Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Risk Stratification to Guide Management
3. Deferring Initiation of Systemic Therapy
3.1. Active Surveillance
3.2. Cytoreductive Nephrectomy Followed by Active Surveillance
3.3. Upfront Metastasis-Directed Therapy
4. Front-Line Systemic Therapy Options
4.1. IO/IO Combination Therapy
4.2. IO/TKI Combination Therapy
5. Factors to Consider with Front-Line Therapy Options
5.1. Opportunity for Multidisciplinary Approach
5.2. Characterization of the Tumor Biology
5.3. Patient Characteristics and Toxicity
5.4. Tumor Burden
5.5. Employing Real-World Evidence in Lieu of Head-to-Head Data
5.6. Can We Consider Ipilimumab/Nivolumab for IMDC Favorable Risk Disease?
5.7. Prior Treatment with IO in the Adjuvant Setting
6. Ongoing Areas of Study within the Front-Line Treatment Paradigm
6.1. Predictive Biomarkers
6.2. Immunomodulation
6.3. Future Therapies and Ongoing Clinical Trials
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Geynisman, D.M.; Maranchie, J.K.; Ball, M.W.; Bratslavsky, G.; Singer, E.A. A 25 year perspective on the evolution and advances in an understanding of the biology, evaluation and treatment of kidney cancer. Urol. Oncol. 2021, 39, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Keith, B.; Johnson, R.S.; Simon, M.C. HIF1alpha and HIF2alpha: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2011, 12, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, M.L.; Jaeger, E.; Shi, Y.; Durocher, J.A.; Mahurkar, S.; Zaridze, D.; Matveev, V.; Janout, V.; Kollarova, H.; Bencko, V.; et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 2008, 14, 4726–4734. [Google Scholar] [CrossRef]
- Tran, J.; Ornstein, M.C. Clinical Review on the Management of Metastatic Renal Cell Carcinoma. JCO Oncol. Pract. 2022, 18, 187–196. [Google Scholar] [CrossRef]
- Rini, B.I.; Dorff, T.B.; Elson, P.; Rodriguez, C.S.; Shepard, D.; Wood, L.; Humbert, J.; Pyle, L.; Wong, Y.N.; Finke, J.H.; et al. Active surveillance in metastatic renal-cell carcinoma: A prospective, phase 2 trial. Lancet Oncol. 2016, 17, 1317–1324. [Google Scholar] [CrossRef]
- Harrison, M.R.; Costello, B.A.; Bhavsar, N.A.; Vaishampayan, U.; Pal, S.K.; Zakharia, Y.; Jim, H.S.L.; Fishman, M.N.; Molina, A.M.; Kyriakopoulos, C.E.; et al. Active surveillance of metastatic renal cell carcinoma: Results from a prospective observational study (MaRCC). Cancer 2021, 127, 2204–2212. [Google Scholar] [CrossRef]
- Mickisch, G.H.; Garin, A.; van Poppel, H.; de Prijck, L.; Sylvester, R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: A randomised trial. Lancet 2001, 358, 966–970. [Google Scholar] [CrossRef]
- Mejean, A.; Ravaud, A.; Thezenas, S.; Colas, S.; Beauval, J.B.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; et al. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 417–427. [Google Scholar] [CrossRef]
- Tang, C.; Msaouel, P.; Hara, K.; Choi, H.; Le, V.; Shah, A.Y.; Wang, J.; Jonasch, E.; Choi, S.; Nguyen, Q.N.; et al. Definitive radiotherapy in lieu of systemic therapy for oligometastatic renal cell carcinoma: A single-arm, single-centre, feasibility, phase 2 trial. Lancet Oncol. 2021, 22, 1732–1739. [Google Scholar] [CrossRef]
- Lyon, T.D.; Thompson, R.H.; Shah, P.H.; Lohse, C.M.; Boorjian, S.A.; Costello, B.A.; Cheville, J.C.; Leibovich, B.C. Complete Surgical Metastasectomy of Renal Cell Carcinoma in the Post-Cytokine Era. J. Urol. 2020, 203, 275–282. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.; Tan, M.H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [Google Scholar] [CrossRef]
- Lalani, A.A.; Heng, D.Y.C.; Basappa, N.S.; Wood, L.; Iqbal, N.; McLeod, D.; Soulieres, D.; Kollmannsberger, C. Evolving landscape of first-line combination therapy in advanced renal cancer: A systematic review. Ther. Adv. Med. Oncol. 2022, 14, 17588359221108685. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.N.; Lee, C.H. Personalizing First-Line Management of Metastatic Renal Cell Carcinoma: Leveraging Current and Novel Therapeutic Options. J. Natl. Compr. Cancer Netw. 2022, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.S.; Navani, V.; Wells, J.C.; Donskov, F.; Basappa, N.S.; Labaki, C.; Pal, S.K.; Meza, L.A.; Wood, L.; Ernst, D.S.; et al. Characterizing IMDC prognostic groups in contemporary first-line combination therapies for metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 2022, 40, 308. [Google Scholar] [CrossRef]
- Martini, D.J.; Liu, Y.; Shabto, J.M.; Carthon, B.C.; Hitron, E.E.; Russler, G.A.; Caulfield, S.; Kissick, H.T.; Harris, W.B.; Kucuk, O.; et al. Novel Risk Scoring System for Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2020, 25, e484–e491. [Google Scholar] [CrossRef]
- Voss, M.H.; Reising, A.; Cheng, Y.; Patel, P.; Marker, M.; Kuo, F.; Chan, T.A.; Choueiri, T.K.; Hsieh, J.J.; Hakimi, A.A.; et al. Genomically annotated risk model for advanced renal-cell carcinoma: A retrospective cohort study. Lancet Oncol. 2018, 19, 1688–1698. [Google Scholar] [CrossRef]
- Flanigan, R.C.; Salmon, S.E.; Blumenstein, B.A.; Bearman, S.I.; Roy, V.; McGrath, P.C.; Caton, J.R., Jr.; Munshi, N.; Crawford, E.D. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 2001, 345, 1655–1659. [Google Scholar] [CrossRef]
- Bex, A.; Mulders, P.; Jewett, M.; Wagstaff, J.; van Thienen, J.V.; Blank, C.U.; van Velthoven, R.; Del Pilar Laguna, M.; Wood, L.; van Melick, H.H.E.; et al. Comparison of Immediate vs Deferred Cytoreductive Nephrectomy in Patients with Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol. 2019, 5, 164–170. [Google Scholar] [CrossRef]
- Mejean, A.; Ravaud, A.; Thezenas, S.; Chevreau, C.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; Guy, L.; et al. Sunitinib Alone or After Nephrectomy for Patients with Metastatic Renal Cell Carcinoma: Is There Still a Role for Cytoreductive Nephrectomy? Eur. Urol. 2021, 80, 417–424. [Google Scholar] [CrossRef]
- Bhindi, B.; Graham, J.; Wells, J.C.; Bakouny, Z.; Donskov, F.; Fraccon, A.; Pasini, F.; Lee, J.L.; Basappa, N.S.; Hansen, A.; et al. Deferred Cytoreductive Nephrectomy in Patients with Newly Diagnosed Metastatic Renal Cell Carcinoma. Eur. Urol. 2020, 78, 615–623. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, R.; Wimalasingham, A.; Szabados, B.; Stewart, G.D.; Welsh, S.J.; Kuusk, T.; Blank, C.; Haanen, J.; Klatte, T.; Staehler, M.; et al. Deferred Cytoreductive Nephrectomy Following Presurgical Vascular Endothelial Growth Factor Receptor-targeted Therapy in Patients with Primary Metastatic Clear Cell Renal Cell Carcinoma: A Pooled Analysis of Prospective Trial Data. Eur. Urol. Oncol. 2020, 3, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Ghatalia, P.; Handorf, E.A.; Geynisman, D.M.; Deng, M.; Zibelman, M.R.; Abbosh, P.; Anari, F.; Greenberg, R.E.; Viterbo, R.; Chen, D.; et al. The Role of Cytoreductive Nephrectomy in Metastatic Renal Cell Carcinoma: A Real-World Multi-Institutional Analysis. J. Urol. 2022, 208, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ruhle, A.; Andratschke, N.; Siva, S.; Guckenberger, M. Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clin. Transl. Radiat. Oncol. 2019, 18, 104–112. [Google Scholar] [CrossRef]
- De La Pinta, C.; Latorre, R.G.; Fuentes, R. SBRT in Localized Renal Carcinoma: A Review of the Literature. Anticancer Res. 2022, 42, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Lehrer, E.J.; Kothari, G.; Louie, A.V.; Siva, S. Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): A meta-analysis of 28 studies. Eur. Urol. Oncol. 2019, 2, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Malleo, G.; Salvia, R.; Maggino, L.; Marchegiani, G.; D’Angelica, M.; DeMatteo, R.; Kingham, P.; Pulvirenti, A.; Sereni, E.; Jarnagin, W.R.; et al. Long-term Outcomes After Surgical Resection of Pancreatic Metastases from Renal Clear-Cell Carcinoma. Ann. Surg. Oncol. 2021, 28, 3100–3108. [Google Scholar] [CrossRef]
- Benamran, D.; Albiges, L.; Bex, A.; Giannarini, G.; Capitanio, U.; Roupret, M. Treatment Options for De Novo Metastatic Clear-cell Renal Cell Carcinoma: Current Recommendations and Future Insights. Eur. Urol. Oncol. 2022, 5, 125–133. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Bristol Myers Squibb. Bristol Myers Squibb Provides Update on CheckMate-914 Trial Evaluating Opdivo (nivolumab) Plus Yervoy (ipilimumab) as Adjuvant Treatment of Localized Renal Cell Carcinoma; Bristol Myers Squibb: New York, NY, USA, 2022. [Google Scholar]
- Plieth, J. Two Adjuvant Kidney Cancer Failures Embolden Keytruda. Available online: https://www.evaluate.com/vantage/articles/news/trial-results-snippets/two-adjuvant-kidney-cancer-failures-embolden-keytruda (accessed on 14 August 2022).
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Motzer, R.; Tannir, N.; McDermott, D.; Burotto, M.; Choueiri, T.; Hammers, H.; Plimack, E.; Porta, C.; George, S.; Powles, T.; et al. Conditional Survival and 5-Year Follow-Up in CheckMate 214: First-Line Nivolumab + Ipilimumab (N+I) Versus Sunitinib (S) in Advanced Renal Cell Carcinoma (aRCC). In Proceedings of the European Society for Medical Oncology, Lugano, Switzerland, 16–21 September 2021. [Google Scholar]
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Powles, T.; Plimack, E.R.; Soulieres, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef]
- Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthelemy, P.; Porta, C.; Powles, T.; Donskov, F.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: Extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 2020, 5, e001079. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grunwald, V.; Hutson, T.E.; Kopyltsov, E.; Mendez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.A.G.; Larkin, J.; Choueiri, T.K.; Albiges, L.; Rini, B.I.; Atkins, M.B.; Schmidinger, M.; Penkov, K.; Thomaidou, D.; Wang, J.; et al. Efficacy of avelumab + axitinib (A + Ax) versus sunitinib (S) by IMDC risk group in advanced renal cell carcinoma (aRCC): Extended follow-up results from JAVELIN Renal 101. J. Clin. Oncol. 2021, 39, 4574. [Google Scholar] [CrossRef]
- Zibelman, M.R.; Carducci, M.A.; Ged, Y.; Molina, A.M.; Ravilla, R.; Shaffer, D.R.; Lambert, C.; Tafseer, M.; Basiura, R.; Weismann, D.; et al. A phase I/II study of nivolumab and axitinib in patients with advanced renal cell carcinoma. J. Clin. Oncol. 2022, 40, 291. [Google Scholar] [CrossRef]
- Pichler, R.; Comperat, E.; Klatte, T.; Pichler, M.; Loidl, W.; Lusuardi, L.; Schmidinger, M. Renal Cell Carcinoma with Sarcomatoid Features: Finally New Therapeutic Hope? Cancers 2019, 11, 422. [Google Scholar] [CrossRef]
- Blum, K.A.; Gupta, S.; Tickoo, S.K.; Chan, T.A.; Russo, P.; Motzer, R.J.; Karam, J.A.; Hakimi, A.A. Sarcomatoid renal cell carcinoma: Biology, natural history and management. Nat. Rev. Urol. 2020, 17, 659–678. [Google Scholar] [CrossRef]
- Tannir, N.M.; Signoretti, S.; Choueiri, T.K.; McDermott, D.F.; Motzer, R.J.; Flaifel, A.; Pignon, J.C.; Ficial, M.; Frontera, O.A.; George, S.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab versus Sunitinib in First-line Treatment of Patients with Advanced Sarcomatoid Renal Cell Carcinoma. Clin. Cancer Res. 2021, 27, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Iacovelli, R.; Ciccarese, C.; Bria, E.; Bracarda, S.; Porta, C.; Procopio, G.; Tortora, G. Patients with sarcomatoid renal cell carcinoma—redefining the first-line of treatment: A meta-analysis of randomised clinical trials with immune checkpoint inhibitors. Eur. J. Cancer 2020, 136, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Jonasch, E.; Boyle, S.; Carlo, M.I.; Manley, B.; Agarwal, N.; Alva, A.; Beckermann, K.; Choueiri, T.K.; Costello, B.A.; et al. NCCN Guidelines Insights: Kidney Cancer, Version 1.2021. J. Natl. Compr. Cancer Netw. 2020, 18, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Grunwald, V.; Escudier, B.; Hammers, H.J.; George, S.; Nathan, P.; Grimm, M.O.; Rini, B.I.; Doan, J.; Ivanescu, C.; et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): A randomised, phase 3 trial. Lancet Oncol. 2019, 20, 297–310. [Google Scholar] [CrossRef]
- Wilson, L.E.; Spees, L.; Pritchard, J.; Greiner, M.A.; Scales, C.D., Jr.; Baggett, C.D.; Kaye, D.; George, D.J.; Zhang, T.; Wheeler, S.B.; et al. Real-World Utilization of Oral Anticancer Agents and Related Costs in Older Adults with Metastatic Renal Cell Carcinoma in the United States. Kidney Cancer 2021, 5, 115–127. [Google Scholar] [CrossRef]
- Chan, A.; Dang, C.; Wisniewski, J.; Weng, X.; Hynson, E.; Zhong, L.; Wilson, L. A Cost-effectiveness Analysis Comparing Pembrolizumab-Axitinib, Nivolumab-Ipilimumab, and Sunitinib for Treatment of Advanced Renal Cell Carcinoma. Am. J. Clin. Oncol. 2022, 45, 66–73. [Google Scholar] [CrossRef]
- Geynisman, D.M.; Du, E.X.; Yang, X.; Sendhil, S.R.; Tejo, V.D.; Betts, K.A.; Huo, S. Temporal trends of adverse events and costs of nivolumab plus ipilimumab versus sunitinib in advanced renal cell carcinoma. Future Oncol. 2022, 18, 1219–1234. [Google Scholar] [CrossRef]
- Rathmell, W.K.; Rumble, R.B.; Van Veldhuizen, P.J.; Al-Ahmadie, H.; Emamekhoo, H.; Hauke, R.J.; Louie, A.V.; Milowsky, M.I.; Molina, A.M.; Rose, T.L.; et al. Management of Metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. J. Clin. Oncol. 2022, 40, JCO-22. [Google Scholar] [CrossRef]
- Fan, Z.; Huang, Z.; Huang, X. Bone Metastasis in Renal Cell Carcinoma Patients: Risk and Prognostic Factors and Nomograms. J. Oncol. 2021, 2021, 5575295. [Google Scholar] [CrossRef]
- Escudier, B.; Powles, T.; Motzer, R.J.; Olencki, T.; Aren Frontera, O.; Oudard, S.; Rolland, F.; Tomczak, P.; Castellano, D.; Appleman, L.J.; et al. Cabozantinib, a New Standard of Care for Patients with Advanced Renal Cell Carcinoma and Bone Metastases? Subgroup Analysis of the METEOR Trial. J. Clin. Oncol. 2018, 36, 765–772. [Google Scholar] [CrossRef]
- Apolo, A.B.; Powles, T.; Burotto, M.; Bourlon, M.T.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; Suarez, C.; Porta, C.; Barrios, C.H.; et al. Nivolumab Plus Cabozantinib vs. Sunitinib in Patients with Advanced Renal Cell Carcinoma and Bone Metastasis: Subgroup Analysis of the Phase 3 CheckMate 9ER Trial. In Proceedings of the 2021 International Kidney Cancer Symposium, Austin, TX, USA, 5–6 November 2021. [Google Scholar]
- Zhang, Y.; Guessous, F.; Kofman, A.; Schiff, D.; Abounader, R. XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs 2010, 13, 112–121. [Google Scholar] [PubMed]
- Hirsch, L.; Martinez Chanza, N.; Farah, S.; Xie, W.; Flippot, R.; Braun, D.A.; Rathi, N.; Thouvenin, J.; Collier, K.A.; Seront, E.; et al. Clinical Activity and Safety of Cabozantinib for Brain Metastases in Patients with Renal Cell Carcinoma. JAMA Oncol. 2021, 7, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juarez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Schmidinger, M.; Danesi, R.; Jones, R.; McDermott, R.; Pyle, L.; Rini, B.; Negrier, S. Individualized dosing with axitinib: Rationale and practical guidance. Future Oncol. 2018, 14, 861–875. [Google Scholar] [CrossRef]
- Chen, Y.W.; Rini, B.I. Approaches to First-Line Therapy for Metastatic Clear Cell Renal Cell Carcinoma. Curr. Oncol. Rep. 2022, 24, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Powles, T. Treatment Choices for Front-line Metastatic Clear Cell Renal Cancer. Eur. Urol. 2020, 77, 454–456. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Keyes-Elstein, L. Cross-trial comparisons in reviews: Proceed with caution. Nat. Rev. Rheumatol. 2020, 16, 663–664. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, S.; Meng, R.; Ren, Y.; Shang, Y.; Tian, L. Is there an efficacy-effectiveness gap between randomized controlled trials and real-world studies in colorectal cancer: A systematic review and meta-analysis. Transl. Cancer Res. 2020, 9, 6963–6987. [Google Scholar] [CrossRef]
- Singal, A.G.; Higgins, P.D.; Waljee, A.K. A primer on effectiveness and efficacy trials. Clin. Transl. Gastroenterol. 2014, 5, e45. [Google Scholar] [CrossRef]
- Zarrabi, K.H.E.; Miron, B.; Zibelman, M.; Anari, F.; Ghatalia, P.; Plimack, E.; Geynisman, D. Comparative Effectiveness of Front-line Ipilimumab and Nivolumab or Axitinib and Pembrolizumab in Metastatic Clear Cell Renal Cell Carcinoma. Oncology, 2022, in press.
- Gan, C.L.; Dudani, S.; Wells, J.C.; Schmidt, A.L.; Bakouny, Z.; Szabados, B.; Parnis, F.; Wong, S.; Lee, J.-L.; de Velasco, G.; et al. Outcomes of first-line (1L) immuno-oncology (IO) combination therapies in metastatic renal cell carcinoma (mRCC): Results from the International mRCC Database Consortium (IMDC). J. Clin. Oncol. 2021, 39, 276. [Google Scholar] [CrossRef]
- Phillips, C.M.; Parmar, A.; Guo, H.; Schwartz, D.; Isaranuwatchai, W.; Beca, J.; Dai, W.; Arias, J.; Gavura, S.; Chan, K.K.W. Assessing the efficacy-effectiveness gap for cancer therapies: A comparison of overall survival and toxicity between clinical trial and population-based, real-world data for contemporary parenteral cancer therapeutics. Cancer 2020, 126, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Regan, M.M.; Werner, L.; Rao, S.; Gupte-Singh, K.; Hodi, F.S.; Kirkwood, J.M.; Kluger, H.M.; Larkin, J.; Postow, M.A.; Ritchings, C.; et al. Treatment-Free Survival: A Novel Outcome Measure of the Effects of Immune Checkpoint Inhibition-A Pooled Analysis of Patients with Advanced Melanoma. J. Clin. Oncol. 2019, 37, 3350–3358. [Google Scholar] [CrossRef] [PubMed]
- Regan, M.M.; Jegede, O.A.; Mantia, C.M.; Powles, T.; Werner, L.; Motzer, R.J.; Tannir, N.M.; Lee, C.H.; Tomita, Y.; Voss, M.H.; et al. Treatment-free Survival after Immune Checkpoint Inhibitor Therapy versus Targeted Therapy for Advanced Renal Cell Carcinoma: 42-Month Results of the CheckMate 214 Trial. Clin. Cancer Res. 2021, 27, 6687–6695. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F. Conditional Survival and 5-Year Follow-Up in CheckMate 214: First-Line Nivolumab Plus Ipilimumab versus Sunitinib in Advanced Renal Cell Carcinoma. In Proceedings of the International Kidney Cancer Symposium (IKCS), Austin, TX, USA, 5–6 November 2021. [Google Scholar]
- Atkins, M.B.; Jegede, O.A.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Stein, M.; Sosman, J.A.; Alter, R.; Plimack, E.R.; Ornstein, M.; et al. Phase II Study of Nivolumab and Salvage Nivolumab/Ipilimumab in Treatment-Naive Patients with Advanced Clear Cell Renal Cell Carcinoma (HCRN GU16-260-Cohort A). J. Clin. Oncol. 2022, 373, JCO-21. [Google Scholar] [CrossRef] [PubMed]
- Tykodi, S.S.; Donskov, F.; Lee, J.-L.; Szczylik, C.; Malik, J.; Alekseev, B.Y.; Larkin, J.M.G.; Matveev, V.B.; Gafanov, R.; Tomczak, P.; et al. First-line pembrolizumab (pembro) monotherapy in advanced clear cell renal cell carcinoma (ccRCC): Updated results for KEYNOTE-427 cohort A. J. Clin. Oncol. 2019, 37, 4570. [Google Scholar] [CrossRef]
- Motzer, R.J.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Alekseev, B.Y.; Lee, J.L.; Suarez, C.; Stroyakovskiy, D.; De Giorgi, U.; et al. Final Overall Survival and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma. JAMA Oncol. 2022, 8, 275–280. [Google Scholar] [CrossRef]
- McKay, R.R.; McGregor, B.A.; Xie, W.; Braun, D.A.; Wei, X.; Kyriakopoulos, C.E.; Zakharia, Y.; Maughan, B.L.; Rose, T.L.; Stadler, W.M.; et al. Optimized Management of Nivolumab and Ipilimumab in Advanced Renal Cell Carcinoma: A Response-Based Phase II Study (OMNIVORE). J. Clin. Oncol. 2020, 38, 4240–4248. [Google Scholar] [CrossRef]
- Lee, C.H.; Shah, A.Y.; Rasco, D.; Rao, A.; Taylor, M.H.; Di Simone, C.; Hsieh, J.J.; Pinto, A.; Shaffer, D.R.; Girones Sarrio, R.; et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): A phase 1b/2 study. Lancet Oncol. 2021, 22, 946–958. [Google Scholar] [CrossRef]
- Braun, D.A.; Ishii, Y.; Walsh, A.M.; Van Allen, E.M.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019, 5, 1631–1633. [Google Scholar] [CrossRef]
- Liu, X.D.; Kong, W.; Peterson, C.B.; McGrail, D.J.; Hoang, A.; Zhang, X.; Lam, T.; Pilie, P.G.; Zhu, H.; Beckermann, K.E.; et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 2020, 11, 2135. [Google Scholar] [CrossRef] [PubMed]
- Vano, Y.A.; Elaidi, R.; Bennamoun, M.; Chevreau, C.; Borchiellini, D.; Pannier, D.; Maillet, D.; Gross-Goupil, M.; Tournigand, C.; Laguerre, B.; et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): A biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 2022, 23, 612–624. [Google Scholar] [CrossRef]
- Sarkis, J.; Assaf, J.; Alkassis, M. Biomarkers in renal cell carcinoma: Towards a more selective immune checkpoint inhibition. Transl. Oncol. 2021, 14, 101071. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Salgia, N.J.; Bergerot, P.G.; Maia, M.C.; Dizman, N.; Hsu, J.; Gillece, J.D.; Folkerts, M.; Reining, L.; Trent, J.; Highlander, S.K.; et al. Stool Microbiome Profiling of Patients with Metastatic Renal Cell Carcinoma Receiving Anti-PD-1 Immune Checkpoint Inhibitors. Eur. Urol. 2020, 78, 498–502. [Google Scholar] [CrossRef]
- Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: A randomized phase 1 trial. Nat. Med. 2022, 28, 704–712. [Google Scholar] [CrossRef]
- Choi, W.S.W.; Boland, J.; Lin, J. Hypoxia-Inducible Factor-2alpha as a Novel Target in Renal Cell Carcinoma. J. Kidney Cancer VHL 2021, 8, 1–7. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Bauer, T.M.; Papadopoulos, K.P.; Plimack, E.R.; Merchan, J.R.; McDermott, D.F.; Michaelson, M.D.; Appleman, L.J.; Thamake, S.; Perini, R.F.; et al. Inhibition of hypoxia-inducible factor-2alpha in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis. Nat. Med. 2021, 27, 802–805. [Google Scholar] [CrossRef]
- Tannir, N.M.; Cho, D.C.; Diab, A.; Sznol, M.; Bilen, M.A.; Balar, A.V.; Grignani, G.; Puente, E.; Tang, L.; Chien, D.; et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: Results from the PIVOT-02 study. J. Immunother. Cancer 2022, 10, e004419. [Google Scholar] [CrossRef]
- Kim, I.H.; Lee, H.J. The Frontline Immunotherapy-Based Treatment of Advanced Clear Cell Renal Cell Carcinoma: Current Evidence and Clinical Perspective. Biomedicines 2022, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Kiweler, N.; Brill, B.; Wirth, M.; Breuksch, I.; Laguna, T.; Dietrich, C.; Strand, S.; Schneider, G.; Groner, B.; Butter, F.; et al. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch. Toxicol. 2018, 92, 2227–2243. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Thomas, S.; Pawlowska, N.; Bartelink, I.; Grabowsky, J.; Jahan, T.; Cripps, A.; Harb, A.; Leng, J.; Reinert, A.; et al. Inhibiting Histone Deacetylase as a Means to Reverse Resistance to Angiogenesis Inhibitors: Phase I Study of Abexinostat Plus Pazopanib in Advanced Solid Tumor Malignancies. J. Clin. Oncol. 2017, 35, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Pili, R.; Liu, G.; Chintala, S.; Verheul, H.; Rehman, S.; Attwood, K.; Lodge, M.A.; Wahl, R.; Martin, J.I.; Miles, K.M.; et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial. Br. J. Cancer 2017, 116, 874–883. [Google Scholar] [CrossRef] [Green Version]
Active Surveillance | ||||
---|---|---|---|---|
Study | Study Setting (sample size) | Patient population and characteristics | Median follow-up | Derived benefit (months) |
Rini et al. [6] | Prospective phase II trial (n = 52) | Treatment-naive, asymptomatic, metastatic RCC.
| 38.1 months | Median time on AS 14.9 m (95% CI, 10.6–25.0) Median OS from start of surveillance 44.5 m (95% CI, 37.6 m-NR) |
MaRCC trial [7] | Prospective observational study (n = 504, 143 on AS) | Treatment-naïve metastatic RCC
| 33.0 months | Median OS was NR (95% CI, 122 months—NE) Kaplan–Meier estimate for living at 3 years: 84% |
Cytoreductive Nephrectomy | ||||
Study | Study setting (sample size) | Trial design | Median Follow-up | Derived benefit (months) |
CARMENA [8] | Randomized phase III, non-inferiority trial of clear cell RCC (n = 576) MSKCC poor risk 43% | Nephrectomy followed by sunitinib vs. Receive sunitinib alone | 50.9 months | Median OS (95% CI) Upfront CN: 15.6 m (95% CI, 12.5–18.6) Median OS sunitinib alone: 19.8 m (95% CI, 15.6–24.8) HR 0.97 (0.79–1.19) |
SURTIME [9] | Randomized phase III, superiority trial of clear cell RCC (n = 458) MSKCC poor risk 11% | Immediate CN followed by sunitinib vs. Treatment with 3 cycles of sunitinib followed by CN | 3.3 years | Median OS upfront CN: 15.0 m (95% CI, 9.3–29.5) Median OS upfront sunitinib: 32.4 m (95% CI, 14.5–65.3) HR 0.57 (0.34–0.95) |
Metastasis-Directed Therapy | ||||
Study | Study setting (sample size) | Study design | Median Follow-up | Derived benefit (months) |
SBRT [10] | Single-arm Phase II trial of metastatic clear cell RCC with ≤5 sites of metastases and prior nephrectomy (n = 30) | Treatment with SBRT (defined as ≤5 fractions with ≥7 Gy per fraction) to all lesions and maintained off systemic therapy | 17.5 months | Median PFS survival was 22.7 months (95% CI, 10.4–NR) 1-year PFS 64% (95% CI, 48–85) |
Metastasectomy [11] | Observational study of registry patients who underwent partial or radical nephrectomy with occurrence of metastasis treated with complete metastasectomy (n = 403, 147 with complete metastasectomy) | Associations of complete metastasectomy with cancer specific and OS were assessed in the era of TKI and ICB | 3.9 years | Two-year cancer-specific survival was significantly greater in patients with vs. without complete metastasectomy (84% vs. 54%, p < 0.001) HR for death from RCC 0.47 (95% CI, 0.34–0.65, p < 0.001) |
Intention-to-Treat Population | IMDC Risk Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Favorable | Intermediate/Poor | |||||||||||
mOS [HR (95% CI)] | mPFS [HR (95% CI)] | ORR (%) | Median DOR (Months) | CR (%) | Median TTR (Months) | mOS [HR (95% CI)] | mPFS [HR (95% CI)] | ORR (%) | mOS [HR (95% CI)] | mPFS [HR (95% CI)] | ORR (%) | |
Checkmate 214 # Ipi/Nivo vs. Sunitinib | 56.0 vs. 38.0 [0.72 (0.62–0.85)] | 12.0 vs. 12.0 [0.86 (0.73–1.01)] | 39.12 vs. 32.3 | NR vs. 25.0 | 10.7 vs. 2.6 * | 2.8 vs. 4.0 * | 74.0 vs. 68.0 [0.94 (0.65–1.37)] | 12.4 vs. 28.9 [1.60 (1.1–2.3)] | 30.1 vs. 52.6 | 47.0 vs. 27.0 [0.68 (0.58–0.81)] | 12.0 vs. 8.0 [0.73 (0.61–0.87)] | 42.1 vs. 27.2 |
KEYNOTE 426 ## Pembro/Axi vs. Sunitinib | 45.7 vs. 40.1 [0.73 (0.60–0.88)] | 15.7 vs. 11.1 [0.68 (0.58–0.80)] | 60.4 vs. 39.6 | 23.6 vs. 15.3 | 10.0 vs. 3.5 | 2.8 vs. 3.0 | NR [1.17 (0.76–1.80)] | 20.7 vs. 17.8 [0.76 (0.56–1.03)] | 68.8 vs. 50.4 | Not reported [0.64 (0.52–0.80)] | 13.8 vs. 8.2 [0.67 (0.55–0.81)] | 56.5 vs. 34.9 |
CheckMate 9ER Nivo/Cabo vs. Sunitinib | NR vs. 29.5 [0.66 (0.50–0.87)] | 17.0 vs. 8.3 [0.52 (0.43–0.64)] | 54.8 vs. 28.4 | 20.2 vs. 11.5 | 9.3 vs. 4.3 | 2.8 vs. 4.5 | NR vs. NR [0.94 (0.46–1.92)] | 24.7 vs. 12.8 [0.58 (0.36–0.93)] | 66.2 vs. 44.4 | Int NR vs. NR [0.74 (0.50–1.08)] | Int 17.5 vs. 8.5 [0.58 (0.45–0.76)] | Int 55.9 vs. 28.7 |
Poor NR vs. 11.2 [0.45 (0.27–0.76)] | Poor 9.9 vs. 4.2 [0.36 (0.23–0.56)] | Poor 37.7 vs. 10.3 | ||||||||||
CLEAR Pembro/Lenvatinib vs. Sunitinib | NR vs. NR [0.66 (0.49–0.88)] | 23.9 vs. 9.2 [0.39 (0.32–0.49)] | 71.0 vs. 36.1 | 25.8 vs. 14.6 | 16.1 vs. 4.2 | 1.94 vs. 1.94 | NR vs. NR [1.15 (0.55–2.40)] | 28.1 vs. 12.9 [0.41 (0.28–0.62)] | 68.2 vs. 50.8 | NR vs. NR [0.58 (0.42–0.80)] | 22.1 vs. 5.9 [0.36 (0.28–0.47)] | 72.4 vs. 28.8 |
Trial | Sample Size | ORR (%) | CR (%) | PFS (Months) | HR PFS (95% CI) | OS (Months) | HR OS (95% CI) |
---|---|---|---|---|---|---|---|
CheckMate 214 | Ipi + Nivo (n = 74) | 61.0 | 19.0 | 26.5 | 0.54 (0.3–0.9) | NR | 0.45 (0.3–0.7) |
Sunitinib (n = 65) | 23.0 | 3.0 | 5.1 | 14.2 | |||
KEYNOTE-426 | Pembro + Axi (n = 46) | 58.8 | 13.0 | NR | 0.52 (0.29–1.00) | NR | 0.58 (0.21–1.59) |
Sunitinib (n = 50) | 31.5 | 2.0 | 8.4 | NR | |||
CheckMate 9ER | Nivo + Cabo (n = 34) | 54.8 | 9.3 | 10.3 | 0.42 (0.23–0.74) | NR | 0.36 (0.17–0.79) |
Sunitinib (n = 41) | 28.4 | 4.3 | 4.2 | 19.7 | |||
CLEAR | Pembro + Lenvatinib (n = 28) | 60.7 | NA | 11.1 | 0.39 (0.18–0.84) | NR | 0.91 (0.32–2.58) |
Sunitinib (n = 21) | 23.8 | NA | 5.5 | NR |
Trial | Disease Setting | Comparator Arm | Treatment | Study Phase | Estimated Completion | Primary Endpoint(s) |
---|---|---|---|---|---|---|
NCT03937210 (COSMIC-313) | Previously untreated advanced or mRCC | Cabozantinib-matched placebo + Nivolumab + Ipilimumab | Cabozantinib + Nivolumab + Ipilimumab | Phase III | March 2025 | PFS |
NCT03873402 (CA209-8Y8) | Advanced RCC | N/A | Nivolumab + Ipilimumab | Phase III | March 2025 | PFS, ORR |
NCT03592472 (RENAVIV) | Locally advanced unrespectable or mRCC | Pazopanib + placebo | Pazopanib + Abexinostat | Phase III | June 2022 | PFS |
NCT04987203 | Advanced RCC | Tivozanib | Tivozanib + Nivolumab; | Phase III | Aug 2025 | PFS |
NCT02811861 (CLEAR) | Advanced RCC | Sunitinib | Arm A: Lenvatinib + Everolimus Arm B: Lenvatinib + Pembrolizumab | Phase III | Oct 2024 | PFS |
NCT03729245 | Untreated advanced RCC | Sunitinib or Cabozantinib | Bempegaldesleukin+ Nivolumab | Phase III | June 2024 | ORR, OS |
NCT04810078 (CheckMate-67T) | Advanced clear cell RCC | Intravenous Nivolumab | Subcutaneous Nivolumab | Phase III | June 2026 | Time-averaged serum conc., trough serum concentration at steady state |
NCT05239728 | Clear cell RCC | Placebo + Pembrolizumab | Belzutifan + Pembrolizumab | Phase III | Jan 2030 | DFS |
NCT03873402 | Advanced RCC | Nivolumab + Ipilimumab | Nivolumab | Phase III | March 2025 | PFS, ORR |
NCT03288532 (RAMPART) | Resected primary RCC at high or intermediate relapse risk | N/A | Arm A: Active monitoring Arm B: Durvalumab Arm C: Durvalumab + Tremelimumab | Phase III | Dec 2034 | DFS, OS |
NCT04394975 | Advanced RCC | Sunitinib | Toripalimab + Axitinib | Phase III | June 2023 | PFS |
NCT03095040 (CONCEPT) | mRCC | Everolimus | Vorolanib + Everolimus | Phase III | Dec 2021 | PFS |
NCT04698213 (TIDE-A) | Untreated mRCC | N/A | Avelumab + Intermittent Axitinib | Phase II | Oct 2024 | ORR |
NCT04976634 (MK-6848-012) | Solid tumors | Pembrolizumab + Lenvatinib | Arm 1: Pembrolizumab + Belzutifan + Lenvatinib | Phase II | August 2026 | DLT, AE, ORR |
NCT03634540 (MK-6482-003) | Advanced clear cell RCC | N/A | Belzutifan + Cabozantinib | Phase II | August 2025 | ORR |
NCT04846920 | Advanced clear cell RCC | N/A | Belzutifan | Phase I | July 2025 | AE, DLT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarrabi, K.K.; Lanade, O.; Geynisman, D.M. Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 4607. https://doi.org/10.3390/cancers14194607
Zarrabi KK, Lanade O, Geynisman DM. Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers. 2022; 14(19):4607. https://doi.org/10.3390/cancers14194607
Chicago/Turabian StyleZarrabi, Kevin K., Oladimeji Lanade, and Daniel M. Geynisman. 2022. "Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma" Cancers 14, no. 19: 4607. https://doi.org/10.3390/cancers14194607
APA StyleZarrabi, K. K., Lanade, O., & Geynisman, D. M. (2022). Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers, 14(19), 4607. https://doi.org/10.3390/cancers14194607