Effectiveness of Organized Mammography Screening for Different Breast Cancer Molecular Subtypes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. The Inclusion and Exclusion Criteria of the Study Population
2.2. Data Sources
2.3. Outcomes
2.4. Determinants
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Main Findings
4.2. Comparison with Literature
4.3. Strengths and Limitations
4.4. Interpretation of the Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaudet, M.M.; Gierach, G.L.; Carter, B.D.; Luo, J.; Milne, R.L.; Weiderpass, E.; Giles, G.G.; Tamimi, R.M.; Eliassen, A.H.; Rosner, B.; et al. Pooled Analysis of Nine Cohorts Reveals Breast Cancer Risk Factors by Tumor Molecular Subtype. Cancer Res. 2018, 78, 6011–6021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawson, S.J.; Duffy, S.W.; Blows, F.M.; Driver, K.E.; Provenzano, E.; Le Quesne, J.; Greenberg, D.C.; Pharoah, P.; Caldas, C.; Wishart, G.C. Molecular characteristics of screen-detected vs. symptomatic breast cancers and their impact on survival. Br. J. Cancer 2009, 101, 1338–1344. [Google Scholar] [CrossRef] [PubMed]
- Fragomeni, S.M.; Sciallis, A.; Jeruss, J.S. Molecular Subtypes and Local-Regional Control of Breast Cancer. Surg. Oncol. Clin. N. Am. 2018, 27, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Benbrahim-Tallaa, L.; Bouvard, V.; Bianchini, F.; Straif, K. International Agency for Research on Cancer Handbook Working Group. Breast-Cancer Screening—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2015, 372, 2353–2358. [Google Scholar] [CrossRef] [Green Version]
- Marmot, M.; Altman, D.G.; Cameron, D.A.; Dewar, J.A.; Thompson, S.G.; Wilcox, M. The benefits and harms of breast cancer screening: An independent review. Lancet 2012, 380, 1778–1786. [Google Scholar] [CrossRef] [Green Version]
- Myers, E.R.; Moorman, P.; Gierisch, J.M.; Havrilesky, L.J.; Grimm, L.J.; Ghate, S.; Davidson, B.; Mongtomery, R.C.; Crowley, M.J.; McCrory, D.C.; et al. Benefits and harms of breast cancer screening: A systematic re-view. JAMA J. Am. Med. Assoc. 2015, 314, 1615–1634. [Google Scholar] [CrossRef]
- Jatoi, I.; Miller, A.B. Why is breast-cancer mortality declining? Lancet Oncol. 2003, 4, 251–254. [Google Scholar] [CrossRef]
- Saadatmand, S.; Bretveld, R.; Siesling, S.; Tilanus-Linthorst, M.M.A. Influence of tumour stage at breast cancer detection on survival in modern times: Population based study in 173,797 patients. BMJ 2015, 351, h4901. [Google Scholar] [CrossRef] [Green Version]
- Hofvind, S.; Sagstad, S.; Sebuødegård, S.; Chen, Y.; Roman, M.; Lee, C.I. Interval Breast Cancer Rates and Histopathologic Tumor Characteristics after False-Positive Findings at Mammography in a Population-based Screening Program. Radiology 2018, 287, 58–67. [Google Scholar] [CrossRef]
- Román, M.; Hofvind, S.; von Euler-Chelpin, M.; Castells, X. Long-term risk of screen-detected and interval breast cancer after false-positive results at mammography screening: Joint analysis of three national cohorts. Br. J. Cancer 2018, 120, 269–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, X.; Chen, A.; Bai, Z. Integrative investigation on breast cancer in ER, PR and HER2-defined subgroups using mRNA and miRNA expression profiling. Sci. Rep. 2014, 4, 6566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo, L.; Salas, D.; Zubizarreta, R.; Baré, M.; Sarriugarte, G.; Barata, T.; Ibáñez, J.; Blanch, J.; Puig-Vives, M.; Fernández, A.; et al. Tumor phenotype and breast density in distinct categories of interval cancer: Results of population-based mammography screening in Spain. Breast Cancer Res. 2014, 16, R3. [Google Scholar] [CrossRef] [Green Version]
- Niraula, S.; Biswanger, N.; Hu, P.; Lambert, P.; Decker, K. Incidence, Characteristics, and Outcomes of Interval Breast Cancers Compared With Screening-Detected Breast Cancers. JAMA Netw. Open 2020, 3, e2018179. [Google Scholar] [CrossRef] [PubMed]
- Sihto, H.; Lundin, J.; Lehtimäki, T.; Sarlomo-Rikala, M.; Bützow, R.; Holli, K.; Sailas, L.; Kataja, V.; Lundin, M.; Turpeenniemi-Hujanen, T.; et al. Molecular subtypes of breast cancers detected in mammography screening and outside of screening. Clin. Cancer Res. 2008, 14, 4103–4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, K.M.; Mooney, T.; Fitzpatrick, P.; Sharp, L. Screening status, tumour subtype, and breast cancer survival: A national population-based analysis. Breast Cancer Res. Treat. 2018, 172, 133–142. [Google Scholar] [CrossRef]
- Perry, N.; Broeders, M.; de Wolf, C.; Törnberg, S.; Holland, R.; von Karsa, L. European guidelines for quality assurance in breast cancer screening and diagnosis. Fourth edition—Summary document. Ann. Oncol. 2008, 19, 614–622. [Google Scholar] [CrossRef]
- Duffy, S.W.; Tabár, L.; Yen, A.M.; Dean, P.B.; Smith, R.A.; Jonsson, H.; Törnberg, S.; Chen, S.L.; Chiu, S.Y.; Fann, J.C.; et al. Mammography screening reduces rates of advanced and fatal breast cancers: Results in 549,091 women. Cancer 2020, 126, 2971–2979. [Google Scholar] [CrossRef]
- de Munck, L.; Fracheboud, J.; de Bock, G.H.; den Heeten, G.J.; Siesling, S.; Broeders, M.J.M. Is the incidence of advanced-stage breast cancer affected by whether women attend a steady-state screening program? Int. J. Cancer 2018, 143, 842–850. [Google Scholar] [CrossRef] [Green Version]
- Duffy, S.W.; Tabár, L.; Yen, A.M.; Dean, P.B.; Smith, R.A.; Jonsson, H.; Törnberg, S.; Chiu, S.Y.; Chen, S.L.; Jen, G.H.; et al. Beneficial Effect of Consecutive Screening Mammography Examinations on Mortality from Breast Cancer: A Prospective Study. Breast Imaging 2021, 299, 541–547. [Google Scholar] [CrossRef]
- Choi, K.S.; Yoon, M.; Song, S.H.; Suh, M.; Park, B.; Jung, K.W.; Jun, J.K. Effect of mammography screening on stage at breast cancer diagnosis: Results from the Korea National Cancer Screening Program. Sci Rep. 2018, 8, 8882. [Google Scholar] [CrossRef] [PubMed]
- Goossens, M.; De Brabander, I.; De Grève, J.; Van Ongeval, C.; Martens, P.; Van Limbergen, E.; Kellen, E. Flemish breast cancer screening programme: 15 years of key performance indicators (2002–2016). BMC Cancer. 2019, 19, 1012. [Google Scholar] [CrossRef] [PubMed]
- de Gelder, R.; Heijnsdijk, E.A.; van Ravesteyn, N.T.; Fracheboud, J.; Draisma, G.; de Koning, H.J. Interpreting overdiagnosis estimates in population-based mammography screening. Epidemiol. Rev. 2011, 33, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Puliti, D.; Duffy, S.W.; Miccinesi, G.; de Koning, H.; Lynge, E.; Zappa, M.; Paci, E.; Euroscreen Working Group. Overdiagnosis in mammographic screening for breast cancer in Europe: A literature review. J. Med. Screen 2012, 19 (Suppl. S1), 42–56. [Google Scholar] [CrossRef] [PubMed]
- Cortet, M.; Bertaut, A.; Molinié, F.; Bara, S.; Beltjens, F.; Coutant, C.; Arveux, P. Trends in molecular subtypes of breast cancer: Description of incidence rates between 2007 and 2012 from three French registries. BMC Cancer 2018, 18, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Awadelkarim, K.D.; Arizzi, C.; Elamin, E.O.; Hamad, H.M.; De Blasio, P.; Mekki, S.O.; Osman, I.; Biunno, I.; Elwali, N.E.; Mariani-Costantini, R.; et al. Pathological, clinical and prognostic characteristics of breast cancer in Central Sudan versus Northern Italy: Implications for breast cancer in Africa. Histopathology 2008, 52, 445–456. [Google Scholar] [CrossRef]
- Puig-Vives, M.; Sánchez, M.J.; Sánchez-Cantalejo, J.; Torrella-Ramos, A.; Martos, C.; Ardanaz, E.; Chirlaque, M.D.; Perucha, J.; Díaz, J.M.; Mateos, A.; et al. Distribution and prognosis of molecular breast cancer subtypes defined by immunohistochemical biomarkers in a Spanish population-based study. Gynecol. Oncol. 2013, 130, 609–614. [Google Scholar] [CrossRef]
- Acheampong, T.; Kehm, R.D.; Terry, M.B.; Argov, E.L.; Tehranifar, P. Incidence Trends of Breast Cancer Molecular Subtypes by Age and Race/Ethnicity in the US From 2010 to 2016. JAMA Netw. Open. 2020, 3, e2013226. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F.; Rosenberg, P.S.; Prat, A.; Perou, C.M.; Sherman, M.E. How many etiological subtypes of breast cancer: Two, three, four, or more? J. Natl. Cancer Inst. 2014, 106, dju165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype. Cancer 2007, 109, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Hikichi, M.; Ushimado, K.; Sugioka, A.; Kiriyama, Y.; Kuroda, M.; Utsumi, T. Differences in subtype distribution between screen-detected and symptomatic invasive breast cancer and their impact on survival. Clin. Transl. Oncol. 2017, 19, 1232–1240. [Google Scholar] [CrossRef]
- Gerdes, M.J.; Sood, A.; Sevinsky, C.; Pris, A.D.; Zavodszky, M.I.; Ginty, F. Emerging Understanding of Multiscale Tumor Heterogeneity. Front Oncol. 2014, 4, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz-Luis, I.; Ottesen, R.A.; Hughes, M.E.; Mamet, R.; Burstein, H.J.; Edge, S.B.; Gonzalez-Angulo, A.M.; Moy, B.; Rugo, H.S.; Theriault, R.L.; et al. Outcomes by tumor subtype and treatment pattern in women with small, node-negative breast cancer: A multi-institutional study. J. Clin. Oncol. 2014, 32, 2142–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colleoni, M.; Sun, Z.; Price, K.N.; Karlsson, P.; Forbes, J.F.; Thürlimann, B.; Gianni, L.; Castiglione, M.; Gelber, R.D.; Coates, A.S.; et al. Annual Hazard Rates of Recurrence for Breast Cancer During 24 Years of Follow-Up: Results From the International Breast Cancer Study Group Trials I to V. J. Clin. Oncol. 2016, 34, 927–935. [Google Scholar] [CrossRef] [Green Version]
- Hennigs, A.; Riedel, F.; Gondos, A.; Sinn, P.; Schirmacher, P.; Marmé, F.; Jäger, D.; Kauczor, H.U.; Stieber, A.; Lindel, K.; et al. Prognosis of breast cancer molecular subtypes in routine clinical care: A large prospective cohort study. BMC Cancer 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jatoi, I.; Anderson, W.F.; Jeong, J.H.; Redmond, C.K. Breast cancer adjuvant therapy: Time to consider its time-dependent effects. J. Clin. Oncol. 2011, 29, 2301–2304. [Google Scholar] [CrossRef]
- Ryu, E.B.; Chang, J.M.; Seo, M.; Kim, S.A.; Lim, J.H.; Moon, W.K. Tumour volume doubling time of molecular breast cancer subtypes assessed by serial breast ultrasound. Eur. Radiol. 2014, 24, 2227–2235. [Google Scholar] [CrossRef]
- Giordano, L.; von Karsa, L.; Tomatis, M.; Majek, O.; de Wolf, C.; Lancucki, L.; Hofvind, S.; Nyström, L.; Segnan, N.; Ponti, A.; et al. Mammographic screening programmes in Europe: Organization, coverage and participation. J. Med. Screen 2012, 19 (Suppl. S1), 72–82. [Google Scholar] [CrossRef]
Overall | Regular Screening Behavior | Age Category at Breast Cancer Diagnosis | |||||
---|---|---|---|---|---|---|---|
Yes | No | 50–54 | 55–59 | 60–64 | 65–71 | ||
All subtypes combined | |||||||
Total N | 12,318 | 3757 | 8561 | 1464 | 3272 | 3410 | 4172 |
Screen detected % | 61.0% | 65.7% | 58.9% | 56.7% | 59.6% | 62.2% | 64.2% |
Early stage (I, II) % * | 87.3% | 88.8% | 86.7% | 87.1% | 87.2% | 87.3% | 87.5% |
Luminal | |||||||
Subtotal N (%) | 8739 (70.9%) | 2741 | 5998 | 1033 | 2274 | 2450 | 2982 |
Screen detected % | 62.9% | 66.6% | 61.2% | 59.2% | 61.2% | 64.5% | 64.2% |
Early stage (I, II) % | 88.7% | 89.8% | 88.3% | 89.4% | 88.9% | 88.0% | 89.0% |
Luminal-HER2-positive | |||||||
Subtotal N (%) | 1386 (11.3%) | 417 | 969 | 165 | 420 | 372 | 429 |
Screen detected % | 56.1% | 66.7% | 51.5% | 50.3% | 53.1% | 56.5% | 60.8% |
Early stage (I, II) % | 81.8% | 87.5% | 79.4% | 75.8% | 80.5% | 85.5% | 82.3% |
HER2 positive | |||||||
Subtotal N (%) | 216 (1.8%) | 65 | 150 | 29 | 52 | 54 | 81 |
Screen detected % | 42.6% | 36.9% | 45.3% | 51.7% | 57.7% | 35.2% | 34.6% |
Early stage (I, II) % | 80.6% | 76.9% | 82.7% | 75.9% | 90.4% | 87.0% | 71.6% |
TNBC | |||||||
Subtotal N (%) | 573 (4.7%) | 175 | 398 | 81 | 146 | 153 | 193 |
Screen detected % | 44.3% | 53.1% | 40.5% | 37.0% | 44.5% | 48.4% | 44.0% |
Early stage (I, II) % | 86.4% | 87.4% | 85.9% | 81.5% | 85.6% | 89.5% | 86.5% |
Unknown molecular type | |||||||
Subtotal N (%) | 1342 (11.4%) | 345 | 997 | 148 | 361 | 363 | 470 |
Screen detected % | 64.1% | 69.6% | 62.2% | 60.1% | 63.7% | 64.2% | 65.5% |
Early stage (I, II) % | 89.3% | 87.8% | 88.6% | 91.9% | 87.3% | 87.6% | 88.7% |
Early Stage | Advanced Stage | OR (95%CI) | |
---|---|---|---|
Total * | |||
Interval | 3864 (82.2%) | 836 (17.8%) | ref |
Screen-detected | 6893 (93.0%) | 522 (7.0%) | 2.86 (2.54–3.21) |
Luminal | |||
Interval | 2664 (83.4%) | 532 (16.6%) | ref |
Screen-detected | 5091 (93.4%) | 360 (6.6%) | 2.82 (2.45–3.26) |
Luminal-HER2-positive | |||
Interval | 454 (76.9%) | 136 (23.1%) | ref |
Screen-detected | 680 (89.2%) | 82 (10.8%) | 2.48 (1.85–3.36) |
HER2 positive | |||
Interval | 95 (79.8%) | 24 (20.2%) | ref |
Screen-detected | 79 (88.8%) | 10 (11.2%) | 2.00 (0.92–4.60) |
TNBC | |||
Interval | 262 (83.7%) | 51 (16.3%) | ref |
Screen-detected | 233 (92.1%) | 20 (7.9%) | 2.27 (1.33–4.00) |
Unknown molecular type | |||
Interval | 389 (80.7%) | 93 (19.3%) | ref |
Screen-detected | 810 (94.2%) | 50 (5.8%) | 3.87 (2.70–5.61) |
Variable | OR (95%CI) | |||||
---|---|---|---|---|---|---|
All | Luminal | Luminal-HER2- Positive | HER2 Positive | TNBC | Unknown Molecular Type | |
Mode of detection | ||||||
Interval | ref | ref | ref | ref | ref | ref |
Screen-detected | 2.84 (2.53–3.20) | 2.82 (2.45–3.25) | 2.39 (1.77–3.24) | 1.79 (0.80–4.24) | 2.29 (1.34–4.05) | 3.95 (2.75–5.73) |
Age at breast cancer diagnosis | ||||||
50–54 | ref | ref | ref | ref | ref | ref |
55–59 | 0.95 (0.78–1.16) | 0.92 (0.71–1.18) | 1.19 (0.73–1.90) | 2.78 (0.67–12.38) | 1.21 (0.55–2.59) | 0.56 (0.26–1.13) |
60–64 | 0.89 (0.72–1.09) | 0.78 (0.61–1.00) | 1.38 (0.83–2.29) | 2.78 (0.67–11.70) | 1.75 (0.75–4.06) | 0.50 (0.23–1.00) |
65–71 | 0.92 (0.75–1.12) | 0.88 (0.68–1.13) | 1.05 (0.63–1.72) | 0.93 (0.25–3.10) | 1.63 (0.71–3.67) | 0.57 (0.26–1.14) |
Screening regularity | ||||||
irregular | ref | ref | ref | ref | ref | ref |
regular | 1.15 (1.00–1.32) | 1.20 (1.01–1.42) | 1.48 (1.02–2.17) | 0.67 (0.28–1.62) | 0.75 (0.41–1.40) | 0.92 (0.61–1.40) |
Molecular Type | Regular Attenders vs. Irregular Attenders OR (95%CI) | |
---|---|---|
Crude | Age-Adjusted | |
Luminal A | 1.26 (1.14–1.38) | 1.21 (1.09–1.34) |
Luminal-HER2-positive | 1.85 (1.46–2.36) | 1.79 (1.38–2.33) |
HER2 positive | 0.64 (0.35–1.16) | 0.95 (0.48–1.89) |
TNBC | 1.64 (1.14–2.35) | 1.62 (1.10–2.41) |
Unknown molecular type | 1.39 (1.07–1.81) | 1.37 (1.05–1.81) |
Total | 1.32 (1.22–1.43) | 1.28 (1.18–1.40) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, L.; Greuter, M.J.W.; Truyen, I.; Goossens, M.; Van der Vegt, B.; De Schutter, H.; Van Hal, G.; de Bock, G.H. Effectiveness of Organized Mammography Screening for Different Breast Cancer Molecular Subtypes. Cancers 2022, 14, 4831. https://doi.org/10.3390/cancers14194831
Ding L, Greuter MJW, Truyen I, Goossens M, Van der Vegt B, De Schutter H, Van Hal G, de Bock GH. Effectiveness of Organized Mammography Screening for Different Breast Cancer Molecular Subtypes. Cancers. 2022; 14(19):4831. https://doi.org/10.3390/cancers14194831
Chicago/Turabian StyleDing, Lilu, Marcel J. W. Greuter, Inge Truyen, Mathijs Goossens, Bert Van der Vegt, Harlinde De Schutter, Guido Van Hal, and Geertruida H. de Bock. 2022. "Effectiveness of Organized Mammography Screening for Different Breast Cancer Molecular Subtypes" Cancers 14, no. 19: 4831. https://doi.org/10.3390/cancers14194831
APA StyleDing, L., Greuter, M. J. W., Truyen, I., Goossens, M., Van der Vegt, B., De Schutter, H., Van Hal, G., & de Bock, G. H. (2022). Effectiveness of Organized Mammography Screening for Different Breast Cancer Molecular Subtypes. Cancers, 14(19), 4831. https://doi.org/10.3390/cancers14194831