The Role of Fusobacterium nucleatum in Colorectal Cancer Cell Proliferation and Migration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Potential Mechanisms by Which Fn May Promote CRC Proliferation and Migration
2.1. Proliferative Effects on Primary Tumor
2.2. Induction of Epithelial–Mesenchymal Transition
2.2.1. E-Cadherin/β-Catenin Complex
2.2.2. Cancer Stem-Like Cells
2.2.3. Autophagy Signaling
2.3. Reshaping the Tumor Microenvironment
2.3.1. Tumor-Infiltrating Immune Cells
2.3.2. Prometastatic Cytokines
2.3.3. Tumor Metabolism
2.3.4. Tumor-Associated Microbiota
2.4. Oncogenic ncRNAs
2.4.1. LncRNAs
2.4.2. miRNAs
2.5. DNA Damage
3. Discussion
3.1. Current Status
3.2. Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thanikachalam, K.; Khan, G. Colorectal Cancer and Nutrition. Nutrients 2019, 11, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Wu, N.; Feng, Y.Q.; Lyu, N.; Wang, D.; Yu, W.D.; Hu, Y.F. Fusobacterium nucleatum promotes colon cancer progression by changing the mucosal microbiota and colon transcriptome in a mouse model. World J. Gastroenterol. 2022, 28, 1981–1995. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Y.; Li, J.; Zhao, L.; Yan, W.; Lin, B.; Guo, X.; Wei, Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front. Cell. Dev. Biol. 2021, 9, 710165. [Google Scholar] [CrossRef]
- Zhang, N.; Ng, A.S.; Cai, S.; Li, Q.; Yang, L.; Kerr, D. Novel therapeutic strategies: Targeting epithelial–mesenchymal transition in colorectal cancer. Lancet Oncol. 2021, 22, e358–e368. [Google Scholar] [CrossRef]
- Mittal, V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 2018, 13, 395–412. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, M.; Primi, M.C.; Izard, T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem. 2020, 295, 2495–2505. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021, 221, 107753. [Google Scholar] [CrossRef]
- Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.A.; Garrett, W.S. Fusobacterium nucleatum—Symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Kasper, S.H.; Morell-Perez, C.; Wyche, T.P.; Sana, T.R.; Lieberman, L.A.; Hett, E.C. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment. Sci. Rep. 2020, 10, 5321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Antonio, D.L.; Marchetti, S.; Pignatelli, P.; Piattelli, A.; Curia, M.C. The Oncobiome in Gastroenteric and Genitourinary Cancers. Int. J. Mol. Sci. 2022, 23, 9664. [Google Scholar] [CrossRef]
- Pignatelli, P.; Iezzi, L.; Pennese, M.; Raimondi, P.; Cichella, A.; Bondi, D.; Grande, R.; Cotellese, R.; Di Bartolomeo, N.; Innocenti, P.; et al. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers 2021, 13, 1032. [Google Scholar] [CrossRef]
- Henstra, C.; van Praagh, J.; Olinga, P.; Nagelkerke, A. The gastrointestinal microbiota in colorectal cancer cell migration and invasion. Clin. Exp. Metastasis 2021, 38, 495–510. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Baik, J.E.; Lagana, S.M.; Han, R.P.; Raab, W.J.; Sahoo, D.; Dalerba, P.; Wang, T.C.; Han, Y.W. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep. 2019, 20, e47638. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-kappaB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866 e24. [Google Scholar] [CrossRef] [Green Version]
- Dadashi, M.; Hajikhani, B.; Faghihloo, E.; Owlia, P.; Yaslianifard, S.; Goudarzi, M.; Nasiri, M.J.; Fallah, F. Proliferative Effect of FadA Recombinant Protein from Fusobacterium nucleatum on SW480 Colorectal Cancer Cell Line. Infect. Disord. Drug Targets 2021, 21, 623–628. [Google Scholar] [CrossRef]
- Xu, Q.; Lu, X.; Li, J.; Feng, Y.; Tang, J.; Zhang, T.; Mao, Y.; Lan, Y.; Luo, H.; Zeng, L.; et al. Fusobacterium nucleatum induces excess methyltransferase-like 3-mediated microRNA-4717-3p maturation to promote colorectal cancer cell proliferation. Cancer Sci. 2022. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Zeng, D.Z.; Tong, Y.N.; Lu, X.X.; Dun, G.D.; Tang, B.; Zhang, Z.J.; Ye, X.L.; Li, Q.; Xie, J.P.; et al. Alteration of microRNA-4474/4717 expression and CREB-binding protein in human colorectal cancer tissues infected with Fusobacterium nucleatum. PLoS ONE 2019, 14, e0215088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Zhang, L.; Li, M.; Zhang, Y.; Sun, M.; Wang, L.; Lin, J.; Cui, Y.; Chen, Q.; Jin, C.; et al. Fusobacterium nucleatum reduces METTL3-mediated m(6)A modification and contributes to colorectal cancer metastasis. Nat. Commun. 2022, 13, 1248. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.A.; Yoo, S.Y.; Oh, H.J.; Jeong, S.; Cho, N.Y.; Kang, G.H.; Kim, J.H. Differential immune microenvironmental features of microsatellite-unstable colorectal cancers according to Fusobacterium nucleatum status. Cancer Immunol. Immunother. 2021, 70, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, Y.; Yu, J.; Chen, T.; Wu, Y.; Shi, L.; Li, Q.; Wu, J.; Fu, X. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 2017, 8, 31802–31814. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, J.; Yu, T.; Fang, X.; Lou, L.; Xin, S.; Ji, L.; Jiang, F.; Lou, Y. Fusobacterium nucleatum Promotes the Progression of Colorectal Cancer Through Cdk5-Activated Wnt/beta-Catenin Signaling. Front. Microbiol. 2020, 11, 545251. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Tian, Z.; Kong, X.; Yang, L.; Shan, X.; Dong, B.; Ding, X.; Jing, X.; Jiang, C.; Jiang, N.; et al. FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J. Exp. Clin. Cancer Res. 2020, 39, 202. [Google Scholar] [CrossRef]
- Ma, C.T.; Luo, H.S.; Gao, F.; Tang, Q.C.; Chen, W. Fusobacterium nucleatum promotes the progression of colorectal cancer by interacting with E-cadherin. Oncol. Lett. 2018, 16, 2606–2612. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, S.M.; Zhang, F.; Ding, C.; Montoya-Durango, D.E.; Hu, X.; Yang, C.; Wang, Z.; Yuan, F.; Fox, M.; Zhang, H.G.; et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 2021, 33, 2040–2058.e10. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Chen, F.; Zeng, Q.; Liu, W.L.; Zhang, G. Exosomes derived from Fusobacterium nucleatum-infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut 2020, 70, 1507–1519. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef]
- Ternes, D.; Tsenkova, M.; Pozdeev, V.I.; Meyers, M.; Koncina, E.; Atatri, S.; Schmitz, M.; Karta, J.; Schmoetten, M.; Heinken, A.; et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat. Metab. 2022, 4, 458–475. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xu, Q.; Tong, Y.; Zhang, Z.; Dun, G.; Feng, Y.; Tang, J.; Han, D.; Mao, Y.; Deng, L.; et al. Long non-coding RNA EVADR induced by Fusobacterium nucleatum infection promotes colorectal cancer metastasis. Cell Rep. 2022, 40, 111127. [Google Scholar] [CrossRef] [PubMed]
- Walcher, L.; Kistenmacher, A.K.; Suo, H.; Kitte, R.; Dluczek, S.; Strauss, A.; Blaudszun, A.R.; Yevsa, T.; Fricke, S.; Kossatz-Boehlert, U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front. Immunol. 2020, 11, 1280. [Google Scholar] [CrossRef]
- Babaei, G.; Aziz, S.G.; Jaghi, N.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed. Pharm. 2021, 133, 110909. [Google Scholar] [CrossRef]
- Yan, X.; Liu, L.; Li, H.; Qin, H.; Sun, Z. Clinical significance of Fusobacterium nucleatum, epithelial-mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco. Targets Ther. 2017, 10, 5031–5046. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.R.; Kim, H.J.; Park, H.R. Fusobacterium nucleatum Accelerates the Progression of Colitis-Associated Colorectal Cancer by Promoting EMT. Cancers 2020, 12, 2728. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, J.; Chao, S.; Li, S.; Cai, H.; Zhang, H.; Chen, G.; Liu, P.; Bu, P. Fusobacterium nucleatum Promotes Colorectal Cancer Cell to Acquire Stem Cell-Like Features by Manipulating Lipid Droplet-Mediated Numb Degradation. Adv. Sci. (Weinh.) 2022, 9, e2105222. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Zhang, J.; Cao, P.; Su, W.; Deng, Y.; Zhan, N.; Fu, X.; Huang, Y.; Dong, W. Fusobacterium nucleatum Promotes Metastasis in Colorectal Cancer by Activating Autophagy Signaling via the Upregulation of CARD3 Expression. Theranostics 2020, 10, 323–339. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563 e16. [Google Scholar] [CrossRef] [Green Version]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Mima, K.; Ishimoto, T.; Ogata, Y.; Imai, K.; Miyamoto, Y.; Akiyama, T.; Daitoku, N.; Hiyoshi, Y.; Iwatsuki, M.; et al. Relationship between Fusobacterium nucleatum and antitumor immunity in colorectal cancer liver metastasis. Cancer Sci. 2021, 112, 4470–4477. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Li, Q.; Wu, J.; Wu, Y.; Peng, W.; Li, H.; Wang, J.; Tang, X.; Peng, Y.; Fu, X. Fusobacterium nucleatum promotes M2 polarization of macrophages in the microenvironment of colorectal tumours via a TLR4-dependent mechanism. Cancer Immunol. Immunother. 2018, 67, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I. Myeloid-Derived Suppressor Cells. Cancer Immunol. Res. 2017, 5, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Shen, H.; Li, Z.; Wang, T.; Wang, S. Tumor-derived exosomes, myeloid-derived suppressor cells, and tumor microenvironment. J. Hematol. Oncol. 2019, 12, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef]
- Xu, C.; Fan, L.; Lin, Y.; Shen, W.; Qi, Y.; Zhang, Y.; Chen, Z.; Wang, L.; Long, Y.; Hou, T.; et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes 2021, 13, 1980347. [Google Scholar] [CrossRef]
- Hu, L.; Liu, Y.; Kong, X.; Wu, R.; Peng, Q.; Zhang, Y.; Zhou, L.; Duan, L. Fusobacterium nucleatum Facilitates M2 Macrophage Polarization and Colorectal Carcinoma Progression by Activating TLR4/NF-kappaB/S100A9 Cascade. Front. Immunol. 2021, 12, 658681. [Google Scholar] [CrossRef]
- Lamprinaki, D.; Garcia-Vello, P.; Marchetti, R.; Hellmich, C.; McCord, K.A.; Bowles, K.M.; Macauley, M.S.; Silipo, A.; De Castro, C.; Crocker, P.R.; et al. Siglec-7 Mediates Immunomodulation by Colorectal Cancer-Associated Fusobacterium nucleatum ssp. animalis. Front. Immunol. 2021, 12, 744184. [Google Scholar] [CrossRef]
- Casasanta, M.A.; Yoo, C.C.; Udayasuryan, B.; Sanders, B.E.; Umana, A.; Zhang, Y.; Peng, H.; Duncan, A.J.; Wang, Y.; Li, L.; et al. Fusobacterium nucleatum host-cell binding and invasion induces IL-8 and CXCL1 secretion that drives colorectal cancer cell migration. Sci. Signal. 2020, 13, eaba9157. [Google Scholar] [CrossRef]
- Yin, H.; Miao, Z.; Wang, L.; Su, B.; Liu, C.; Jin, Y.; Wu, B.; Han, H.; Yuan, X. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota. Aging (Albany NY) 2022, 14, 1941–1958. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Zheng, S.; Li, M.; Xu, C.; Jia, D.; Qi, Y.; Hou, T.; Wang, L.; Wang, B.; et al. Fusobacterium nucleatum promotes colorectal cancer cells adhesion to endothelial cells and facilitates extravasation and metastasis by inducing ALPK1/NF-kappaB/ICAM1 axis. Gut Microbes 2022, 14, 2038852. [Google Scholar] [CrossRef] [PubMed]
- Reina-Campos, M.; Moscat, J.; Diaz-Meco, M. Metabolism shapes the tumor microenvironment. Curr. Opin. Cell Biol. 2017, 48, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Ji, L.; Lou, L.; Ye, S.; Fang, X.; Li, C.; Jiang, F.; Gao, H.; Lou, Y.; Li, X. Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer. Front. Microbiol. 2022, 13, 841157. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Liu, R.; Zhou, C.; Yu, H.; Luo, W.; Zhu, J.; Liu, J.; Zhang, Z.; Xie, N.; Peng, X.; et al. ANGPTL4-Mediated Promotion of Glycolysis Facilitates the Colonization of Fusobacterium nucleatum in Colorectal Cancer. Cancer Res. 2021, 81, 6157–6170. [Google Scholar] [CrossRef]
- Hong, J.; Guo, F.; Lu, S.Y.; Shen, C.; Ma, D.; Zhang, X.; Xie, Y.; Yan, T.; Yu, T.; Sun, T.; et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021, 70, 2123–2137. [Google Scholar] [CrossRef]
- Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757. [Google Scholar] [CrossRef]
- Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017, 358, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.; Liu, Y.; Li, S.; Guo, D.; Sun, Q.; Jin, J.; Rao, X.; Li, M.; Sun, M.; Jiang, M.; et al. Long Noncoding RNA GMAN, Up-regulated in Gastric Cancer Tissues, Is Associated with Metastasis in Patients and Promotes Translation of Ephrin A1 by Competitively Binding GMAN-AS. Gastroenterology 2019, 156, 676–691 e11. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Song, X.; Li, Y.; Chen, B.; Zhao, W.; Wang, L.; Zhang, H.; Liu, Y.; Han, D.; Zhang, N.; et al. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol. Cancer 2020, 19, 85. [Google Scholar] [CrossRef]
- Chen, S.; Su, T.; Zhang, Y.; Lee, A.; He, J.; Ge, Q.; Wang, L.; Si, J.; Zhuo, W.; Wang, L. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating KRT7-AS/KRT7. Gut Microbes 2020, 11, 511–525. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Lin, Q.; Luo, Q.; Cen, Y.; Li, J.; Fang, X.; Gong, C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes 2021, 12, 1289. [Google Scholar] [CrossRef] [PubMed]
- Ali Syeda, Z.; Langden, S.S.S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory Mechanism of MicroRNA Expression in Cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Zhou, P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Sayed, I.M.; Chakraborty, A.; Abd El-Hafeez, A.A.; Sharma, A.; Sahan, A.Z.; Huang, W.J.M.; Sahoo, D.; Ghosh, P.; Hazra, T.K.; Das, S. The DNA Glycosylase NEIL2 Suppresses Fusobacterium-Infection-Induced Inflammation and DNA Damage in Colonic Epithelial Cells. Cells 2020, 9, 1980. [Google Scholar] [CrossRef]
- Parhi, L.; Alon-Maimon, T.; Sol, A.; Nejman, D.; Shhadeh, A.; Fainsod-Levi, T.; Yajuk, O.; Isaacson, B.; Abed, J.; Maalouf, N.; et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 2020, 11, 3259. [Google Scholar] [CrossRef]
- McIlvanna, E.; Linden, G.J.; Craig, S.G.; Lundy, F.T.; James, J.A. Fusobacterium nucleatum and oral cancer: A critical review. BMC Cancer 2021, 21, 1212. [Google Scholar] [CrossRef]
- Gkountela, S.; Aceto, N. Stem-like features of cancer cells on their way to metastasis. Biol. Direct 2016, 11, 33. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.; Ding, Z.; Zhao, P.; Li, J.; Chen, P.; Zheng, J.; Qian, Z. Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-beta/Smad3 signaling in melanoma cells. Cell Death Dis. 2020, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Karimi Roshan, M.; Soltani, A.; Soleimani, A.; Rezaie Kahkhaie, K.; Afshari, A.R.; Soukhtanloo, M. Role of AKT and mTOR signaling pathways in the induction of epithelial-mesenchymal transition (EMT) process. Biochimie 2019, 165, 229–234. [Google Scholar] [CrossRef]
- Saw, P.E.; Xu, X.; Chen, J.; Song, E.W. Non-coding RNAs: The new central dogma of cancer biology. Sci. China Life Sci. 2021, 64, 22–50. [Google Scholar] [CrossRef]
- Basu, A.K. DNA Damage, Mutagenesis and Cancer. Int. J. Mol. Sci. 2018, 19, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, M.J. Targeting the DNA Damage Response in Cancer. Mol. Cell 2015, 60, 547–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, L.; Chen, H.; Song, J.; Chen, X.; Lin, C.; Zhang, X.; Hou, N.; Pan, J.; Zhou, Z.; Wang, L.; et al. MiR-454-3p-Mediated Wnt/beta-catenin Signaling Antagonists Suppression Promotes Breast Cancer Metastasis. Theranostics 2019, 9, 449–465. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Lai, Q.; He, C.; Fang, Y.; Yan, Q.; Zhang, Y.; Wang, X.; Gu, C.; Wang, Y.; Ye, L.; et al. RUNX1 promotes tumour metastasis by activating the Wnt/beta-catenin signalling pathway and EMT in colorectal cancer. J. Exp. Clin. Cancer Res. 2019, 38, 334. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cai, H.; Liu, Q.; Xia, Y.; Xing, L.; Zuo, Q.; Zhang, Y.; Chen, C.; Xu, K.; Yin, P.; et al. Cinobufacini Inhibits Colon Cancer Invasion and Metastasis via Suppressing Wnt/beta-Catenin Signaling Pathway and EMT. Am. J. Chin. Med. 2020, 48, 703–718. [Google Scholar] [CrossRef]
- Wang, R.; Ma, Y.; Zhan, S.; Zhang, G.; Cao, L.; Zhang, X.; Shi, T.; Chen, W. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-kappaB pathway to induce VEGFA expression. Cell Death Dis. 2020, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Nan, X.; Shi, X.; Mu, X.; Liu, B.; Zhu, H.; Yao, B.; Liu, X.; Yang, T.; Hu, Y.; et al. SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-kappaB pathway activation. BMC Cancer 2019, 19, 685. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Cheng, B.; Huang, X.; Xiao, Q.; Niu, Z.; Chen, Y.F.; Yu, Q.; Wang, W.; Wu, X.J. Colorectal cancer-associated fibroblasts promote metastasis by up-regulating LRG1 through stromal IL-6/STAT3 signaling. Cell Death Dis. 2021, 13, 16. [Google Scholar] [CrossRef]
- Lin, Y.; He, Z.; Ye, J.; Liu, Z.; She, X.; Gao, X.; Liang, R. Progress in Understanding the IL-6/STAT3 Pathway in Colorectal Cancer. Onco. Targets Ther. 2020, 13, 13023–13032. [Google Scholar] [CrossRef]
- Hubert, C.G.; Rivera, M.; Spangler, L.C.; Wu, Q.; Mack, S.C.; Prager, B.C.; Couce, M.; McLendon, R.E.; Sloan, A.E.; Rich, J.N. A Three-Dimensional Organoid Culture System Derived from Human Glioblastomas Recapitulates the Hypoxic Gradients and Cancer Stem Cell Heterogeneity of Tumors Found In Vivo. Cancer Res. 2016, 76, 2465–2477. [Google Scholar] [CrossRef]
- Garreta, E.; Kamm, R.D.; Chuva de Sousa Lopes, S.M.; Lancaster, M.A.; Weiss, R.; Trepat, X.; Hyun, I.; Montserrat, N. Rethinking organoid technology through bioengineering. Nat. Mater. 2021, 20, 145–155. [Google Scholar] [CrossRef]
- Van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roper, J.; Tammela, T.; Cetinbas, N.M.; Akkad, A.; Roghanian, A.; Rickelt, S.; Almeqdadi, M.; Wu, K.; Oberli, M.A.; Sanchez-Rivera, F.J.; et al. In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis. Nat. Biotechnol. 2017, 35, 569–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Fong, E.L.S.; Zhu, C.; Lin, Q.X.X.; Xiong, M.; Li, A.; Li, T.; Benoukraf, T.; Yu, H.; Liu, S. Hydrogel-based colorectal cancer organoid co-culture models. Acta Biomater. 2021, 132, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Mao, Y.; Wang, W.; Zhou, X.; Wang, W.; Gao, S.; Li, J.; Wen, L.; Fu, W.; Tang, F. Systematic evaluation of colorectal cancer organoid system by single-cell RNA-Seq analysis. Genome Biol. 2022, 23, 106. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Gui, X.; Zhang, Y.; Zhang, Z.; Chen, W.; Zhang, X.; Wang, Y.; Zhang, M.; Shang, Z.; et al. Salivary Fusobacterium nucleatum serves as a potential biomarker for colorectal cancer. iScience 2022, 25, 104203. [Google Scholar] [CrossRef]
Abbreviations | Full Name | Abbreviations | Full Name |
---|---|---|---|
APC | adenomatous polyposis coli | lncRNAs | long noncoding RNAs |
ATCC | American Type Culture Collection | MDSCs | myeloid-derived suppressor cells |
CCSCs | colorectal cancer stem-like cells | miRNAs | microRNAs (small ncRNAs) |
CDX | cell-derived xenograft | ncRNAs | noncoding RNAs |
CSCs | cancer stem-like cells | PDX | patient-derived xenograft |
ECM | extracellular matrix | TAMs | tumor-associated macrophages |
EMT | epithelial–mesenchymal transition | TANs | tumor-associated neutrophils |
FadA | Fusobacterium nucleatum adhesin A | TEXs | tumor-derived exosomes |
Fn | Fusobacterium nucleatum | TME | tumor microenvironment |
Mechanisms | References | Fn Strain | Models | Findings | Experiment | Metastatic Sites | ||
---|---|---|---|---|---|---|---|---|
Signaling | Upregulates | Downregulates | ||||||
Induced EMT | ||||||||
E-cadherin/β-catenin | [24] | F01 ATCC 10953 | CRC tissue SW480, Caco-2 | Activates β-catenin signaling via a TLR4/p-PAK1/β-catenin S675 cascade | β-catenin TLR4 PAK1 c-Myc cyclin D1 | In vitro | ||
[25] | ATCC 25586 | CRC tissue DLD-1, SW480 | Activates Wnt/β-catenin and IL-6/STAT3 signaling via upregulation of Cdk5 | CDK5 β-catenin c-Myc cyclin D1 p-STAT3 IL-6,8 COX-2 TNF-β | In vitro | |||
[3] | ATCC 25586 | AOM/DSS mice | Impairs the function of the intestinal barrier and the aberrant activation of EMT | Ki-67 NETO2 ANGPTL4 PCK1 | E-cadherin | In vivo | ||
[26] | ATCC 25586 (FadA) | CRC tissue HCT29, HT116 CDX mice, APCMin/+ mice | Activates the E-cadherin/β-catenin pathway, leading to the upregulation of chk2 | chk2 β-catenin Ki-67 PCNA | E-cadherin | In vitro In vivo | ||
[27] | ATCC 25586 | NCM460 | Interacts with E-cadherin and enhances the malignant phenotype of CRC cells | NF-κB p65 IL-6 IL-1β MMP-13 TNF-α | In vitro | |||
[29] | Fn-Ex (TEXs) | HCT116, SW480 CDX mice | Activates the Wnt/β-catenin pathway | β-catenin vimentin c-Myc cyclin D1 | E-cadherin | In vitro In vivo | Liver lung | |
[30] | ATCC 12230 US1U SF81 (FadA) | CRC tissue HCT116, DLD1, HT29, SW480, RKO CDX mice | Regulates the inflammatory and oncogenic responses via E-cadherin/β-catenin | β-catenin NF-κB IL-6,8,18 LEF/TCF c-Myc cyclin D1 | E-cadherin | In vitro In vivo | ||
[17] | WAL12230 ATCC 25586 (FadA) | CRC tissue 10C, HCT116, DLD1, RKO, SW480, HT29 CDX mice, APCMin/+ mice | Induces the Wnt/β-catenin modulator Annexin A1 | Annexin A1 β-catenin cyclin D1 | E-cadherin | In vitro In vivo | ||
[31] | ATCC 23726 ATCC 25586 (formate) | CRC tissue HCT116, Caco-2 CDX mice | Induces cancer stemness and thereby metastatic dissemination by activation of the AhR-Wnt/β-catenin pathway | AhR β-catenin IL8 Th17 MAPK ERK MEK-p38 NF-κB p65 | In vitro In vivo | lung | ||
[32] | CRC tissue HCT116, LoVo, SW480, SW620, HT29 CDX mice | Enhances the translation of EMT-related factors by the lncRNA EVADR-YBX1 axis | N-cadherin vimentin Snail Slug Zeb1 | E-cadherin | In vitro In vivo | liver lung | ||
CSCs | [35] | CRC tissue | Potential involvement of Fn in EMT–CSC crosstalk | N-cadherin Nanog Oct-4 Sox-2 | E-cadherin | In vitro | lung, liver ovary node | |
[36] | LOVO, HCT8, LS174T AOM/DSS mice | Promotes the EMT through EGFR/AKT/ERK signaling and increases the stemness of CRC cells | Fibronectin N-cadherin Snail Slug CD44+ CD133+ IL-1β, 6 p-EGFR p-AKT p-ERK | E-cadherin ZO-1 | In vitro In vivo | |||
[37] | ATCC 25586 | CRC tissue CCSCs, HEK293, HT29, HCT116 CDX mice | Promotes Numb degradation and activates Notch signaling in non-CCSCs; enhances CPT1B-mediated FAO via the TLR4/MYD88/NF-κB in CCSCs | ALDH1 CD133+ CD44+ Lgr5 Olfm4 Sox9 Aldh1 FASN NICD MDM2 CPT1B NF-κB | Numb | In vitro In vivo | ||
Autophagy | [38] | F01 ATCC10953 | CRC tissue SW480, HCT116, CT26 xenograft mice APCMin/+ mice | Activates autophagy signaling by upregulating CARD3 | CARD3 LC3-II beclin1 vimentin ATG5,7 MAPK | E-cadherin p62 | In vitro In vivo | Lung liver node |
Reprogramed TME | ||||||||
MDSCs | [40] | EAVG_002 | CRC tissue APCMin/+ mice | Generates a proinflammatory microenvironment through the recruitment of tumor-infiltrating immune cells | MDSCs (CD11b+) TANs, TAMs DCs COX-2 IL1,6,8, TNF MMP3 NF-κB p65 | In vitro In vivo | ||
[41] | CRC tissue APCMin/+ mice | The presence of Fn is associated with a lower density of CD8+ T cells and a higher density of MDSCs in CRC liver metastases | MDSCs (CD33+) TAMs (CD163+) Ki67 TIL- 6 TNF-α | CD8+ | In vitro In vivo | liver | ||
M2 polarization | [46] | ATCC 25586 | CRC tissue HCT116, LoVo CDX mice | Promotes M2 polarization through the NF-κB pathway | F4/80+ CCR6+ CD206+ ARG1 MRC1 IL-10 TGF-β | In vitro In vivo | lung | |
[47] | ATCC 25586 | CRC tissue HCT116, SW480, THP-1 CDX mice | Promotes M2 polarization via the TLR4/NF-κB/S100A9 pathway | CD206+ IL-10 S100A9 TLR4 NF-κB p65 PCNA N-cadherin VEGF TGF-β | CD86+ iNOS TNF-α | In vitro In vivo | ||
[42] | ATCC10953 F01 | CRC tissue RAW 264.7 APCMin/+ mice | Promotes the M2 polarization of macrophages via the TLR4/IL-6/p-STAT3/c-Myc cascade | CD206+ IL-10 TGF-β TLR4 IL-6 p-STAT3 c-Myc | CD86+ IL-12 TGF-α | In vitro In vivo | ||
[48] | ATCC 51,191 (LPS/OMVs) | CHO-Siglec-7-Fc, U937, moDCs, moM¢s | Promotes M2 polarization and a proinflammatory environment via the Fn–Siglec-7 interaction | Siglec-7 IL-8 I-10 IL-10 PD-L1 | CD86+ TNF-α | In vitro | ||
Prometastatic cytokines | [49] | ATCC 23,726 (FadA, Fap2) | HCT116 | Induces the secretion of the proinflammatory and prometastatic cytokines | IL-8 CXCL1 | In vitro | ||
[29] | Fn-Ex (TEXs) | HCT116, SW480 CDX mice | stimulates the CXCL16/RhoA/IL-8 exosomes | IL-8 CXCL16 RhoA | CXCR6 | In vitro In vivo | Liver lung | |
[50] | ATCC 25586 | CT26-Luc mice | Affects the secretion of inflammatory cytokines and modulates the hepatic immune response | IL-6,12, 9 IL-17A CXCL1 MCP-1 TNF-α IFN-γ CD11b+ Treg | CD3+ CD4+ CD8+ NK Th17 | In vivo | liver | |
[51] | ATCC 25586 ATCC 10953 | CRC tissue HCT116, LoVo, HUVECs CDX/PDX mice | Promotes CRC cell adhesion to endothelial cells and metastasis by activating the NF-κB/ICAM1 axis | ICAM1 ALPK1 NF-κB p65 | In vitro In vivo | Liver Lung node | ||
Tumor metabolism | [53] | ATCC 25586 | CRC tissue SW480 AOM mice | Regulates amino acid metabolism | lactic acid aspartic acid glutamate glutathione Bcl-2 caspase 3 | propionic acid leucine isoleucine Bax | In vitro In vivo | |
[54] | ATCC 25586 | CRC tissue DLD1, SW480, HT-29, HCT-116 CDX mice | Promotes glycolysis via the induction of ANGPTL4 and facilitates the colonization of Fn | ANGPTL4 H3K27ac ECAR GLUT1 | HDAC | In vitro In vivo | ||
[55] | CRC tissue HCT116, DLD1 CDX mice | Promotes CRC glycolysis via ENO1 | lactic acid ECAR | In vitro In vivo | ||||
[3] | ATCC 25586 | AOM/DSS mice | Alters the colon mucosal microbiota | FABP1 VAV2 GalR1 | E-cadherin | In vivo | ||
Oncogenic ncRNAs | ||||||||
lncRNAs | [32] | CRC tissue HCT116, LoVo, HT29, SW480, SW620 CDX mice | Regulates the lncRNA EVADR-YBX1 axis | EVADR YBX1 | In vitro In vivo | Liver lung | ||
[60] | CRC tissue HCT116, LoVo CDX mice | Upregulates KRT7-AS/KRT7 by activating the NF-κB pathway | KRT7-AS KRT7 NF-κB p65 | IκB-α | In vitro In vivo | lung | ||
[55] | CRC tissue HCT116, DLD1 CDX mice | Targets lncRNA ENO1- IT1 to promote glycolysis and oncogenesis | ENO1-IT1 ENO1 KRT7 | In vitro In vivo | ||||
miRNAs | [29] | Fn-Ex (TEXs) | HCT116, SW480 CDX mice | Stimulates tumor cells to generate miR-1246/92b- 3p/27a- 3p- rich | miR-1246 miR-92b-3p miR-27a-3p | GSK3β | In vitro In vivo | Liver lung |
[21] | CRC tissue Caco-2, HEK-293 | Upregulates miR-4474/4717 by post transcriptionally regulating the target gene, CREBBP | miR-4474 miR-4717 STAT1 TP53 EWSR1 | CREBBP JUN PRKACB CAMK2B | In vitro | |||
[18] | CRC tissue HCT116, HT29, LOVO, SW480 CDX mice, APCMin/+ mice | Regulates miR21 expression through the TLR4/MYD88/NF-κB pathway | miR-21 IL-17,21,22 MIP3a TLR4,2 MYD88 NF-κB p65 MAPK | RASA1 PDCD4 PTEN RECK SPRY1 RHOB IκB-α | In vitro In vivo | |||
[22] | ATCC 25586 | CRC tissue HCT116, LoVo, RKO, SW620 PDX mice | Reduces m6A modifications through the Hippo-YAP/FOXD3/METTL3/KIF26B axis | KIF26B YAP NF-κB | FOXD3 METTL3 m6A NF2 KIBRA Willin\FRMD6 | In vitro In vivo | Liver bone | |
[46] | ATCC 25586 | CRC tissue HCT116, LoVo CDX mice | Regulates miR-1322/CCL20 expression through the NF-κB pathway | CCL20 | miR-1322 | In vitro In vivo | lung | |
DNA damage | ||||||||
[64] | ATCC 25586 | CRC tissue EDMs APC Min/+ mice | Induces the downregulation of NEIL2 and the consequent accumulation of DNA damage | NTH1 MSH2 MSH6 Ku70 IL-8 pATM p-γH2AX | NEIL2 NEIL1 PMS2 | In vitro In vivo | ||
[26] | ATCC 25586 (FadA) | CRC tissue HCT29, HT116 CDX mice, APC Min/+ mice | Elevates DNA damage and increases the number of CRC cells in the S phase of the cell cycle | chk2 γH2AX | In vitro In vivo |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Ma, Q.; Guo, Y.; You, F. The Role of Fusobacterium nucleatum in Colorectal Cancer Cell Proliferation and Migration. Cancers 2022, 14, 5350. https://doi.org/10.3390/cancers14215350
Wu Z, Ma Q, Guo Y, You F. The Role of Fusobacterium nucleatum in Colorectal Cancer Cell Proliferation and Migration. Cancers. 2022; 14(21):5350. https://doi.org/10.3390/cancers14215350
Chicago/Turabian StyleWu, Zihong, Qiong Ma, Ying Guo, and Fengming You. 2022. "The Role of Fusobacterium nucleatum in Colorectal Cancer Cell Proliferation and Migration" Cancers 14, no. 21: 5350. https://doi.org/10.3390/cancers14215350
APA StyleWu, Z., Ma, Q., Guo, Y., & You, F. (2022). The Role of Fusobacterium nucleatum in Colorectal Cancer Cell Proliferation and Migration. Cancers, 14(21), 5350. https://doi.org/10.3390/cancers14215350