Precision Medicine in the Treatment of Locally Advanced or Metastatic Urothelial Cancer: New Molecular Targets and Pharmacological Therapies
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Urothelial Cancer
1.2. Risks Factors
1.3. Precision Oncology in Urothelial Cancer
2. Immunotherapy
2.1. Atezolizumab
2.2. IMvigor211
2.3. IMvigor130
2.4. IMvigor210
2.5. Avelumab
2.6. Nivolumab
2.7. CA209275
2.8. CA209032
2.9. CA209274
2.10. Pembrolizumab
2.11. KEYNOTE-045
2.12. KEYNOTE-052
2.13. KEYNOTE-361
3. Antibody-Drug Conjugates
3.1. Enfortumab Vedotin
3.2. EV-301
3.3. EV-201
3.4. Sacituzumab Govitecan
3.5. Trophy
4. Conclusions
Funding
Authors Contributions
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer, J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Dobruch, J.; Daneshmand, S.; Fisch, M.; Lotan, Y.; Noon, A.P.; Resnick, M.J.; Shariat, S.F.; Zlotta, A.R.; Boorjian, S.A. Gender and Bladder Cancer: A Collaborative Review of Etiology, Biology, and Outcomes. Eur. Urol. 2016, 69, 300–310. [Google Scholar] [CrossRef]
- Andreassen, B.K.; Grimsrud, T.K.; Haug, E.S. Bladder cancer survival: Women better off in the long run. Eur. J. Cancer 2018, 95, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Tracey, E.; Roder, D.; Luke, C.; Bishop, J. Bladder cancer survivals in New South Wales, Australia: Why do women have poorer survival than men? Br. J. Urol. 2009, 104, 498–504. [Google Scholar] [CrossRef]
- Garg, T.; Pinheiro, L.C.; Atoria, C.L.; Donat, S.; Weissman, J.S.; Herr, H.W.; Elkin, E.B. Gender Disparities in Hematuria Evaluation and Bladder Cancer Diagnosis: A Population Based Analysis. J. Urol. 2014, 192, 1072–1077. [Google Scholar] [CrossRef]
- Marks, P.; Soave, A.; Shariat, S.F.; Fajkovic, H.; Fisch, M.; Rink, M. Female with bladder cancer: What and why is there a difference? Transl. Androl. Urol. 2016, 5, 668–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyazaki, J.; Nishiyama, H. Epidemiology of urothelial carcinoma. Int. J. Urol. 2017, 24, 730–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuasa, T.; Urakami, S.; Yonese, J. Recent advances in medical therapy for metastatic urothelial cancer. Int. J. Clin. Oncol. 2018, 23, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Quintens, H.; Roupret, M.; Larré, S.; Neuzillet, Y.; Pignot, G.; Compérat, E.; Wallerand, H.; Houédé, N.; Roy, C.; Soulié, M.; et al. Radiochimiothérapie pour le traitement des cancers de vessie infiltrant le muscle: Modalités, surveillance et résultats. Mise Au Point Du Com. De Cancérologie De L’association Française D’urologie 2012, 22, 13–16. [Google Scholar] [CrossRef]
- Colin, P.; Koenig, P.; Ouzzane, A.; Berthon, N.; Villers, A.; Biserte, J.; Roupret, M. Environmental factors involved in car-cinogenesis of urothelial cell carcinomas of the upper urinary tract. BJU Int. 2009, 104, 1436–1440. [Google Scholar] [CrossRef]
- Pommer, W.; Bronder, E.; Klimpel, A.; Helmert, U.; Greiser, E.; Molzahn, M. Urothelial cancer at different tumour sites: Role of smoking and habitualintake of analgesics and laxatives. Results of the Berlin Urothelial Cancer Study. Nephrol. Dial. Transplant. 1999, 14, 2892–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaughlin, J.K.; Silverman, D.T.; Hsing, A.W.; Ross, R.K.; Schoenberg, J.B.; Yu, M.C.; Stemhagen, A.; Lynch, C.F.; Blot, W.J.; Fraumeni, J.F. Cigarette smoking and can-cers of the renal pelvis and ureter. Cancer Res. 1992, 52, 254–257. [Google Scholar] [PubMed]
- Borzym-Kluczyk, M.; Radziejewska, I.; Zaniewska, A.; Borzym-Lewszuk, A.; Szajda, S.; Knaś, M.; Zwierz, K.; Darewicz, B. Effect of smokingon activity of N-acetyl-beta-hexosaminidase in serum and urine of renal can-cer patients. Clin. Biochem. 2009, 42, 1565–1567. [Google Scholar]
- Freedman, N.D.; Silverman, D.T.; Hollenbeck, A.R.; Schatzkin, A.; Abnet, C.C. Association between smoking and risk of bladder cancer among men andwomen. JAMA 2011, 306, 737–745. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.; Rota, M.; Catto, J.W.; La Vecchia, C. The role of tobaccosmoke in bladder and kidney carcinogenesis: A com-parison of exposuresand meta-analysis of incidence and mortality risks. Eur. Urol. 2016, 70, 458–466. [Google Scholar] [CrossRef] [Green Version]
- Pietzak, E.J.; Mucksavage, P.; Guzzo, T.J.; Malkowicz, S.B. Heavy cigarette smoking and aggressive bladder cancer at initial presen-tation. Urology 2015, 86, 968–972. [Google Scholar] [CrossRef]
- Grollman, A.P.; Shibutani, S.; Moriya, M.; Miller, F.; Wu, L.; Moll, U.; Suzuki, N.; Fernandes, A.; Rosenquist, T.; Medverec, Z.; et al. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc. Natl. Acad. Sci. USA 2007, 104, 12129–12134. [Google Scholar] [CrossRef] [Green Version]
- Nortier, J.L.; Martinez, M.-C.M.; Schmeiser, H.H.; Arlt, V.M.; Bieler, C.A.; Petein, M.; Depierreux, M.F.; De Pauw, L.; Abramowicz, D.; Vereerstraeten, P.; et al. Urothelial Carcinoma Associated with the Use of a Chinese Herb (Aristolochia fangchi). N. Engl. J. Med. 2000, 342, 1686–1692. [Google Scholar] [CrossRef] [Green Version]
- Naito, S.; Tanaka, K.; Koga, H.; Kotoh, S.; Hirohata, T.; Kumazawa, J. Cancer occurrence among dyestuff workers exposed to aro-matic amines. A Long Term Follow-up Study. Cancer 1995, 76, 1445–1452. [Google Scholar] [CrossRef]
- Gylling, A.H.; Nieminen, T.T.; Abdel-Rahman, W.M. Differential cancer pre-disposition in Lynch syndrome: Insights from molec-ular analysis of brain andurinary tract tumors. Carcinogenesis 2008, 29, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Gill, D.; Poole, A.; Agarwal, N. Systemic Immunotherapy for Urothelial Cancer: Current Trends and Future Directions. Cancers 2017, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xu, L.; Zhang, X.; Pang, L.; Long, Z.; Deng, C.; Zhu, J.; Zhou, S.; Wan, L.; Pang, B.; et al. Systematic Assessment of Transcriptomic Biomarkers for Immune Checkpoint Blockade Response in Cancer Immunotherapy. Cancers 2021, 13, 1639. [Google Scholar] [CrossRef] [PubMed]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front. Pharmacol. 2017, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Durán, I.; Van Der Heijden, M.S.; Loriot, Y.; Vogelzang, N.J.; De Giorgi, U.; Oudard, S.; Retz, M.M.; Castellano, D.; Bamias, A.; et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018, 391, 748–757. [Google Scholar] [CrossRef]
- van der Heijden, M.S.; Loriot, Y.; Durán, I.; Ravaud, A.; Retz, M.; Vogelzang, N.J.; Nelson, B.; Wang, J.; Shen, X.; Powles, T. Atezolizumab Versus Chemotherapy in Patients with Platinum-treated Locally Advanced or Metastatic Urothelial Carcinoma: A Long-term Overall Survival and Safety Update from the Phase 3 IMvigor211 Clinical Trial. Eur. Urol. 2021, 80, 7–11. [Google Scholar] [CrossRef]
- Galsky, M.D.; Arija, J.Á.A.; Bamias, A.; Davis, I.D.; De Santis, M.; Kikuchi, E.; Garcia-Del-Muro, X.; De Giorgi, U.; Mencinger, M.; Izumi, K.; et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): A multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2020, 395, 1547–1557. [Google Scholar] [CrossRef]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef] [Green Version]
- Powles, T.; Park, S.H.; Voog, E.; Caserta, C.; Valderrama, B.P.; Gurney, H.; Kalofonos, H.; Radulović, S.; Demey, W.; Ullén, A.; et al. Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N. Engl. J. Med. 2020, 383, 1218–1230. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.-O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Sharma, P.; Callahan, M.K.; Bono, P.; Kim, J.; Spiliopoulou, P.; Calvo, E.; Pillai, R.N.A.; Ott, P.; de Braud, F.; Morse, M.; et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): A multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 2016, 17, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Siefker-Radtke, A.; De Braud, F.; Basso, U.; Calvo, E.; Bono, P.; Morse, M.A.; Ascierto, P.A.; Lopez-Martin, J.; Brossart, P.; et al. Nivolumab Alone and With Ipilimumab in Previously Treated Metastatic Urothelial Carcinoma: CheckMate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg Expansion Cohort Results. J. Clin. Oncol. 2019, 37, 1608–1616, Erratum in J. Clin. Oncol. 2019, 37, 2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef]
- Bellmunt, J.; De Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.-L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Balar, A.V.; Castellano, D.; O’Donnell, P.H.; Grivas, P.; Vuky, J.; Powles, T.; Plimack, E.R.; Hahn, N.M.; de Wit, R.; Pang, L.; et al. First-line pembrolizumab in cisplatin-ineligible patients with locally advanced and unresectable or metastatic urothelial cancer (KEYNOTE-052): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017, 18, 1483–1492. [Google Scholar] [CrossRef]
- Powles, T.; Csőszi, T.; Özgüroğlu, M.; Matsubara, N.; Géczi, L.; Cheng, S.Y.-S.; Fradet, Y.; Oudard, S.; Vulsteke, C.; Barrera, R.M.; et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): A randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 931–945. [Google Scholar] [CrossRef]
- Mollica, V.; Rizzo, A.; Montironi, R.; Cheng, L.; Giunchi, F.; Schiavina, R.; Santoni, M.; Fiorentino, M.; Lopez-Beltran, A.; Brunocilla, E.; et al. Current Strategies and Novel Therapeutic Approaches for Metastatic Urothelial Carcinoma. Cancers 2020, 12, 1449. [Google Scholar] [CrossRef]
- Lattanzi, M.; Rosenberg, J.E. The emerging role of antibody-drug conjugates in urothelial carcinoma. Expert Rev. Anticancer Ther. 2020, 20, 551–561. [Google Scholar] [CrossRef]
- Jeong, W.J.; Bu, J.; Kubiatowicz, L.J.; Chen, S.S.; Kim, Y.S.; Hong, S. Peptide–nanoparticle conjugates: A next generation of diagnostic and therapeutic platforms? Nano Converg. 2018, 5, 38. [Google Scholar] [CrossRef]
- Tong, J.T.W.; Harris, P.W.R.; Brimble, M.A.; Kavianinia, I. An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules 2021, 26, 5847. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer (accessed on 1 September 2022).
- Food and Drug Administration. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-sacituzumab-govitecan-triple-negative-breast-cancer (accessed on 1 September 2022).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory/marketing-authorisation (accessed on 1 September 2022).
- Tang, Y.; Tang, F.; Yang, Y.; Zhao, L.; Zhou, H.; Dong, J. Realtime analysis on drug-antibody ratio of antibody–drug conjugates for synthesis, process optimization, and quality control. Sci. Rep. 2017, 7, 7763. [Google Scholar]
- Sigorski, D.; Różanowski, P.; Iżycka-Świeszewska, E.; Wiktorska, K. Antibody–Drug Conjugates in Uro-Oncology. Target. Oncol. 2022, 17, 203–221. [Google Scholar] [CrossRef] [PubMed]
- Sarfaty, M.; Rosenberg, J.E. Antibody-Drug Conjugates in Urothelial Carcinomas. Curr. Oncol. Rep. 2020, 22, 1–8. [Google Scholar] [CrossRef]
- Yu, E.Y.; Petrylak, D.P.; O’Donnell, P.H.; Lee, J.-L.; van der Heijden, M.S.; Loriot, Y.; Stein, M.N.; Necchi, A.; Kojima, T.; Harrison, M.R.; et al. Enfortumab vedotin after PD-1 or PD-L1 inhibitors in cisplatin-ineligible patients with advanced urothelial carcinoma (EV-201): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 872–882. [Google Scholar] [CrossRef]
- Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.-L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; et al. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Balar, A.V.; Petrylak, D.P.; Kalebasty, A.R.; Loriot, Y.; Fléchon, A.; Jain, R.K.; Agarwal, N.; Bupathi, M.; Barthelemy, P.; et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. J. Clin. Oncol. 2021, 39, 2474–2485. [Google Scholar] [CrossRef] [PubMed]
- Ocean, A.J.; Starodub, A.N.; Bardia, A.; Vahdat, L.T.; Isakoff, S.J.; Guarino, M.; Messersmith, W.A.; Picozzi, V.J.; Mayer, I.A.; Wegener, W.A.; et al. Sacituzumab govitecan (IMMU-132), an anti-Trop-2-SN-38 antibody-drug conjugate for the treatment of diverse epithelial cancers: Safety and pharmacokinetics. Cancer 2017, 123, 3843–3854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, F.; Santilli, P.; Vitiello, A.; Forte, G.; D’Aiuto, V. Logistics management provides greater efficiency, governance and compliance. Int. J. Clin. Pharm. 2021, 43, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Zovi, A.; Musazzi, U.M.; D’Angelo, C.; Piacenza, M.; Vimercati, S.; Cilurzo, F. Medicines shortages and the perception of Healthc. professionals working in hospitals: An Italian case study. J. Interprofessional Educ. Pr. 2021, 25, 100472. [Google Scholar] [CrossRef]
- Ferrara, F.; Nava, L.; Trama, U.; Nava, E.; Vitiello, A. The Slow Path to Therapeutic Adherence. Hosp. Pharm. 2022, 57, 593–595. [Google Scholar] [CrossRef] [PubMed]
Drug and Study. | Posology | Indication | CT Phase | Design | Arms | n | Primary Endpoint | Control Group | PD Cutoff | Results |
---|---|---|---|---|---|---|---|---|---|---|
Atezolizumab IMvigor211 | 1200 mg every 3 weeks | Second line after Pt or first line in the ineligible patients | III | Open Label | 2 | 931 | OS | Chemotherapy (vinflunine or docetaxel or paclitaxel) | ≥5% ≥1% | At 30 months 18.1 % Atezolizumab, 9.8% control |
(A) Atezolizumab + Cisplatin IMvigor130 | 1200 mg every 3 weeks + chemotherapy | First line | III | Medley | 3 | 1213 | OS, PFS | (B) Atezolizumab alone, (C) Placebo + platinum based chemotherapy | ≥5% ≥1% | PFS: A = 8.2 months, C = 6.3 months OS: A = 16 months, C = 13.4 months |
Atezolizumab IMvigor210 cohort 1 | 1200 mg every 3 weeks | First line | II | - | 1 | 119 | ORR | - | ≥5% ≥1% | At 17.2 months of follow up ORR in the 23% of patients |
Atezolizumab IMvigor210 cohort 2 | 1200 mg every 3 weeks until progression | Second line after Pt | II | - | 1 | 310 | ORR and immune modified RECIST | Historical control ORR = 10% | ≥5% ≥1% | At 21.1 months ORR = 28% in PD-L1 ≥ 5% and 19.3% in PD-L1 ≥ 1% |
Avelumab B9991001 | At a dosage of 10 mg/kg of body weight every 2 weeks | Maintenance of Platinum-based chemotherapy | III | Open Label | 2 | 700 | OS | BSC | PD-L1 positive | At 12 months OS Avelumab = 71.3%, OS BSC = 58.4% |
Nivolumab CA209275 | 3 mg/kg | Progressive during or after platinum therapy | II | - | 1 | 270 | ORR | Historical control ORR = 10% | ≥5% ≥1% | At a minimum follow-up of 6 months ORR: PD-L1 ≥ 5 28%, PD-L1 ≥ 1% 23.8%, PD-L1 < 1% 16% |
Nivolumab CA209032 | 3 mg/kg every 2 weeks until progression | Second line | I/II | - | 1 | 78 | ORR | - | ≥1% | At a minimum follow-up of 9 months ORR in 19 patients out of 78 |
Nivolumab CA209274 | 3 mg/kg | After surgical resection | III | Double Blind | 2 | 709 | DFS | Placebo | ≥1% | 20.8 months Nivolumab, 10.8 placebo |
Pembrolizumab KEYNOTE-045 | 200 mg every 3 weeks or chemotherapy | Second line after Pt | III | Open Label | 2 | 542 | OS, PFS | Chemotherapy (vinflunine or docetaxel or paclitaxel) | ≥10% | OS in all population 10.3 months in Pembrolizumab, 7.4 months in control arm OS in PD-L1 ≥ 10% respectively 8 e 5.2 months. |
Pembrolizumab KEYNOTE-052 | 200 mg every 3 weeks | First line | II | - | 1 | 374 | OR | - | ≥10% | 89 (24%, 95% CI 20–29) of 370 patients had a centrally assessed OR |
(A) Pembrolizumab + chemotherapy KEYNOTE-361 | 200 mg every 3 weeks or 200 mg every 3 weeks+chemotherapy or chemotherapy alone | First line | III | Open Label | 3 | 1010 | OS, PFS | (B) Pembrolizumab alone, (C) Chemotherapy alone | PD-L1 CPS of at least 10 | There were no statistically significant differences |
Enfortumab + chemotherapy EV-301 | 1.25 mg/kg on days 1, 8, and 15 of every 28-day cycle | After previous treatments with platinum-containing chemotherapy and a PD-1 inhibitor/L1 | III | Open Label | 2 | 608 | OS, PFS | Chemotherapy alone | - | OS was longer in the EV group than in the chemotherapy group (12.88 vs. 8.97 months; hazard ratio for death, 0.70; 95% confidence interval [CI], 0.56 to 0.89; p = 0.001). PFS was also longer in the EV group than in the chemotherapy group (5.55 vs. 3.71 months; hazard ratio for progression or death, 0.62; 95% CI, 0.51 to 0.75; p < 0.001) |
Enfortumab EV-201 | 1.25 mg/kg on days 1, 8, and 15 of every 28-day cycle | After previous treatments with platinum-containing chemotherapy and a PD-1 inhibitor/L1 | II | - | 1 | 125 | ORR | - | - | ORR: 52% (95% CI 41–62) |
Sacituzumab TROPHY-U-01 | 10 mg/kg on days 1 and 8 of 21-day cycles | After previous treatments who had progressed after prior PLT and CPI | II | Open Label | 1 | 113 | ORR, OS, PFS | - | - | DOR: 7.2 months (95% CI, 4.7 to 8.6 months); PFS: 5.4 months (95% CI, 3.5 to 7.2 months); OS: 10.9 months (95% CI, 9.0 to 13.8 months) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitiello, A.; Ferrara, F.; Lasala, R.; Zovi, A. Precision Medicine in the Treatment of Locally Advanced or Metastatic Urothelial Cancer: New Molecular Targets and Pharmacological Therapies. Cancers 2022, 14, 5167. https://doi.org/10.3390/cancers14205167
Vitiello A, Ferrara F, Lasala R, Zovi A. Precision Medicine in the Treatment of Locally Advanced or Metastatic Urothelial Cancer: New Molecular Targets and Pharmacological Therapies. Cancers. 2022; 14(20):5167. https://doi.org/10.3390/cancers14205167
Chicago/Turabian StyleVitiello, Antonio, Francesco Ferrara, Ruggero Lasala, and Andrea Zovi. 2022. "Precision Medicine in the Treatment of Locally Advanced or Metastatic Urothelial Cancer: New Molecular Targets and Pharmacological Therapies" Cancers 14, no. 20: 5167. https://doi.org/10.3390/cancers14205167
APA StyleVitiello, A., Ferrara, F., Lasala, R., & Zovi, A. (2022). Precision Medicine in the Treatment of Locally Advanced or Metastatic Urothelial Cancer: New Molecular Targets and Pharmacological Therapies. Cancers, 14(20), 5167. https://doi.org/10.3390/cancers14205167