CD26 and Cancer
Conflicts of Interest
References
- Hopsu-Havu, V.K.; Glenner, G.G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 1966, 7, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Schrader, W.P.; Stacy, A.R. Purification and subunit structure of adenosine deaminase from human kidney. J. Biol. Chem. 1977, 252, 6409–6415. [Google Scholar] [CrossRef]
- Trotta, P.P.; Balis, M.E. Characterization of adenosine deaminase from normal colon and colon tumors. Evidence for tumor specific variants. Biochemistry 1978, 77, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Ten Kate, J.; van den Ingh, H.F.; Khan, P.M.; Bosman, F.T. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma. Int. J. Cancer 1986, 37, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.A.; Hussey, R.E.; Fitzgerald, K.A.; Acuto, O.; Poole, C.; Palley, L.; Daley, J.F.; Schlossman, S.F.; Reinherz, E.L. Ta1, a novel 105 KD human T cell activation antigen defined by a monoclonal antibody. J. Immunol. 1984, 133, 1250–1256. [Google Scholar] [PubMed]
- Hegen, M.; Niedobitek, G.; Klein, C.E.; Stein, H.; Fleischer, B. The T cell triggering molecule Tp103 is associated with dipeptidyl aminopeptidase IV activity. J. Immunol. 1990, 144, 2908–2914. [Google Scholar] [PubMed]
- Kameoka, J.; Tanaka, T.; Nojima, Y.; Schlossman, S.F.; Morimoto, C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993, 261, 466–469. [Google Scholar] [CrossRef]
- Fleischer, B. CD26: A surface protease involved in T-cell activation. Immunol. Today 1994, 15, 180–184. [Google Scholar] [CrossRef]
- De Meester, I.; Korom, S.; Van Damme, J.; Scharpé, S. CD26, let it cut or cut it down. Immunol. Today 1999, 20, 367–375. [Google Scholar] [CrossRef]
- Boonacker, E.; Van Noorden, C.J.F. The multifunctional or moonlighting protein CD26/DPPIV. Eur. J. Cell. Biol. 2003, 82, 53–73. [Google Scholar] [CrossRef]
- Kojima, J.; Ueno, Y.; Kasugai, H.; Okuda, S.; Akedo, H. Glycylproline dipeptidyl aminopeptidase and gamma-glutamyl-transferase transpeptidase in human hepatic cancer and embryonal tissues. Clin. Chim. Acta 1987, 167, 285–291. [Google Scholar] [CrossRef]
- Morrison, M.E.; Vijayasaradhi, S.; Engelstein, D.; Albino, A.P.; Houghton, A.N. A marker for neoplastic progression of human melanocytes is a cell surface ectopeptidase. J. Exp. Med. 1993, 177, 1135–1143. [Google Scholar] [CrossRef] [Green Version]
- Pan, K.; Ohnuma, K.; Morimoto, C.; Dang, N.H. CD26/Dipeptidyl Peptidase IV and Its Multiple Biological Functions. Cureus 2021, 13, e13495. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu. Rev. Med. 2006, 57, 265–281. [Google Scholar] [CrossRef] [Green Version]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Kawakita, E.; Koya, D.; Kanasaki, K. CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers 2021, 13, 2191. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.; Foo, D.C.; Wong, C.K.; Man, A.T.; Lo, O.S.; Law, W.L. Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study. Cancers 2021, 13, 3588. [Google Scholar] [CrossRef] [PubMed]
- Cordero, O.J.; Salgado, F.J.; Nogueira, M. On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother. 2009, 58, 1723–1747. [Google Scholar] [CrossRef]
- Nargis, T.; Chakrabarti, P. Significance of circulatory DPP4 activity in metabolic diseases. IUBMB Life 2018, 70, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Proost, P.; Mahieu, F.; Schutyser, E.; Van Damme, J. Posttranslational processing of chemokines. Methods Mol. Biol. 2003, 239, 27–44. [Google Scholar]
- Zabel, B.A.; Zuniga, L.; Ohyama, T.; Allen, S.J.; Cichy, J.; Handel, T.M.; Butcher, E.C. Chemoattractants, extracellular proteases, and the integrated host defense response. Exp. Hematol. 2006, 34, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Strieter, R.M.; Belperio, J.A.; Burdick, M.D.; Sharma, S.; Dubinett, S.M.; Keane, M.P. CXC chemokines: Angiogenesis, immunoangiostasis, and metastases in lung cancer. Ann. N. Y. Acad. Sci. 2004, 1028, 351–360. [Google Scholar] [CrossRef] [PubMed]
- De Zutter, A.; Struyf, S.; Van Damme, J. The role of post-translational modifications of chemokines by CD26 in cancer. Cancers 2021, 13, 4247. [Google Scholar] [CrossRef]
- Nishina, S.; Hino, K. CD26/DPP4 as a therapeutic target in hepatocellular carcinoma. Cancers 2022, 14, 454. [Google Scholar] [CrossRef]
- Wilson, A.L.; Moffitt, L.R.; Wilson, K.L.; Bilandzic, M.; Wright, M.D.; Gorrell, M.D.; Oehler, M.K.; Plebanski, M.; Stephens, A.N. DPP4 Inhibitor Sitagliptin Enhances Lymphocyte Recruitment and Prolongs Survival in a Syngeneic Ovarian Cancer Mouse Model. Cancers 2021, 13, 487. [Google Scholar] [CrossRef]
- Henderson, J.M.; Xiang, M.S.W.; Huang, J.C.; Wetzel, S.; Jiang, L.; Lai, J.H.; Wu, W.; Kench, J.G.; Bachovchin, W.W.; Roediger, B.; et al. Dipeptidyl Peptidase Inhibition Enhances CD8 T Cell Recruitment and Activates Intrahepatic Inflammasome in a Murine Model of Hepatocellular Carcinoma. Cancers 2021, 13, 5495. [Google Scholar] [CrossRef]
- Bailey, S.R.; Nelson, M.H.; Majchrzak, K.; Bowers, J.S.; Wyatt, M.M.; Smith, A.S.; Neal, L.R.; Shirai, K.; Carpenito, C.; June, C.H.; et al. Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nat. Commun. 2017, 8, 1961. [Google Scholar] [CrossRef] [Green Version]
- Cordero, O.J.; Rafael-Vidal, C.; Varela-Calviño, R.; Calviño-Sampedro, C.; Malvar-Fernández, B.; García, S.; Viñuela, J.E.; Pego-Reigosa, J.M. Distinctive CD26 Expression on CD4 T-Cell Subsets. Biomolecules 2021, 11, 1446. [Google Scholar] [CrossRef]
- Nelson, M.H.; Knochelmann, H.M.; Bailey, S.R.; Huff, L.W.; Bowers, J.S.; Majchrzak-Kuligowska, K.; Wyatt, M.M.; Rubinstein, M.P.; Mehrotra, S.; Nishimura, M.I.; et al. Identification of human CD4+ T cell populations with distinct antitumor activity. Sci. Adv. 2020, 6, eaba7443. [Google Scholar] [CrossRef]
- Varela-Calviño, R.; Rodríguez-Quiroga, M.; Dias-Carvalho, P.; Martins, F.D.; Serra-Roma, A.; Vázquez-Iglesias, L.; Páez de la Cadena, M.P.; Velho, S.; Cordero, O.J. The mechanism of sitagliptin inhibition of colorectal cancer cell lines’ metastatic functionalities. IUBMB Life 2021, 73, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Gloghini, A.; Zagonel, V.; Aldinucci, D.; Gattei, V.; Degan, M.; Improta, S.; Sorio, R.; Monfardini, S.; Pinto, A. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood 1995, 12, 4617–4626. [Google Scholar] [CrossRef] [Green Version]
- Chitadze, G.; Wehkamp, U.; Janssen, O.; Brüggemann, M.; Lettau, M. The Serine Protease CD26/DPP4 in Non-Transformed and Malignant T Cells. Cancers 2021, 13, 5947. [Google Scholar] [CrossRef] [PubMed]
- Sicuranza, A.; Raspadori, D.; Bocchia, M. CD26/DPP-4 in Chronic Myeloid Leukemia. Cancers 2022, 14, 891. [Google Scholar] [CrossRef] [PubMed]
- Iwata, S.; Morimoto, C. CD26/dipeptidyl peptidase IV in context. The different roles of a multifunctional ectoenzyme in malignant transformation. J. Exp. Med. 1999, 190, 301–306. [Google Scholar] [CrossRef]
- Chen, W.-T.; Kelly, T. Seprase complexes in cellular invasiveness. Cancer Metastasis Rev. 2003, 22, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.A.; Ohnuma, K.; Abe, M.; Morimoto, C.; Dang, N.H. CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders. Mini Rev. Med. Chem. 2007, 7, 253–273. [Google Scholar] [CrossRef] [PubMed]
- Werb, Z. ECM and cell surface proteolysis: Regulating cellular ecology. Cell 1997, 91, 439–442. [Google Scholar] [CrossRef] [Green Version]
- Pang, R.; Law, W.L.; Chu, A.C.; Poon, J.T.; Lam, C.S.; Chow, A.K.; Ng, L.; Cheung, L.W.; Lan, X.R.; Lan, H.Y.; et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell. Stem Cell. 2010, 6, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Komiya, E.; Ohnuma, K.; Yamazaki, H.; Hatano, R.; Iwata, S.; Okamoto, T.; Dang, N.H.; Yamada, T.; Morimoto, C. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells. Biochem. Biophys. Res. Commun. 2014, 447, 609–615. [Google Scholar] [CrossRef]
- Siddique, H.R.; Saleem, M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: Preclinical and clinical evidences. Stem Cells 2012, 30, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.L. Regulatory T cell subsets in human cancer: Are they regulating for or against tumor progression? Cancer Immunol. Immunother. 2013, 63, 67–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, K.; Kijima, T.; Okada, M.; Morise, M.; Kato, M.; Hirano, K.; Fujimoto, N.; Takenoyama, M.; Yokouchi, H.; Ohe, Y.; et al. Phase 2 Study of YS110, a Recombinant Humanized Anti-CD26 Monoclonal Antibody, in Japanese Patients with Advanced Malignant Pleural Mesothelioma. JTO Clin. Res. Rep. 2021, 2, 100178. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Hatano, R.; Hirota, N.; Isambert, N.; Trillet-Lenoir, V.; You, B.; Alexandre, J.; Zalcman, G.; Valleix, F.; Podoll, T.; et al. Serum soluble CD26/DPP4 titer variation is a potential prognostic biomarker in cancer therapy with a humanized anti-CD26 antibody. Biomark. Res. 2021, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Busek, P.; Duke-Cohan, J.S.; Sedo, A. Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers 2022, 14, 2072. [Google Scholar] [CrossRef]
- Cordero, O.J.; Viéitez, I.; Altabás, I.; Nuño-Nuño, L.; Villalba, A.; Novella-Navarro, M.; Peiteado, D.; Miranda-Carús, M.-E.; Balsa, A.; Varela-Calviño, R.; et al. Study of Plasma Anti-CD26 Autoantibody Levels in a Cohort of Treatment-Naïve Early Arthritis Patients. Arch. Immunol. Ther. Exp. 2022, 70, 1–9. [Google Scholar] [CrossRef]
- De Chiara, L.; Páez de la Cadena, M.P.; Rodríguez-Berrocal, J.; Alvarez-Pardiñas, M.C.; Pardiñas-Añón, M.C.; Varela-Calviño, R.; Cordero, O.J. CD26-Related Serum Biomarkers: sCD26 Protein, DPP4 Activity, and Anti-CD26 Isotype Levels in a Colorectal Cancer-Screening Context. Dis. Markers 2020, 2020, 4347936. [Google Scholar] [CrossRef] [Green Version]
- Iwaki-Egawa, S.; Watanabe, Y.; Kikuya, Y.; Fujimoto, Y. Dipeptidyl peptidase IV from human serum: Purification, characterization, and N-terminal amino acid sequence. J. Biochem. 1998, 124, 428–433. [Google Scholar] [CrossRef]
- De Chiara, L.; Barcia-Castro, L.; Gallardo-Gómez, M.; Páez de la Cadena, M.; Martínez-Zorzano, V.S.; Rodríguez-Berrocal, F.J.; Bujanda, L.; Etxart, A.; Castells, A.; Balaguer, F.; et al. Evaluation of Blood Soluble CD26 as a Complementary Biomarker for Colorectal Cancer Screening Programs. Cancers 2022, 14, 4563. [Google Scholar] [CrossRef]
- White, M.J.; Chinea, L.E.; Pilling, D.; Gomer, R.H. Protease activated-receptor 2 is necessary for neutrophil chemorepulsion induced by trypsin, tryptase, or dipeptidyl peptidase IV. J. Leukoc. Biol. 2017, 103, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Ghorpade, D.S.; Ozcan, L.; Zheng, Z.; Nicoloro, S.M.; Shen, Y.; Chen, E.; Blüher, M.; Czech, M.P.; Tabas, I. Hepatocyte-secreted DPP4 in obesity promotes adipose inflammation and insulin resistance. Nature 2018, 555, 673–677. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gronow, M.; Kaczowka, S.; Gawdi, G.; Pizzo, S.V. Dipeptidyl peptidase IV (DPP IV/CD26) is a cell-surface plasminogen receptor. Front. Biosci. 2008, 13, 1610–1618. [Google Scholar] [CrossRef] [PubMed]
- Clanchy, F.I.L.; Huang, Y.-S.; Ogbechi, J.; Darlington, L.G.; Williams, R.O.; Stone, T.W. Induction of IDO1 and Kynurenine by Serine Proteases Subtilisin, Prostate Specific Antigen, CD26 and HtrA: A New Form of Immunosuppression? Front. Immunol. 2022, 13, 832989. [Google Scholar] [CrossRef] [PubMed]
- Uehara, A.; Iwashiro, A.; Sato, T.; Yokota, S.; Takada, H. Antibodies to proteinase 3 prime human monocytic cells via protease-activated receptor-2 and NF-kappaB for Toll-like receptor- and NOD-dependent activation. Mol. Immunol. 2007, 44, 3552–3562. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.; Wong, S.K.; Huang, Z.; Lam, C.S.; Chow, A.K.; Foo, D.C.; Lo, O.S.; Pang, R.W.; Law, W.L. CD26 Induces Colorectal Cancer Angiogenesis and Metastasis through CAV1/MMP1 Signaling. Int. J. Mol. Sci. 2022, 23, 1181. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, J.; Li, X.; Tian, R.; Shang, K.; Dong, X.; Cao, B. Angiogenesis is promoted by exosomal DPP4 derived from 5-fluorouracil-resistant colon cancer cells. Cancer Lett. 2021, 49, 190–201. [Google Scholar] [CrossRef]
- Yip, H.-K.; Lee, M.S.; Li, Y.-C.; Shao, P.-L.; Chiang, J.Y.; Sung, P.-H.; Yang, C.-H.; Chen, K.-H. Dipeptidyl Peptidase-4 deficiency effectively protects the brain and neurological function in rodent after acute Hemorrhagic Stroke. Int. J. Biol. Sci. 2020, 16, 3116–3132. [Google Scholar] [CrossRef]
- Manocha, E.; Bugatti, A.; Belleri, M.; Zani, A.; Marsico, S.; Caccuri, F.; Presta, M.; Caruso, A. Avian Reovirus P17 Suppresses Angiogenesis by Promoting DPP4 Secretion. Cells 2021, 10, 259. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.; Xia, H.; Yu, L.; Hu, Z. Vildagliptin and G-CSF Improved Angiogenesis and Survival after Acute Myocardial Infarction. Arch. Med. Res. 2019, 50, 133–141. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cordero, O.J. CD26 and Cancer. Cancers 2022, 14, 5194. https://doi.org/10.3390/cancers14215194
Cordero OJ. CD26 and Cancer. Cancers. 2022; 14(21):5194. https://doi.org/10.3390/cancers14215194
Chicago/Turabian StyleCordero, Oscar J. 2022. "CD26 and Cancer" Cancers 14, no. 21: 5194. https://doi.org/10.3390/cancers14215194
APA StyleCordero, O. J. (2022). CD26 and Cancer. Cancers, 14(21), 5194. https://doi.org/10.3390/cancers14215194