Dysbiosis of the Fecal and Biliary Microbiota in Biliary Tract Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Analysis of Fecal Microbiota
2.3. Bile Collection Procedure and Biological Sample Acquisition
2.4. Bile Culture Assay
2.5. Microbiota Analysis
2.6. Detection of Polyketide Synthase (pks) Genomic Islands in Cultured Bacteria Isolated from Bile Acid
2.7. Statistical Analysis
2.8. Data Deposition
3. Results
3.1. Subject Background
3.2. Fecal Microbiota
3.3. Altered Biliary Microbiota in Patients with BTC
3.4. Detection of a Pks Genomic Island in an Isolate from Bile Acid
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cunningham, S.C.; Choti, M.A.; Bellavance, E.C.; Pawlik, T.M. Palliation of hepatic tumors. Surg. Oncol. 2007, 16, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef] [Green Version]
- Everhart, J.E.; Ruhl, C.E. Burden of digestive diseases in the United States part III: Liver, biliary tract, and pancreas. Gastroenterology 2009, 136, 1134–1144. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.L.; El-Serag, H.B. Risk factors for cholangiocarcinoma. Hepatology 2011, 54, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Doherty, B.; Nambudiri, V.E.; Palmer, W.C. Update on the diagnosis and treatment of cholangiocarcinoma. Curr. Gastroenterol. Rep. 2017, 19, 2. [Google Scholar] [CrossRef]
- Walter, D.; Hartmann, S.; Waidmann, O. Update on cholangiocarcinoma: Potential impact of genomic studies on clinical management. Z. Gastroenterol. 2017, 55, 575–581. [Google Scholar] [CrossRef]
- Erichsen, R.; Jepsen, P.; Vilstrup, H.; Ekbom, A.; Sørensen, H.T. Incidence and prognosis of cholangiocarcinoma in Danish patients with and without inflammatory bowel disease: A national cohort study, 1978–2003. Eur. J. Epidemiol. 2009, 24, 513–520. [Google Scholar] [CrossRef]
- Sekiya, S.; Suzuki, A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J. Clin. Investig. 2012, 122, 3914–3918. [Google Scholar] [CrossRef] [Green Version]
- Wardell, C.P.; Fujita, M.; Yamada, T.; Simbolo, M.; Fassan, M.; Karlic, R.; Polak, P.; Kim, J.; Hatanaka, Y.; Maejima, K.; et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J. Hepatol. 2018, 68, 959–969. [Google Scholar] [CrossRef] [Green Version]
- Kummen, M.; Holm, K.; Anmarkrud, J.A.; Nygård, S.; Vesterhus, M.; Høivik, M.L.; Trøseid, M.; Marschall, H.-U.; Schrumpf, E.; Moum, B.; et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017, 66, 611–619. [Google Scholar] [CrossRef]
- Pereira, P.; Aho, V.; Arola, J.; Boyd, S.; Jokelainen, K.; Paulin, L.; Auvinen, P.; Färkkilä, M. Bile microbiota in primary sclerosing cholangitis: Impact on disease progression and development of biliary dysplasia. PLoS ONE. 2017, 12, e0182924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Fu, S.W.; Lu, L.; Zhao, H. A preliminary study of biliary microbiota in patients with bile duct stones or distal cholangiocarcinoma. Biomed. Res. Int. 2019, 2019, 1092563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Lu, S.; Zeng, Z.; Liu, Q.; Dong, Z.; Chen, Y.; Zhu, Z.; Hong, Z.; Zhang, T.; Du, G.; et al. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology 2020, 71, 893–906. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Ishida, S.; Tanaka, M.; Mitsuyama, E.; Xiao, J.-Z.; Odamaki, T. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS ONE 2018, 13, e0206189. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Odamaki, T.; Bottacini, F.; Kato, K.; Mitsuyama, E.; Yoshida, K.; Horigome, A.; Xiao, J.Z.; van Sinderen, D. Genomic diversity and distribution of Bifidobacterium longum subsp. longum across the human lifespan. Sci. Rep. 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Tanizawa, Y.; Fujisawa, T.; Arita, M.; Nakamura, Y. Generating publication-ready prokaryotic genome annotations with DFAST. Methods Mol. Biol. 2019, 196, 215–226. [Google Scholar] [CrossRef]
- Nougayrède, J.P.; Homburg, S.; Taieb, F.D.R.; Boury, M.L.; Brzuszkiewicz, E.; Gottschalk, G.; Buchrieser, C.; Hacker, J.; Dobrindt, U.; Oswald, E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 2006, 313, 848–851. [Google Scholar] [CrossRef] [PubMed]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Zhang, Z.; Liu, B.; Hou, D.; Liang, Y.; Zhang, J.; Shi, P. Gut microbiota dysbiosis and bacterial community assembly associated with cholesterol gallstones in large-scale study. BMC Genomics 2013, 14, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logan, A.C.; Katzman, M. Major depressive disorder: Probiotics may be an adjuvant therapy. Med. Hypotheses 2005, 64, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res. 2013, 69, 52–60. [Google Scholar] [CrossRef]
- Odamaki, T.; Kato, K.; Sugahara, H.; Hashikura, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Osawa, R. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugahara, H.; Odamaki, T.; Fukuda, S.; Kato, T.; Xiao, J.Z.; Abe, F.; Kikuchi, J.; Ohno, H. Probiotic Bifidobacterium longum alters gut luminal metabolism through modification of the gut microbial community. Sci. Rep. 2015, 5, 13548. [Google Scholar] [CrossRef] [Green Version]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.K.; Wong, S.H.; Chen, Z.; Sung, J.J.Y.; et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018, 67, 1024–1032. [Google Scholar] [CrossRef]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.; Feng, Q.; Zhang, C.; et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef]
- Hay, A.J.; Zhu, J. In sickness and in health: The relationships between bacteria and bile in the human gut. Adv. Appl. Microbiol. 2016, 96, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K.; Harada, K.; Tsuneyama, K.; Sasaki, M.; Fujita, S.; Hashimoto, T.; Kaneko, S.; Kobayashi, K.; Nakanuma, Y. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis. J. Hepatol. 2000, 33, 9–18. [Google Scholar] [CrossRef]
- Sung, J.Y.; Costerton, J.W.; Shaffer, E.A. Defense system in the biliary tract against bacterial infection. Dig. Dis. Sci. 1992, 37, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.-J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012, 338, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Sagami, Y.; Shimada, Y.; Tayama, J.; Nomura, T.; Satake, M.; Endo, Y.; Shoji, T.; Karahashi, K.; Hong, M.; Fukudo, S. Effect of a corticotropin releasing hormone receptor antagonist on colonic sensory and motor function in patients with irritable bowel syndrome. Gut 2004, 53, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Hakamada, K.; Sasaki, M.; Endoh, M.; Itoh, T.; Morita, T.; Konn, M. Late development of bile duct cancer after sphincteroplasty: A ten- to twenty-two-year follow-up study. Surgery 1997, 121, 488–492. [Google Scholar] [CrossRef]
- Tocchi, A.; Mazzoni, G.; Liotta, G.; Lepre, L.; Cassini, D.; Miccini, M. Late development of bile duct cancer in patients who had biliary-enteric drainage for benign disease: A follow-up study of more than 1000 patients. Ann. Surg. 2001, 234, 210–214. [Google Scholar] [CrossRef]
- Higuchi, R.; Takada, T.; Strasberg, S.M.; Pitt, H.A.; Gouma, D.J.; Garden, O.J.; Büchler, M.W.; Windsor, J.A.; Mayumi, T.; Yoshida, M.; et al. TG13 miscellaneous etiology of cholangitis and cholecystitis. J. Hepatobiliary Pancreat. Sci. 2013, 20, 97–105. [Google Scholar] [CrossRef]
BTC (N = 30) | BBD (N = 11) | Healthy Subjects (N = 10) | p Value | |
---|---|---|---|---|
Age, Median (Min–Max) | 75.5 (37–87) | 66 (49–80) | 63.5 (58–76) | 0.054 |
Female, N (%) | 10 (33.3%) | 3 (27.2%) | 7 (70%) | 0.093 |
BMI, median (min–max) | 21.85 (14.2–33.9) | 25.3 (19.2–32.9) | 21.92 (18.4–28.1) | 0.061 |
Tumor location, N (%) | ||||
Intrahepatic | 12 (40%) | |||
Extrahepatic | 12 (40%) | |||
Gallbladder | 6 (20%) | |||
Stage, N (%) III and IV | 16 (53.3%) | |||
I and II | 14 (46.7%) | |||
Leucocyte (counts/μL) | 7303 (3100–22300) | 5400 (3700–12200) | 0.375 | |
Neutrophil (counts/μL) | 5280 (1700–20100) | 2900 (1900–8900) | 0.203 | |
Hemoglobin (g/dL) | 12.45 (6.8–17.7) | 14.8 (12.8–18.1) | 0.001 | |
Platelet (×104 counts/μL) | 21.1 (22.4–54.5) | 22.4 (16.3–43.6) | 0.768 | |
C-reactive protein (CRP) (mg/dL) | 1.30 (0.05–20.85) | 0.13 (0.1–1.24) | 0.003 | |
Albumin (g/dL) | 3.6 (1.9–4.6) | 4.1 (3.7–4.7) | 0.001 | |
Lactate dehydrogenase (LDH) (IU/L) | 202 (113–410) | 187 (157–281) | 0.164 | |
T-bil (IU/L) | 0.95 (0.3–31.5) | 0.90 (0.3–1.9) | 0.03 | |
HbA1c % | 6.0 (4.3–8.5 ND = 1) | 5.7 (5.5–6.8 ND = 2) | 0.192 | |
Carcinoembryonic antigen (CEA) (ng/mL) | 4.3 (1.9–609 ND = 2) | 2.6 (1.9–7.5 ND = 2) | 0.067 | |
Carbohydrate antigen 19-9 (CA19-9) (U/mL) | 63 (0–17799 ND = 2) | 16 (0–56 ND = 2) | 0.365 |
Composition Rate (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group | BBD | BTC | |||||||||||||
Subject ID | 20 | 23 | 34 | 29 | 37 | 40 | 41 | ||||||||
Bile Collection Methods | ERC | Operation | Operation | Operation | Operation | ERC | ERC | ||||||||
OTU ID | Taxon | Bile | Feces | Bile | Feces | Bile | Feces | Bile | Feces | Bile | Feces | Bile | Feces | Bile | Feces |
OTU_0002 | f__Enterobacteriaceae; g__Escherichia; s__coli | 45.75 | 0.53 | 0.56 | 6.29 | 25.91 | 88.05 | 19.59 | |||||||
OTU_0004 | f__Enterobacteriaceae | 62.71 | |||||||||||||
OTU_0006 | f__Enterobacteriaceae; g__Escherichia; s__coli | 21.19 | 1.12 | 4.32 | |||||||||||
OTU_0007 | f__Enterobacteriaceae; g__Citrobacter; s__ | 5.77 | 12.37 | ||||||||||||
OTU_0013 | f__Enterobacteriaceae | 16.90 | |||||||||||||
OTU_0014 | f__Enterobacteriaceae | 15.64 | |||||||||||||
OTU_0021 | f__Enterobacteriaceae | 12.01 | 0.65 | ||||||||||||
OTU_0027 | f__Enterobacteriaceae | 9.52 | 0.76 | ||||||||||||
OTU_0034 | f__Enterobacteriaceae; g__Escherichia; s__coli | 2.41 | |||||||||||||
OTU_0045 | f__Enterobacteriaceae; g__Citrobacter; s__ | 0.88 | 2.26 | ||||||||||||
OTU_0048 | f__Enterobacteriaceae; g__Citrobacter; s__ | 0.83 | 1.66 | ||||||||||||
OTU_0050 | f__Enterobacteriaceae | 4.10 | |||||||||||||
OTU_0082 | f__Enterobacteriaceae; g__Klebsiella; s__ | 1.57 | 0.17 | 0.21 | |||||||||||
OTU_0091 | f__Enterobacteriaceae | 1.96 | |||||||||||||
OTU_0096 | f__Enterobacteriaceae; g__Klebsiella; s__ | 1.95 | |||||||||||||
OTU_0097 | f__Enterobacteriaceae; g__Klebsiella; s__ | 1.30 | 0.61 | ||||||||||||
OTU_0131 | f__Enterobacteriaceae | 0.18 | 0.52 | ||||||||||||
OTU_0148 | f__Enterobacteriaceae | 0.16 | 0.33 | ||||||||||||
OTU_0209 | f__Enterobacteriaceae; g__Citrobacter; s__ | 0.46 | |||||||||||||
OTU_0231 | f__Enterobacteriaceae | 0.37 | |||||||||||||
OTU_0261 | f__Enterobacteriaceae; g__Klebsiella; s__ | 0.28 | |||||||||||||
OTU_0323 | f__Enterobacteriaceae; g__Citrobacter; s__ | 0.18 | |||||||||||||
OTU_0376 | f__Enterobacteriaceae; g__Serratia; s__ | 0.13 | |||||||||||||
OTU_0405 | f__Enterobacteriaceae; g__Citrobacter; s__ | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, Z.; Koido, S.; Kato, K.; Odamaki, T.; Horiuchi, S.; Akasu, T.; Saruta, M.; Hata, T.; Kumagai, Y.; Fujioka, S.; et al. Dysbiosis of the Fecal and Biliary Microbiota in Biliary Tract Cancer. Cancers 2022, 14, 5379. https://doi.org/10.3390/cancers14215379
Ito Z, Koido S, Kato K, Odamaki T, Horiuchi S, Akasu T, Saruta M, Hata T, Kumagai Y, Fujioka S, et al. Dysbiosis of the Fecal and Biliary Microbiota in Biliary Tract Cancer. Cancers. 2022; 14(21):5379. https://doi.org/10.3390/cancers14215379
Chicago/Turabian StyleIto, Zensho, Shigeo Koido, Kumiko Kato, Toshitaka Odamaki, Sankichi Horiuchi, Takafumi Akasu, Masayuki Saruta, Taigo Hata, Yu Kumagai, Shuichi Fujioka, and et al. 2022. "Dysbiosis of the Fecal and Biliary Microbiota in Biliary Tract Cancer" Cancers 14, no. 21: 5379. https://doi.org/10.3390/cancers14215379
APA StyleIto, Z., Koido, S., Kato, K., Odamaki, T., Horiuchi, S., Akasu, T., Saruta, M., Hata, T., Kumagai, Y., Fujioka, S., Misawa, T., Xiao, J. -z., Sato, N., & Ohkusa, T. (2022). Dysbiosis of the Fecal and Biliary Microbiota in Biliary Tract Cancer. Cancers, 14(21), 5379. https://doi.org/10.3390/cancers14215379