Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma
Abstract
Simple Summary
Abstract
1. Introduction
2. Risk Stratification to Guide Management
3. Deferring Initiation of Systemic Therapy
3.1. Active Surveillance
3.2. Cytoreductive Nephrectomy Followed by Active Surveillance
3.3. Upfront Metastasis-Directed Therapy
4. Front-Line Systemic Therapy Options
4.1. IO/IO Combination Therapy
4.2. IO/TKI Combination Therapy
5. Factors to Consider with Front-Line Therapy Options
5.1. Opportunity for Multidisciplinary Approach
5.2. Characterization of the Tumor Biology
5.3. Patient Characteristics and Toxicity
5.4. Tumor Burden
5.5. Employing Real-World Evidence in Lieu of Head-to-Head Data
5.6. Can We Consider Ipilimumab/Nivolumab for IMDC Favorable Risk Disease?
5.7. Prior Treatment with IO in the Adjuvant Setting
6. Ongoing Areas of Study within the Front-Line Treatment Paradigm
6.1. Predictive Biomarkers
6.2. Immunomodulation
6.3. Future Therapies and Ongoing Clinical Trials
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Geynisman, D.M.; Maranchie, J.K.; Ball, M.W.; Bratslavsky, G.; Singer, E.A. A 25 year perspective on the evolution and advances in an understanding of the biology, evaluation and treatment of kidney cancer. Urol. Oncol. 2021, 39, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Keith, B.; Johnson, R.S.; Simon, M.C. HIF1alpha and HIF2alpha: Sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 2011, 12, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, M.L.; Jaeger, E.; Shi, Y.; Durocher, J.A.; Mahurkar, S.; Zaridze, D.; Matveev, V.; Janout, V.; Kollarova, H.; Bencko, V.; et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 2008, 14, 4726–4734. [Google Scholar] [CrossRef]
- Tran, J.; Ornstein, M.C. Clinical Review on the Management of Metastatic Renal Cell Carcinoma. JCO Oncol. Pract. 2022, 18, 187–196. [Google Scholar] [CrossRef]
- Rini, B.I.; Dorff, T.B.; Elson, P.; Rodriguez, C.S.; Shepard, D.; Wood, L.; Humbert, J.; Pyle, L.; Wong, Y.N.; Finke, J.H.; et al. Active surveillance in metastatic renal-cell carcinoma: A prospective, phase 2 trial. Lancet Oncol. 2016, 17, 1317–1324. [Google Scholar] [CrossRef]
- Harrison, M.R.; Costello, B.A.; Bhavsar, N.A.; Vaishampayan, U.; Pal, S.K.; Zakharia, Y.; Jim, H.S.L.; Fishman, M.N.; Molina, A.M.; Kyriakopoulos, C.E.; et al. Active surveillance of metastatic renal cell carcinoma: Results from a prospective observational study (MaRCC). Cancer 2021, 127, 2204–2212. [Google Scholar] [CrossRef]
- Mickisch, G.H.; Garin, A.; van Poppel, H.; de Prijck, L.; Sylvester, R. Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: A randomised trial. Lancet 2001, 358, 966–970. [Google Scholar] [CrossRef]
- Mejean, A.; Ravaud, A.; Thezenas, S.; Colas, S.; Beauval, J.B.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; et al. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 417–427. [Google Scholar] [CrossRef]
- Tang, C.; Msaouel, P.; Hara, K.; Choi, H.; Le, V.; Shah, A.Y.; Wang, J.; Jonasch, E.; Choi, S.; Nguyen, Q.N.; et al. Definitive radiotherapy in lieu of systemic therapy for oligometastatic renal cell carcinoma: A single-arm, single-centre, feasibility, phase 2 trial. Lancet Oncol. 2021, 22, 1732–1739. [Google Scholar] [CrossRef]
- Lyon, T.D.; Thompson, R.H.; Shah, P.H.; Lohse, C.M.; Boorjian, S.A.; Costello, B.A.; Cheville, J.C.; Leibovich, B.C. Complete Surgical Metastasectomy of Renal Cell Carcinoma in the Post-Cytokine Era. J. Urol. 2020, 203, 275–282. [Google Scholar] [CrossRef]
- Heng, D.Y.; Xie, W.; Regan, M.M.; Harshman, L.C.; Bjarnason, G.A.; Vaishampayan, U.N.; Mackenzie, M.; Wood, L.; Donskov, F.; Tan, M.H.; et al. External validation and comparison with other models of the International Metastatic Renal-Cell Carcinoma Database Consortium prognostic model: A population-based study. Lancet Oncol. 2013, 14, 141–148. [Google Scholar] [CrossRef]
- Lalani, A.A.; Heng, D.Y.C.; Basappa, N.S.; Wood, L.; Iqbal, N.; McLeod, D.; Soulieres, D.; Kollmannsberger, C. Evolving landscape of first-line combination therapy in advanced renal cancer: A systematic review. Ther. Adv. Med. Oncol. 2022, 14, 17588359221108685. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.N.; Lee, C.H. Personalizing First-Line Management of Metastatic Renal Cell Carcinoma: Leveraging Current and Novel Therapeutic Options. J. Natl. Compr. Cancer Netw. 2022, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M.S.; Navani, V.; Wells, J.C.; Donskov, F.; Basappa, N.S.; Labaki, C.; Pal, S.K.; Meza, L.A.; Wood, L.; Ernst, D.S.; et al. Characterizing IMDC prognostic groups in contemporary first-line combination therapies for metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 2022, 40, 308. [Google Scholar] [CrossRef]
- Martini, D.J.; Liu, Y.; Shabto, J.M.; Carthon, B.C.; Hitron, E.E.; Russler, G.A.; Caulfield, S.; Kissick, H.T.; Harris, W.B.; Kucuk, O.; et al. Novel Risk Scoring System for Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2020, 25, e484–e491. [Google Scholar] [CrossRef]
- Voss, M.H.; Reising, A.; Cheng, Y.; Patel, P.; Marker, M.; Kuo, F.; Chan, T.A.; Choueiri, T.K.; Hsieh, J.J.; Hakimi, A.A.; et al. Genomically annotated risk model for advanced renal-cell carcinoma: A retrospective cohort study. Lancet Oncol. 2018, 19, 1688–1698. [Google Scholar] [CrossRef]
- Flanigan, R.C.; Salmon, S.E.; Blumenstein, B.A.; Bearman, S.I.; Roy, V.; McGrath, P.C.; Caton, J.R., Jr.; Munshi, N.; Crawford, E.D. Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N. Engl. J. Med. 2001, 345, 1655–1659. [Google Scholar] [CrossRef]
- Bex, A.; Mulders, P.; Jewett, M.; Wagstaff, J.; van Thienen, J.V.; Blank, C.U.; van Velthoven, R.; Del Pilar Laguna, M.; Wood, L.; van Melick, H.H.E.; et al. Comparison of Immediate vs Deferred Cytoreductive Nephrectomy in Patients with Synchronous Metastatic Renal Cell Carcinoma Receiving Sunitinib: The SURTIME Randomized Clinical Trial. JAMA Oncol. 2019, 5, 164–170. [Google Scholar] [CrossRef]
- Mejean, A.; Ravaud, A.; Thezenas, S.; Chevreau, C.; Bensalah, K.; Geoffrois, L.; Thiery-Vuillemin, A.; Cormier, L.; Lang, H.; Guy, L.; et al. Sunitinib Alone or After Nephrectomy for Patients with Metastatic Renal Cell Carcinoma: Is There Still a Role for Cytoreductive Nephrectomy? Eur. Urol. 2021, 80, 417–424. [Google Scholar] [CrossRef]
- Bhindi, B.; Graham, J.; Wells, J.C.; Bakouny, Z.; Donskov, F.; Fraccon, A.; Pasini, F.; Lee, J.L.; Basappa, N.S.; Hansen, A.; et al. Deferred Cytoreductive Nephrectomy in Patients with Newly Diagnosed Metastatic Renal Cell Carcinoma. Eur. Urol. 2020, 78, 615–623. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, R.; Wimalasingham, A.; Szabados, B.; Stewart, G.D.; Welsh, S.J.; Kuusk, T.; Blank, C.; Haanen, J.; Klatte, T.; Staehler, M.; et al. Deferred Cytoreductive Nephrectomy Following Presurgical Vascular Endothelial Growth Factor Receptor-targeted Therapy in Patients with Primary Metastatic Clear Cell Renal Cell Carcinoma: A Pooled Analysis of Prospective Trial Data. Eur. Urol. Oncol. 2020, 3, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Ghatalia, P.; Handorf, E.A.; Geynisman, D.M.; Deng, M.; Zibelman, M.R.; Abbosh, P.; Anari, F.; Greenberg, R.E.; Viterbo, R.; Chen, D.; et al. The Role of Cytoreductive Nephrectomy in Metastatic Renal Cell Carcinoma: A Real-World Multi-Institutional Analysis. J. Urol. 2022, 208, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ruhle, A.; Andratschke, N.; Siva, S.; Guckenberger, M. Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clin. Transl. Radiat. Oncol. 2019, 18, 104–112. [Google Scholar] [CrossRef]
- De La Pinta, C.; Latorre, R.G.; Fuentes, R. SBRT in Localized Renal Carcinoma: A Review of the Literature. Anticancer Res. 2022, 42, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Lehrer, E.J.; Kothari, G.; Louie, A.V.; Siva, S. Stereotactic ablative radiation therapy for oligometastatic renal cell carcinoma (SABR ORCA): A meta-analysis of 28 studies. Eur. Urol. Oncol. 2019, 2, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Malleo, G.; Salvia, R.; Maggino, L.; Marchegiani, G.; D’Angelica, M.; DeMatteo, R.; Kingham, P.; Pulvirenti, A.; Sereni, E.; Jarnagin, W.R.; et al. Long-term Outcomes After Surgical Resection of Pancreatic Metastases from Renal Clear-Cell Carcinoma. Ann. Surg. Oncol. 2021, 28, 3100–3108. [Google Scholar] [CrossRef]
- Benamran, D.; Albiges, L.; Bex, A.; Giannarini, G.; Capitanio, U.; Roupret, M. Treatment Options for De Novo Metastatic Clear-cell Renal Cell Carcinoma: Current Recommendations and Future Insights. Eur. Urol. Oncol. 2022, 5, 125–133. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Tomczak, P.; Park, S.H.; Venugopal, B.; Ferguson, T.; Chang, Y.H.; Hajek, J.; Symeonides, S.N.; Lee, J.L.; Sarwar, N.; et al. Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 385, 683–694. [Google Scholar] [CrossRef]
- Bristol Myers Squibb. Bristol Myers Squibb Provides Update on CheckMate-914 Trial Evaluating Opdivo (nivolumab) Plus Yervoy (ipilimumab) as Adjuvant Treatment of Localized Renal Cell Carcinoma; Bristol Myers Squibb: New York, NY, USA, 2022. [Google Scholar]
- Plieth, J. Two Adjuvant Kidney Cancer Failures Embolden Keytruda. Available online: https://www.evaluate.com/vantage/articles/news/trial-results-snippets/two-adjuvant-kidney-cancer-failures-embolden-keytruda (accessed on 14 August 2022).
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Aren Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthelemy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef]
- Motzer, R.; Tannir, N.; McDermott, D.; Burotto, M.; Choueiri, T.; Hammers, H.; Plimack, E.; Porta, C.; George, S.; Powles, T.; et al. Conditional Survival and 5-Year Follow-Up in CheckMate 214: First-Line Nivolumab + Ipilimumab (N+I) Versus Sunitinib (S) in Advanced Renal Cell Carcinoma (aRCC). In Proceedings of the European Society for Medical Oncology, Lugano, Switzerland, 16–21 September 2021. [Google Scholar]
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic effect of immune checkpoint blockade and anti-angiogenesis in cancer treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Powles, T.; Plimack, E.R.; Soulieres, D.; Waddell, T.; Stus, V.; Gafanov, R.; Nosov, D.; Pouliot, F.; Melichar, B.; Vynnychenko, I.; et al. Pembrolizumab plus axitinib versus sunitinib monotherapy as first-line treatment of advanced renal cell carcinoma (KEYNOTE-426): Extended follow-up from a randomised, open-label, phase 3 trial. Lancet Oncol. 2020, 21, 1563–1573. [Google Scholar] [CrossRef]
- Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthelemy, P.; Porta, C.; Powles, T.; Donskov, F.; George, S.; et al. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: Extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open 2020, 5, e001079. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.Y.; Porta, C.; Eto, M.; Powles, T.; Grunwald, V.; Hutson, T.E.; Kopyltsov, E.; Mendez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Penkov, K.; Haanen, J.; Rini, B.; Albiges, L.; Campbell, M.T.; Venugopal, B.; Kollmannsberger, C.; Negrier, S.; Uemura, M.; et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2019, 380, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Haanen, J.B.A.G.; Larkin, J.; Choueiri, T.K.; Albiges, L.; Rini, B.I.; Atkins, M.B.; Schmidinger, M.; Penkov, K.; Thomaidou, D.; Wang, J.; et al. Efficacy of avelumab + axitinib (A + Ax) versus sunitinib (S) by IMDC risk group in advanced renal cell carcinoma (aRCC): Extended follow-up results from JAVELIN Renal 101. J. Clin. Oncol. 2021, 39, 4574. [Google Scholar] [CrossRef]
- Zibelman, M.R.; Carducci, M.A.; Ged, Y.; Molina, A.M.; Ravilla, R.; Shaffer, D.R.; Lambert, C.; Tafseer, M.; Basiura, R.; Weismann, D.; et al. A phase I/II study of nivolumab and axitinib in patients with advanced renal cell carcinoma. J. Clin. Oncol. 2022, 40, 291. [Google Scholar] [CrossRef]
- Pichler, R.; Comperat, E.; Klatte, T.; Pichler, M.; Loidl, W.; Lusuardi, L.; Schmidinger, M. Renal Cell Carcinoma with Sarcomatoid Features: Finally New Therapeutic Hope? Cancers 2019, 11, 422. [Google Scholar] [CrossRef]
- Blum, K.A.; Gupta, S.; Tickoo, S.K.; Chan, T.A.; Russo, P.; Motzer, R.J.; Karam, J.A.; Hakimi, A.A. Sarcomatoid renal cell carcinoma: Biology, natural history and management. Nat. Rev. Urol. 2020, 17, 659–678. [Google Scholar] [CrossRef]
- Tannir, N.M.; Signoretti, S.; Choueiri, T.K.; McDermott, D.F.; Motzer, R.J.; Flaifel, A.; Pignon, J.C.; Ficial, M.; Frontera, O.A.; George, S.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab versus Sunitinib in First-line Treatment of Patients with Advanced Sarcomatoid Renal Cell Carcinoma. Clin. Cancer Res. 2021, 27, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Iacovelli, R.; Ciccarese, C.; Bria, E.; Bracarda, S.; Porta, C.; Procopio, G.; Tortora, G. Patients with sarcomatoid renal cell carcinoma—redefining the first-line of treatment: A meta-analysis of randomised clinical trials with immune checkpoint inhibitors. Eur. J. Cancer 2020, 136, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Jonasch, E.; Boyle, S.; Carlo, M.I.; Manley, B.; Agarwal, N.; Alva, A.; Beckermann, K.; Choueiri, T.K.; Costello, B.A.; et al. NCCN Guidelines Insights: Kidney Cancer, Version 1.2021. J. Natl. Compr. Cancer Netw. 2020, 18, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Grunwald, V.; Escudier, B.; Hammers, H.J.; George, S.; Nathan, P.; Grimm, M.O.; Rini, B.I.; Doan, J.; Ivanescu, C.; et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): A randomised, phase 3 trial. Lancet Oncol. 2019, 20, 297–310. [Google Scholar] [CrossRef]
- Wilson, L.E.; Spees, L.; Pritchard, J.; Greiner, M.A.; Scales, C.D., Jr.; Baggett, C.D.; Kaye, D.; George, D.J.; Zhang, T.; Wheeler, S.B.; et al. Real-World Utilization of Oral Anticancer Agents and Related Costs in Older Adults with Metastatic Renal Cell Carcinoma in the United States. Kidney Cancer 2021, 5, 115–127. [Google Scholar] [CrossRef]
- Chan, A.; Dang, C.; Wisniewski, J.; Weng, X.; Hynson, E.; Zhong, L.; Wilson, L. A Cost-effectiveness Analysis Comparing Pembrolizumab-Axitinib, Nivolumab-Ipilimumab, and Sunitinib for Treatment of Advanced Renal Cell Carcinoma. Am. J. Clin. Oncol. 2022, 45, 66–73. [Google Scholar] [CrossRef]
- Geynisman, D.M.; Du, E.X.; Yang, X.; Sendhil, S.R.; Tejo, V.D.; Betts, K.A.; Huo, S. Temporal trends of adverse events and costs of nivolumab plus ipilimumab versus sunitinib in advanced renal cell carcinoma. Future Oncol. 2022, 18, 1219–1234. [Google Scholar] [CrossRef]
- Rathmell, W.K.; Rumble, R.B.; Van Veldhuizen, P.J.; Al-Ahmadie, H.; Emamekhoo, H.; Hauke, R.J.; Louie, A.V.; Milowsky, M.I.; Molina, A.M.; Rose, T.L.; et al. Management of Metastatic Clear Cell Renal Cell Carcinoma: ASCO Guideline. J. Clin. Oncol. 2022, 40, JCO-22. [Google Scholar] [CrossRef]
- Fan, Z.; Huang, Z.; Huang, X. Bone Metastasis in Renal Cell Carcinoma Patients: Risk and Prognostic Factors and Nomograms. J. Oncol. 2021, 2021, 5575295. [Google Scholar] [CrossRef]
- Escudier, B.; Powles, T.; Motzer, R.J.; Olencki, T.; Aren Frontera, O.; Oudard, S.; Rolland, F.; Tomczak, P.; Castellano, D.; Appleman, L.J.; et al. Cabozantinib, a New Standard of Care for Patients with Advanced Renal Cell Carcinoma and Bone Metastases? Subgroup Analysis of the METEOR Trial. J. Clin. Oncol. 2018, 36, 765–772. [Google Scholar] [CrossRef]
- Apolo, A.B.; Powles, T.; Burotto, M.; Bourlon, M.T.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; Suarez, C.; Porta, C.; Barrios, C.H.; et al. Nivolumab Plus Cabozantinib vs. Sunitinib in Patients with Advanced Renal Cell Carcinoma and Bone Metastasis: Subgroup Analysis of the Phase 3 CheckMate 9ER Trial. In Proceedings of the 2021 International Kidney Cancer Symposium, Austin, TX, USA, 5–6 November 2021. [Google Scholar]
- Zhang, Y.; Guessous, F.; Kofman, A.; Schiff, D.; Abounader, R. XL-184, a MET, VEGFR-2 and RET kinase inhibitor for the treatment of thyroid cancer, glioblastoma multiforme and NSCLC. IDrugs 2010, 13, 112–121. [Google Scholar] [PubMed]
- Hirsch, L.; Martinez Chanza, N.; Farah, S.; Xie, W.; Flippot, R.; Braun, D.A.; Rathi, N.; Thouvenin, J.; Collier, K.A.; Seront, E.; et al. Clinical Activity and Safety of Cabozantinib for Brain Metastases in Patients with Renal Cell Carcinoma. JAMA Oncol. 2021, 7, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juarez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y.; et al. Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Schmidinger, M.; Danesi, R.; Jones, R.; McDermott, R.; Pyle, L.; Rini, B.; Negrier, S. Individualized dosing with axitinib: Rationale and practical guidance. Future Oncol. 2018, 14, 861–875. [Google Scholar] [CrossRef]
- Chen, Y.W.; Rini, B.I. Approaches to First-Line Therapy for Metastatic Clear Cell Renal Cell Carcinoma. Curr. Oncol. Rep. 2022, 24, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Powles, T. Treatment Choices for Front-line Metastatic Clear Cell Renal Cancer. Eur. Urol. 2020, 77, 454–456. [Google Scholar] [CrossRef]
- Sullivan, K.M.; Keyes-Elstein, L. Cross-trial comparisons in reviews: Proceed with caution. Nat. Rev. Rheumatol. 2020, 16, 663–664. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, S.; Meng, R.; Ren, Y.; Shang, Y.; Tian, L. Is there an efficacy-effectiveness gap between randomized controlled trials and real-world studies in colorectal cancer: A systematic review and meta-analysis. Transl. Cancer Res. 2020, 9, 6963–6987. [Google Scholar] [CrossRef]
- Singal, A.G.; Higgins, P.D.; Waljee, A.K. A primer on effectiveness and efficacy trials. Clin. Transl. Gastroenterol. 2014, 5, e45. [Google Scholar] [CrossRef]
- Zarrabi, K.H.E.; Miron, B.; Zibelman, M.; Anari, F.; Ghatalia, P.; Plimack, E.; Geynisman, D. Comparative Effectiveness of Front-line Ipilimumab and Nivolumab or Axitinib and Pembrolizumab in Metastatic Clear Cell Renal Cell Carcinoma. Oncology, 2022, in press.
- Gan, C.L.; Dudani, S.; Wells, J.C.; Schmidt, A.L.; Bakouny, Z.; Szabados, B.; Parnis, F.; Wong, S.; Lee, J.-L.; de Velasco, G.; et al. Outcomes of first-line (1L) immuno-oncology (IO) combination therapies in metastatic renal cell carcinoma (mRCC): Results from the International mRCC Database Consortium (IMDC). J. Clin. Oncol. 2021, 39, 276. [Google Scholar] [CrossRef]
- Phillips, C.M.; Parmar, A.; Guo, H.; Schwartz, D.; Isaranuwatchai, W.; Beca, J.; Dai, W.; Arias, J.; Gavura, S.; Chan, K.K.W. Assessing the efficacy-effectiveness gap for cancer therapies: A comparison of overall survival and toxicity between clinical trial and population-based, real-world data for contemporary parenteral cancer therapeutics. Cancer 2020, 126, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Regan, M.M.; Werner, L.; Rao, S.; Gupte-Singh, K.; Hodi, F.S.; Kirkwood, J.M.; Kluger, H.M.; Larkin, J.; Postow, M.A.; Ritchings, C.; et al. Treatment-Free Survival: A Novel Outcome Measure of the Effects of Immune Checkpoint Inhibition-A Pooled Analysis of Patients with Advanced Melanoma. J. Clin. Oncol. 2019, 37, 3350–3358. [Google Scholar] [CrossRef] [PubMed]
- Regan, M.M.; Jegede, O.A.; Mantia, C.M.; Powles, T.; Werner, L.; Motzer, R.J.; Tannir, N.M.; Lee, C.H.; Tomita, Y.; Voss, M.H.; et al. Treatment-free Survival after Immune Checkpoint Inhibitor Therapy versus Targeted Therapy for Advanced Renal Cell Carcinoma: 42-Month Results of the CheckMate 214 Trial. Clin. Cancer Res. 2021, 27, 6687–6695. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F. Conditional Survival and 5-Year Follow-Up in CheckMate 214: First-Line Nivolumab Plus Ipilimumab versus Sunitinib in Advanced Renal Cell Carcinoma. In Proceedings of the International Kidney Cancer Symposium (IKCS), Austin, TX, USA, 5–6 November 2021. [Google Scholar]
- Atkins, M.B.; Jegede, O.A.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Stein, M.; Sosman, J.A.; Alter, R.; Plimack, E.R.; Ornstein, M.; et al. Phase II Study of Nivolumab and Salvage Nivolumab/Ipilimumab in Treatment-Naive Patients with Advanced Clear Cell Renal Cell Carcinoma (HCRN GU16-260-Cohort A). J. Clin. Oncol. 2022, 373, JCO-21. [Google Scholar] [CrossRef] [PubMed]
- Tykodi, S.S.; Donskov, F.; Lee, J.-L.; Szczylik, C.; Malik, J.; Alekseev, B.Y.; Larkin, J.M.G.; Matveev, V.B.; Gafanov, R.; Tomczak, P.; et al. First-line pembrolizumab (pembro) monotherapy in advanced clear cell renal cell carcinoma (ccRCC): Updated results for KEYNOTE-427 cohort A. J. Clin. Oncol. 2019, 37, 4570. [Google Scholar] [CrossRef]
- Motzer, R.J.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Alekseev, B.Y.; Lee, J.L.; Suarez, C.; Stroyakovskiy, D.; De Giorgi, U.; et al. Final Overall Survival and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma. JAMA Oncol. 2022, 8, 275–280. [Google Scholar] [CrossRef]
- McKay, R.R.; McGregor, B.A.; Xie, W.; Braun, D.A.; Wei, X.; Kyriakopoulos, C.E.; Zakharia, Y.; Maughan, B.L.; Rose, T.L.; Stadler, W.M.; et al. Optimized Management of Nivolumab and Ipilimumab in Advanced Renal Cell Carcinoma: A Response-Based Phase II Study (OMNIVORE). J. Clin. Oncol. 2020, 38, 4240–4248. [Google Scholar] [CrossRef]
- Lee, C.H.; Shah, A.Y.; Rasco, D.; Rao, A.; Taylor, M.H.; Di Simone, C.; Hsieh, J.J.; Pinto, A.; Shaffer, D.R.; Girones Sarrio, R.; et al. Lenvatinib plus pembrolizumab in patients with either treatment-naive or previously treated metastatic renal cell carcinoma (Study 111/KEYNOTE-146): A phase 1b/2 study. Lancet Oncol. 2021, 22, 946–958. [Google Scholar] [CrossRef]
- Braun, D.A.; Ishii, Y.; Walsh, A.M.; Van Allen, E.M.; Wu, C.J.; Shukla, S.A.; Choueiri, T.K. Clinical Validation of PBRM1 Alterations as a Marker of Immune Checkpoint Inhibitor Response in Renal Cell Carcinoma. JAMA Oncol. 2019, 5, 1631–1633. [Google Scholar] [CrossRef]
- Liu, X.D.; Kong, W.; Peterson, C.B.; McGrail, D.J.; Hoang, A.; Zhang, X.; Lam, T.; Pilie, P.G.; Zhu, H.; Beckermann, K.E.; et al. PBRM1 loss defines a nonimmunogenic tumor phenotype associated with checkpoint inhibitor resistance in renal carcinoma. Nat. Commun. 2020, 11, 2135. [Google Scholar] [CrossRef] [PubMed]
- Vano, Y.A.; Elaidi, R.; Bennamoun, M.; Chevreau, C.; Borchiellini, D.; Pannier, D.; Maillet, D.; Gross-Goupil, M.; Tournigand, C.; Laguerre, B.; et al. Nivolumab, nivolumab-ipilimumab, and VEGFR-tyrosine kinase inhibitors as first-line treatment for metastatic clear-cell renal cell carcinoma (BIONIKK): A biomarker-driven, open-label, non-comparative, randomised, phase 2 trial. Lancet Oncol. 2022, 23, 612–624. [Google Scholar] [CrossRef]
- Sarkis, J.; Assaf, J.; Alkassis, M. Biomarkers in renal cell carcinoma: Towards a more selective immune checkpoint inhibition. Transl. Oncol. 2021, 14, 101071. [Google Scholar] [CrossRef] [PubMed]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillere, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Salgia, N.J.; Bergerot, P.G.; Maia, M.C.; Dizman, N.; Hsu, J.; Gillece, J.D.; Folkerts, M.; Reining, L.; Trent, J.; Highlander, S.K.; et al. Stool Microbiome Profiling of Patients with Metastatic Renal Cell Carcinoma Receiving Anti-PD-1 Immune Checkpoint Inhibitors. Eur. Urol. 2020, 78, 498–502. [Google Scholar] [CrossRef]
- Dizman, N.; Meza, L.; Bergerot, P.; Alcantara, M.; Dorff, T.; Lyou, Y.; Frankel, P.; Cui, Y.; Mira, V.; Llamas, M.; et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: A randomized phase 1 trial. Nat. Med. 2022, 28, 704–712. [Google Scholar] [CrossRef]
- Choi, W.S.W.; Boland, J.; Lin, J. Hypoxia-Inducible Factor-2alpha as a Novel Target in Renal Cell Carcinoma. J. Kidney Cancer VHL 2021, 8, 1–7. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel-Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Bauer, T.M.; Papadopoulos, K.P.; Plimack, E.R.; Merchan, J.R.; McDermott, D.F.; Michaelson, M.D.; Appleman, L.J.; Thamake, S.; Perini, R.F.; et al. Inhibition of hypoxia-inducible factor-2alpha in renal cell carcinoma with belzutifan: A phase 1 trial and biomarker analysis. Nat. Med. 2021, 27, 802–805. [Google Scholar] [CrossRef]
- Tannir, N.M.; Cho, D.C.; Diab, A.; Sznol, M.; Bilen, M.A.; Balar, A.V.; Grignani, G.; Puente, E.; Tang, L.; Chien, D.; et al. Bempegaldesleukin plus nivolumab in first-line renal cell carcinoma: Results from the PIVOT-02 study. J. Immunother. Cancer 2022, 10, e004419. [Google Scholar] [CrossRef]
- Kim, I.H.; Lee, H.J. The Frontline Immunotherapy-Based Treatment of Advanced Clear Cell Renal Cell Carcinoma: Current Evidence and Clinical Perspective. Biomedicines 2022, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Kiweler, N.; Brill, B.; Wirth, M.; Breuksch, I.; Laguna, T.; Dietrich, C.; Strand, S.; Schneider, G.; Groner, B.; Butter, F.; et al. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch. Toxicol. 2018, 92, 2227–2243. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, R.; Thomas, S.; Pawlowska, N.; Bartelink, I.; Grabowsky, J.; Jahan, T.; Cripps, A.; Harb, A.; Leng, J.; Reinert, A.; et al. Inhibiting Histone Deacetylase as a Means to Reverse Resistance to Angiogenesis Inhibitors: Phase I Study of Abexinostat Plus Pazopanib in Advanced Solid Tumor Malignancies. J. Clin. Oncol. 2017, 35, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Pili, R.; Liu, G.; Chintala, S.; Verheul, H.; Rehman, S.; Attwood, K.; Lodge, M.A.; Wahl, R.; Martin, J.I.; Miles, K.M.; et al. Combination of the histone deacetylase inhibitor vorinostat with bevacizumab in patients with clear-cell renal cell carcinoma: A multicentre, single-arm phase I/II clinical trial. Br. J. Cancer 2017, 116, 874–883. [Google Scholar] [CrossRef]
Active Surveillance | ||||
---|---|---|---|---|
Study | Study Setting (sample size) | Patient population and characteristics | Median follow-up | Derived benefit (months) |
Rini et al. [6] | Prospective phase II trial (n = 52) | Treatment-naive, asymptomatic, metastatic RCC.
| 38.1 months | Median time on AS 14.9 m (95% CI, 10.6–25.0) Median OS from start of surveillance 44.5 m (95% CI, 37.6 m-NR) |
MaRCC trial [7] | Prospective observational study (n = 504, 143 on AS) | Treatment-naïve metastatic RCC
| 33.0 months | Median OS was NR (95% CI, 122 months—NE) Kaplan–Meier estimate for living at 3 years: 84% |
Cytoreductive Nephrectomy | ||||
Study | Study setting (sample size) | Trial design | Median Follow-up | Derived benefit (months) |
CARMENA [8] | Randomized phase III, non-inferiority trial of clear cell RCC (n = 576) MSKCC poor risk 43% | Nephrectomy followed by sunitinib vs. Receive sunitinib alone | 50.9 months | Median OS (95% CI) Upfront CN: 15.6 m (95% CI, 12.5–18.6) Median OS sunitinib alone: 19.8 m (95% CI, 15.6–24.8) HR 0.97 (0.79–1.19) |
SURTIME [9] | Randomized phase III, superiority trial of clear cell RCC (n = 458) MSKCC poor risk 11% | Immediate CN followed by sunitinib vs. Treatment with 3 cycles of sunitinib followed by CN | 3.3 years | Median OS upfront CN: 15.0 m (95% CI, 9.3–29.5) Median OS upfront sunitinib: 32.4 m (95% CI, 14.5–65.3) HR 0.57 (0.34–0.95) |
Metastasis-Directed Therapy | ||||
Study | Study setting (sample size) | Study design | Median Follow-up | Derived benefit (months) |
SBRT [10] | Single-arm Phase II trial of metastatic clear cell RCC with ≤5 sites of metastases and prior nephrectomy (n = 30) | Treatment with SBRT (defined as ≤5 fractions with ≥7 Gy per fraction) to all lesions and maintained off systemic therapy | 17.5 months | Median PFS survival was 22.7 months (95% CI, 10.4–NR) 1-year PFS 64% (95% CI, 48–85) |
Metastasectomy [11] | Observational study of registry patients who underwent partial or radical nephrectomy with occurrence of metastasis treated with complete metastasectomy (n = 403, 147 with complete metastasectomy) | Associations of complete metastasectomy with cancer specific and OS were assessed in the era of TKI and ICB | 3.9 years | Two-year cancer-specific survival was significantly greater in patients with vs. without complete metastasectomy (84% vs. 54%, p < 0.001) HR for death from RCC 0.47 (95% CI, 0.34–0.65, p < 0.001) |
Intention-to-Treat Population | IMDC Risk Group | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Favorable | Intermediate/Poor | |||||||||||
mOS [HR (95% CI)] | mPFS [HR (95% CI)] | ORR (%) | Median DOR (Months) | CR (%) | Median TTR (Months) | mOS [HR (95% CI)] | mPFS [HR (95% CI)] | ORR (%) | mOS [HR (95% CI)] | mPFS [HR (95% CI)] | ORR (%) | |
Checkmate 214 # Ipi/Nivo vs. Sunitinib | 56.0 vs. 38.0 [0.72 (0.62–0.85)] | 12.0 vs. 12.0 [0.86 (0.73–1.01)] | 39.12 vs. 32.3 | NR vs. 25.0 | 10.7 vs. 2.6 * | 2.8 vs. 4.0 * | 74.0 vs. 68.0 [0.94 (0.65–1.37)] | 12.4 vs. 28.9 [1.60 (1.1–2.3)] | 30.1 vs. 52.6 | 47.0 vs. 27.0 [0.68 (0.58–0.81)] | 12.0 vs. 8.0 [0.73 (0.61–0.87)] | 42.1 vs. 27.2 |
KEYNOTE 426 ## Pembro/Axi vs. Sunitinib | 45.7 vs. 40.1 [0.73 (0.60–0.88)] | 15.7 vs. 11.1 [0.68 (0.58–0.80)] | 60.4 vs. 39.6 | 23.6 vs. 15.3 | 10.0 vs. 3.5 | 2.8 vs. 3.0 | NR [1.17 (0.76–1.80)] | 20.7 vs. 17.8 [0.76 (0.56–1.03)] | 68.8 vs. 50.4 | Not reported [0.64 (0.52–0.80)] | 13.8 vs. 8.2 [0.67 (0.55–0.81)] | 56.5 vs. 34.9 |
CheckMate 9ER Nivo/Cabo vs. Sunitinib | NR vs. 29.5 [0.66 (0.50–0.87)] | 17.0 vs. 8.3 [0.52 (0.43–0.64)] | 54.8 vs. 28.4 | 20.2 vs. 11.5 | 9.3 vs. 4.3 | 2.8 vs. 4.5 | NR vs. NR [0.94 (0.46–1.92)] | 24.7 vs. 12.8 [0.58 (0.36–0.93)] | 66.2 vs. 44.4 | Int NR vs. NR [0.74 (0.50–1.08)] | Int 17.5 vs. 8.5 [0.58 (0.45–0.76)] | Int 55.9 vs. 28.7 |
Poor NR vs. 11.2 [0.45 (0.27–0.76)] | Poor 9.9 vs. 4.2 [0.36 (0.23–0.56)] | Poor 37.7 vs. 10.3 | ||||||||||
CLEAR Pembro/Lenvatinib vs. Sunitinib | NR vs. NR [0.66 (0.49–0.88)] | 23.9 vs. 9.2 [0.39 (0.32–0.49)] | 71.0 vs. 36.1 | 25.8 vs. 14.6 | 16.1 vs. 4.2 | 1.94 vs. 1.94 | NR vs. NR [1.15 (0.55–2.40)] | 28.1 vs. 12.9 [0.41 (0.28–0.62)] | 68.2 vs. 50.8 | NR vs. NR [0.58 (0.42–0.80)] | 22.1 vs. 5.9 [0.36 (0.28–0.47)] | 72.4 vs. 28.8 |
Trial | Sample Size | ORR (%) | CR (%) | PFS (Months) | HR PFS (95% CI) | OS (Months) | HR OS (95% CI) |
---|---|---|---|---|---|---|---|
CheckMate 214 | Ipi + Nivo (n = 74) | 61.0 | 19.0 | 26.5 | 0.54 (0.3–0.9) | NR | 0.45 (0.3–0.7) |
Sunitinib (n = 65) | 23.0 | 3.0 | 5.1 | 14.2 | |||
KEYNOTE-426 | Pembro + Axi (n = 46) | 58.8 | 13.0 | NR | 0.52 (0.29–1.00) | NR | 0.58 (0.21–1.59) |
Sunitinib (n = 50) | 31.5 | 2.0 | 8.4 | NR | |||
CheckMate 9ER | Nivo + Cabo (n = 34) | 54.8 | 9.3 | 10.3 | 0.42 (0.23–0.74) | NR | 0.36 (0.17–0.79) |
Sunitinib (n = 41) | 28.4 | 4.3 | 4.2 | 19.7 | |||
CLEAR | Pembro + Lenvatinib (n = 28) | 60.7 | NA | 11.1 | 0.39 (0.18–0.84) | NR | 0.91 (0.32–2.58) |
Sunitinib (n = 21) | 23.8 | NA | 5.5 | NR |
Trial | Disease Setting | Comparator Arm | Treatment | Study Phase | Estimated Completion | Primary Endpoint(s) |
---|---|---|---|---|---|---|
NCT03937210 (COSMIC-313) | Previously untreated advanced or mRCC | Cabozantinib-matched placebo + Nivolumab + Ipilimumab | Cabozantinib + Nivolumab + Ipilimumab | Phase III | March 2025 | PFS |
NCT03873402 (CA209-8Y8) | Advanced RCC | N/A | Nivolumab + Ipilimumab | Phase III | March 2025 | PFS, ORR |
NCT03592472 (RENAVIV) | Locally advanced unrespectable or mRCC | Pazopanib + placebo | Pazopanib + Abexinostat | Phase III | June 2022 | PFS |
NCT04987203 | Advanced RCC | Tivozanib | Tivozanib + Nivolumab; | Phase III | Aug 2025 | PFS |
NCT02811861 (CLEAR) | Advanced RCC | Sunitinib | Arm A: Lenvatinib + Everolimus Arm B: Lenvatinib + Pembrolizumab | Phase III | Oct 2024 | PFS |
NCT03729245 | Untreated advanced RCC | Sunitinib or Cabozantinib | Bempegaldesleukin+ Nivolumab | Phase III | June 2024 | ORR, OS |
NCT04810078 (CheckMate-67T) | Advanced clear cell RCC | Intravenous Nivolumab | Subcutaneous Nivolumab | Phase III | June 2026 | Time-averaged serum conc., trough serum concentration at steady state |
NCT05239728 | Clear cell RCC | Placebo + Pembrolizumab | Belzutifan + Pembrolizumab | Phase III | Jan 2030 | DFS |
NCT03873402 | Advanced RCC | Nivolumab + Ipilimumab | Nivolumab | Phase III | March 2025 | PFS, ORR |
NCT03288532 (RAMPART) | Resected primary RCC at high or intermediate relapse risk | N/A | Arm A: Active monitoring Arm B: Durvalumab Arm C: Durvalumab + Tremelimumab | Phase III | Dec 2034 | DFS, OS |
NCT04394975 | Advanced RCC | Sunitinib | Toripalimab + Axitinib | Phase III | June 2023 | PFS |
NCT03095040 (CONCEPT) | mRCC | Everolimus | Vorolanib + Everolimus | Phase III | Dec 2021 | PFS |
NCT04698213 (TIDE-A) | Untreated mRCC | N/A | Avelumab + Intermittent Axitinib | Phase II | Oct 2024 | ORR |
NCT04976634 (MK-6848-012) | Solid tumors | Pembrolizumab + Lenvatinib | Arm 1: Pembrolizumab + Belzutifan + Lenvatinib | Phase II | August 2026 | DLT, AE, ORR |
NCT03634540 (MK-6482-003) | Advanced clear cell RCC | N/A | Belzutifan + Cabozantinib | Phase II | August 2025 | ORR |
NCT04846920 | Advanced clear cell RCC | N/A | Belzutifan | Phase I | July 2025 | AE, DLT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarrabi, K.K.; Lanade, O.; Geynisman, D.M. Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 4607. https://doi.org/10.3390/cancers14194607
Zarrabi KK, Lanade O, Geynisman DM. Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers. 2022; 14(19):4607. https://doi.org/10.3390/cancers14194607
Chicago/Turabian StyleZarrabi, Kevin K., Oladimeji Lanade, and Daniel M. Geynisman. 2022. "Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma" Cancers 14, no. 19: 4607. https://doi.org/10.3390/cancers14194607
APA StyleZarrabi, K. K., Lanade, O., & Geynisman, D. M. (2022). Determining Front-Line Therapeutic Strategy for Metastatic Clear Cell Renal Cell Carcinoma. Cancers, 14(19), 4607. https://doi.org/10.3390/cancers14194607