 | 1206 |
21,214..21,311 | 21,261 | 98 | 1.39 | 0.08 | ORF70 | 177 | K4 | 0 |
22,640..22,711 | 22,665 | 72 | 2.17 | 0.01 | K4.1 | 178 | K4.2 | 0 |
23,467..23,542 | 23,499 | 76 | 3.45 | 2.80 ×10−4 | K4.2 | 388 | K5 | 2322 |
25,733..25,809 | 25,766 | 77 | 2.2 | 0.01 | K4.2 | 2654 | K5 | 55 |
26,192..26,260 | 26,224 | 69 | 1.49 | 0.07 | K4.2 | 3113 | K5 | 0 |
29,571..29,639 | 29,597 | 69 | 1.46 | 0.07 | HHV8_gs01 | 0 | ORF16 | 602 |
30,804..30,900 | 30,852 | 97 | 2.56 | 5.26 × 10−3 | ORF16 | 0 | ORF17.5 | 0 |
43,108..43,187 | 43,141 | 80 | 1.67 | 0.05 | ORF25 | 0 | ORF26 | 3844 |
58,909..58,982 | 58,937 | 74 | 3.85 | 5.96 × 10−5 | ORF38 | 0 | ORF39 | 17 |
59,732..59,873 | 59,776 | 142 | 1.69 | 0.05 | ORF38 | 757 | ORF39 | 0 |
62,560..62,679 | 62,617 | 120 | 1.36 | 0.09 | ORF40 | 0 | ORF42 | 0 |
68,328..68,408 | 68,366 | 81 | 2.62 | 4.43 × 10−3 | ORF44 | 928 | ORF45 | 0 |
85,620..85,692 | 85,652 | 73 | 1.69 | 0.05 | vIRF-1 | 204 | vIRF-4 | 413 |
90,922..90,992 | 90,947 | 71 | 2.34 | 9.77 × 10−3 | vIRF-4 | 1749 | vIRF-3 | 0 |
117,500..117,586 | 117,539 | 87 | 1.84 | 0.03 | HHV8GK18_gp78 | 0 | HHV8GK18_gp79 | 0 |
117,923..118,023 | 117,975 | 101 | 2.04 | 0.02 | HHV8GK18_gp78 | 408 | HHV8GK18_gp79 | 0 |
119,643..119,720 | 119,675 | 78 | 4.04 | 2.69 × 10−5 | HHV8_gs02 | 35 | HHV8_gs03 | 513 |
124,185..124,263 | 124,225 | 79 | 1.69 | 0.05 | HHV8GK18_gp82 | 369 | HHV8GK18_gp81 | 0 |
126,244..126,323 | 126,287 | 80 | 4.94 | 3.98 × 10−7 | HHV8GK18_gp82 | 2428 | HHV8GK18_gp81 | 0 |
129,824..129,931 | 129,879 | 108 | 2.17 | 0.02 | HHV8GK18_gp84 | 0 | HHV8GK18_gp86 | 723 |
135,229..135,343 | 135,296 | 115 | 2.9 | 1.85 × 10−3 | HHV8GK18_gp86 | 639 | K15 | 0 |
135,467..135,558 | 135,506 | 92 | 2.66 | 3.92 × 10−3 | HHV8GK18_gp86 | 877 | K15 | 0 |
135,919..135,992 | 135,968 | 74 | 1.35 | 0.09 | HHV8GK18_gp86 | 1329 | K15 | 0 |
136,375..136,434 | 136,403 | 60 | 1.36 | 0.09 | K15 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, R.K.; Bose, D.; Robertson, E.S. Epigenetic Reprogramming of Kaposi’s Sarcoma-Associated Herpesvirus during Hypoxic Reactivation. Cancers 2022, 14, 5396. https://doi.org/10.3390/cancers14215396
Singh RK, Bose D, Robertson ES. Epigenetic Reprogramming of Kaposi’s Sarcoma-Associated Herpesvirus during Hypoxic Reactivation. Cancers. 2022; 14(21):5396. https://doi.org/10.3390/cancers14215396
Chicago/Turabian StyleSingh, Rajnish Kumar, Dipayan Bose, and Erle S. Robertson. 2022. "Epigenetic Reprogramming of Kaposi’s Sarcoma-Associated Herpesvirus during Hypoxic Reactivation" Cancers 14, no. 21: 5396. https://doi.org/10.3390/cancers14215396
APA StyleSingh, R. K., Bose, D., & Robertson, E. S. (2022). Epigenetic Reprogramming of Kaposi’s Sarcoma-Associated Herpesvirus during Hypoxic Reactivation. Cancers, 14(21), 5396. https://doi.org/10.3390/cancers14215396