Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Cell Lines and Reagents
2.2. Patients and Blood Collection
2.3. Isolation and Enumeration of CAMLs and CTCs
2.4. Validation of CAMLs by CD31 Staining
3. Results
3.1. Identification and Validation of Endometrial CAMLs
3.2. Characterization of Distinctive Morphology of Endometrial CAMLs
3.3. Pathological Parameters of Endometrial CAMLs
3.4. Co-Presence of the Endometrial CAMLs with CTC
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Liu, Q.; Dou, R.; Xiong, B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Molecular cancer 2019, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Qian, B.Z.; Pollard, J.W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Wyckoff, J.B.; Wang, Y.; Lin, E.Y.; Li, J.F.; Goswami, S.; Stanley, E.R.; Segall, J.E.; Pollard, J.W.; Condeelis, J. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007, 67, 2649–2656. [Google Scholar] [CrossRef] [PubMed]
- Condeelis, J.; Pollard, J.W. Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006, 124, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Lin, Y.C.; Yao, P.L.; Yuan, A.; Chen, H.Y.; Shun, C.T.; Tsai, M.F.; Chen, C.H.; Yang, P.C. Tumor-associated macrophages: The double-edged sword in cancer progression. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005, 23, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.L.; Martin, S.S.; Alpaugh, R.K.; Charpentier, M.; Tsai, S.; Bergan, R.C.; Ogden, I.M.; Catalona, W.; Chumsri, S.; Tang, C.M.; et al. Circulating giant macrophages as a potential biomarker of solid tumors. Proc. Natl. Acad. Sci. USA 2014, 111, 3514–3519. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, Y.; Porciani, D.; Mitchem, J.B.; Suvilesh, K.N.; Avella, D.M.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Burke, D.H.; Li, G.; Kaifi, J.T. Tumor-Cell-Macrophage Fusion Cells as Liquid Biomarkers and Tumor Enhancers in Cancer. Int. J. Mol. Sci. 2020, 21, 1872. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.M.; Adams, D.L. Clinical Applications of Cancer-Associated Cells Present in the Blood of Cancer Patients. Biomedicines 2022, 10, 587. [Google Scholar] [CrossRef]
- Gardner, K.P.; Aldakkak, M.; Tang, C.M.; Tsai, S.; Adams, D.L. Circulating stromal cells in resectable pancreatic cancer correlates to pathological stage and predicts for poor clinical outcomes. NPJ Precis. Oncol. 2021, 5, 25. [Google Scholar] [CrossRef]
- Adams, D.L.; Adams, D.K.; He, J.; Kalhor, N.; Zhang, M.; Xu, T.; Gao, H.; Reuben, J.M.; Qiao, Y.; Komaki, R.; et al. Sequential Tracking of PD-L1 Expression and RAD50 Induction in Circulating Tumor and Stromal Cells of Lung Cancer Patients Undergoing Radiotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017, 23, 5948–5958. [Google Scholar] [CrossRef] [Green Version]
- Gironda, D.J.; Adams, D.L.; He, J.; Xu, T.; Gao, H.; Qiao, Y.; Komaki, R.; Reuben, J.M.; Liao, Z.; Blum-Murphy, M.; et al. Cancer associated macrophage-like cells and prognosis of esophageal cancer after chemoradiation therapy. J. Transl. Med. 2020, 18, 413. [Google Scholar] [CrossRef] [PubMed]
- Kuvendjiska, J.; Pitman, M.B.; Martini, V.; Braun, C.; Grebe, K.; Timme, S.; Fichtner-Feigl, S.; Glatz, T.; Schmoor, C.; Guenzle, J.; et al. Cytopathological Heterogeneity of Circulating Tumor Cells in Non-metastatic Esophageal Adenocarcinoma. Anticancer. Res. 2020, 40, 5679–5685. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.M.; Zhu, P.; Li, S.; Makarova, O.V.; Amstutz, P.T.; Adams, D.L. Blood-based biopsies-clinical utility beyond circulating tumor cells. Cytometry. Part A J. Int. Soc. Anal. Cytol. 2018, 93, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Stanton, M.L.; Castle, E.P.; Joseph, R.W.; Adams, D.L.; Li, S.; Amstutz, P.; Tang, C.M.; Ho, T.H. Detection of tumor-associated cells in cryopreserved peripheral blood mononuclear cell samples for retrospective analysis. J. Transl. Med. 2016, 14, 198. [Google Scholar] [CrossRef]
- Sulaiman, R.; De, P.; Aske, J.C.; Lin, X.; Dale, A.; Vaselaar, E.; Koirala, N.; Ageton, C.; Gaster, K.; Plorde, J.; et al. A Laboratory-Friendly CTC Identification: Comparable Double-Immunocytochemistry with Triple-Immunofluorescence. Cancers 2022, 14, 2897. [Google Scholar] [CrossRef]
- Skinner, B.M.; Johnson, E.E. Nuclear morphologies: Their diversity and functional relevance. Chromosoma 2017, 126, 195–212. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- McWhorter, F.Y.; Wang, T.; Nguyen, P.; Chung, T.; Liu, W.F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 2013, 110, 17253–17258. [Google Scholar] [CrossRef]
- Mu, Z.; Benali-Furet, N.; Uzan, G.; Znaty, A.; Ye, Z.; Paolillo, C.; Wang, C.; Austin, L.; Rossi, G.; Fortina, P.; et al. Detection and Characterization of Circulating Tumor Associated Cells in Metastatic Breast Cancer. Int. J. Mol. Sci. 2016, 17, 1665. [Google Scholar] [CrossRef]
- Adams, D.L.; Alpaugh, R.K.; Ho, T.H.; Lin, S.H.; Marks, J.R.; Bergan, R.; Martin, S.S.; Chumsri, S.; Tang, C.-M.; Cristofanilli, M. Abstract 3798: Multiplex phenotyping of circulating cancer associated macrophage-like cells in patients with solid tumors. Cancer Res. 2017, 77, 3798. [Google Scholar] [CrossRef]
- Pawelek, J.M.; Chakraborty, A.K. The cancer cell--leukocyte fusion theory of metastasis. Adv. Cancer Res. 2008, 101, 397–444. [Google Scholar] [CrossRef] [PubMed]
- Clawson, G. The Fate of Fusions. Cells 2018, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Shabo, I.; Midtbo, K.; Andersson, H.; Akerlund, E.; Olsson, H.; Wegman, P.; Gunnarsson, C.; Lindstrom, A. Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction. BMC Cancer 2015, 15, 922. [Google Scholar] [CrossRef] [PubMed]
- Clawson, G.A.; Matters, G.L.; Xin, P.; McGovern, C.; Wafula, E.; dePamphilis, C.; Meckley, M.; Wong, J.; Stewart, L.; D’Jamoos, C.; et al. "Stealth dissemination" of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS ONE 2017, 12, e0184451. [Google Scholar] [CrossRef] [PubMed]
- Clawson, G.A.; Matters, G.L.; Xin, P.; Imamura-Kawasawa, Y.; Du, Z.; Thiboutot, D.M.; Helm, K.F.; Neves, R.I.; Abraham, T. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS ONE 2015, 10, e0134320. [Google Scholar] [CrossRef]
- Rustom, A.; Saffrich, R.; Markovic, I.; Walther, P.; Gerdes, H.H. Nanotubular highways for intercellular organelle transport. Science 2004, 303, 1007–1010. [Google Scholar] [CrossRef]
- Sahu, P.; Jena, S.R.; Samanta, L. Tunneling Nanotubes: A Versatile Target for Cancer Therapy. Curr. Cancer Drug Targets 2018, 18, 514–521. [Google Scholar] [CrossRef]
- Lou, E.; Fujisawa, S.; Morozov, A.; Barlas, A.; Romin, Y.; Dogan, Y.; Gholami, S.; Moreira, A.L.; Manova-Todorova, K.; Moore, M.A. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE 2012, 7, e33093. [Google Scholar] [CrossRef]
- Desir, S.; O’Hare, P.; Vogel, R.I.; Sperduto, W.; Sarkari, A.; Dickson, E.L.; Wong, P.; Nelson, A.C.; Fong, Y.; Steer, C.J.; et al. Chemotherapy-Induced Tunneling Nanotubes Mediate Intercellular Drug Efflux in Pancreatic Cancer. Sci. Rep. 2018, 8, 9484. [Google Scholar] [CrossRef]
- Locati, M.; Curtale, G.; Mantovani, A. Diversity, Mechanisms, and Significance of Macrophage Plasticity. Annu. Rev. Pathol. 2020, 15, 123–147. [Google Scholar] [CrossRef] [Green Version]
- Pawelek, J.; Chakraborty, A.; Lazova, R.; Yilmaz, Y.; Cooper, D.; Brash, D.; Handerson, T. Co-opting macrophage traits in cancer progression: A consequence of tumor cell fusion? Contrib. Microbiol. 2006, 13, 138–155. [Google Scholar] [CrossRef] [PubMed]
- Vignery, A. Macrophage fusion: Molecular mechanisms. Methods Mol. Biol. 2008, 475, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, Y.; Mitchem, J.B.; Suvilesh, K.N.; Avella, D.M.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Deroche, C.B.; Pantel, K.; Li, G.; Kaifi, J.T. Circulating Giant Tumor-Macrophage Fusion Cells Are Independent Prognosticators in Patients With NSCLC. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2020, 15, 1460–1471. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, T.; Hu, R.; Zhu, R.; Li, C.; Ruan, Y.; Xie, X.; Li, Y. Next frontier in tumor immunotherapy: Macrophage-mediated immune evasion. Biomark. Res. 2021, 9, 72. [Google Scholar] [CrossRef]
- Manjunath, Y.; Suvilesh, K.N.; Mitchem, J.B.; Avella Patino, D.M.; Kimchi, E.T.; Staveley-O’Carroll, K.F.; Pantel, K.; Yi, H.; Li, G.; Harris, P.K.; et al. Circulating Tumor-Macrophage Fusion Cells and Circulating Tumor Cells Complement Non-Small-Cell Lung Cancer Screening in Patients With Suspicious Lung-RADS 4 Nodules. JCO Precis. Oncol. 2022, 6, e2100378. [Google Scholar] [CrossRef]
Patient Information | Values * (Values Are % (n) Unless Otherwise Specified)(n = 72) |
---|---|
Age at Surgery (years), median (range) | 65 (43–84) |
ECOG performance status | |
0 | 79% (57) |
1 | 15% (11) |
2 | 0% (0) |
3 | 4% (3) |
4 to 5 | 0% (0) |
Not Available | 1% (1) |
Ethnicity | |
African | 1% (1) |
Caucasian | 99% (71) |
Smoking History | |
Yes | 22% (16) |
No | 78% (56) |
BMI, median (range) | 35.55 (21.9–62.7) |
(A) | ||||
---|---|---|---|---|
Histology * | Values (Values are listed as % (n)) (n = 72) | |||
Benign endometrial polyp | 3% (2) | |||
Carcinosarcoma | 4% (3) | |||
Carcinosarcoma with high-grade serous carcinoma and rhabdomyoma sarcomatous differentiation | 1% (1) | |||
Complex atypical hyperplasia | 3% (2) | |||
Endometrioid adenocarcinoma | 76% (55) | |||
High-grade endometrial adenocarcinoma | 1% (1) | |||
High-grade papillary serous carcinoma | 1% (1) | |||
High-grade mixed endometrial adenocarcinoma, clear cell and serous 50% each | 1% (1) | |||
High-grade serous endometrial adenocarcinoma | 4% (3) | |||
Mixed-cell carcinoma, high-grade (10% serous carcinoma, 90% endometrioid carcinoma) | 1% (1) | |||
Mixed-cell carcinoma, high-grade (90% high-grade serous carcinoma, 10% endometrioid adenocarcinoma) | 1% (1) | |||
Residual carcinosarcoma | 1% (1) | |||
(B) | ||||
Stage * | ||||
I | II | III | IV | NA |
76% (48) | 3% (2) | 14% (9) | 3% (2) | 3% (2) |
Grade * | ||||
1 | 2 | 3 | NA | |
52% (33) | 16% (10) | 24% (15) | 8% (5) | |
Lymph Node Positivity * | ||||
Yes | No | NA | ||
21% (13) | 67% (42) | 13% (8) | ||
Lymphovascular Invasion (LVI) * | ||||
Yes | No | NA | ||
22% (14) | 73% (46) | 5% (3) | ||
Myometrial Invasion * | ||||
Yes | No | NA | ||
82% (52) | 13% (8) | 5% (3) |
Pathological Parameters | % of Patients with Tiny CAMLs only (n = 49) | % of Patients with Both Tiny and Giant CAMLs * (n = 11) |
---|---|---|
Stage I | 78% (38) | 73% (8) |
Stage II | 4% (2) | 0% (0) |
Stage III | 12% (6) | 18% (2) |
Stage IV | 4% (2) | 0% (0) |
No Stage Determined | 2% (1) | 9% (1) |
Grade 1 | 55% (27) | 36% (4) |
Grade 2 | 18% (9) | 9% (1) |
Grade 3 | 20% (10) | 45% (5) |
No Grade Determined | 6% (3) | 9% (1) |
Lymphovascular Invasion Present | 20% (10) | 27% (3) |
Lymphovascular Invasion Absent | 76% (37) | 64% (7) |
Myometrial Invasion 0–25% | 45% (22) | 55% (6) |
Myometrial Invasion 26–50% | 35% (17) | 27% (3) |
Myometrial Invasion 51–75% | 6% (3) | 9% (1) |
Myometrial Invasion 76–100% | 10% (5) | 0% (0) |
Lymph Node-Positive | 20% (10) | 18% (2) |
Lymph Node-Negative | 65% (32) | 82% (9) |
Stage * | |||||
---|---|---|---|---|---|
Size of CAMLs | I | II | III | IV | NA |
Tiny Only | 79% (38) | 100% (2) | 67% (6) | 100% (2) | 50% (1) |
Tiny + Giant | 17% (8) | 0% (0) | 22% (2) | 0% (0) | 50% (1) |
Grade * | |||||
Size of CAMLs | 1 | 2 | 3 | NA | |
Tiny Only | 82% (27) | 90% (9) | 67% (10) | 60% (3) | |
Tiny + Giant | 12% (4) | 10% (1) | 33% (5) | 20% (1) | |
Lymph Node Positivity * | |||||
Size of CAMLs | Yes | No | NA | ||
Tiny Only | 77% (10) | 76% (32) | 88% (7) | ||
Tiny + Giant | 15% (2) | 21% (9) | 0% (0) | ||
Lymphovascular Invasion (LVI) * | |||||
Size of CAMLs | Yes | No | NA | ||
Tiny Only | 71% (10) | 80% (37) | 67% (2) | ||
Tiny + Giant | 21% (3) | 15% (7) | 33% (1) | ||
Myometrial Invasion * | |||||
Size of CAMLs | Yes | No | NA | ||
Tiny Only | 77% (40) | 88% (7) | 67% (2) | ||
Tiny + Giant | 17% (9) | 12% (1) | 33% (1) |
Histology of Tumors of the Patients with Endometrial Cancers | Total # of Patients (n = 62) | Types of CAMLs in Different Histological Types of Endometrial Cancers | Semiquantification of Tiny CAMLs in Different Histological Types of Endometrial Cancers | |||
---|---|---|---|---|---|---|
Tiny + Giant | Tiny Only | Tiny CAML Few | Tiny CAML Frequent | Tiny CAML Abundant | ||
% (n) | % (n) | |||||
Carcinosarcoma | 3 | 33% (1) | 67% (2) | 67% (2) | 33% (1) | 0% (0) |
Carcinosarcoma with high-grade serous carcinoma and rhabdomyoma sarcomatous differentiation | 1 | 0% (0) | 100% (1) | 0% (0) | 0% (0) | 100% (1) |
Complex atypical hyperplasia | 2 | 50% (1) | 50% (1) | 100% (2) | 0% (0) | 0% (0) |
Endometrioid adenocarcinoma | 47 | 13% (6) * | 83% (39) | 47% (22) | 34% (16) | 15% (7) |
High-grade endometrial adenocarcinoma | 1 | 100% (1) | 0% (0) | 100% (1) | 0% (0) | 0% (0) |
High-grade papillary serous carcinoma | 1 | 0% (0) | 100% (1) | 100% (1) | 0% (0) | 0% (0) |
High-grade mixed endometrial adenocarcinoma, clear cell and serous 50% each | 1 | 0% (0) | 100% (1) | 100% (1) | 0% (0) | 0% (0) |
High-grade serous endometrial adenocarcinoma | 3 | 33% (1) | 67% (2) | 33% (1) | 67% (2) | 0% (0) |
Mixed-cell carcinoma, high grade (10% serous, 90% endometrioid) | 1 | 100% (1) | 0% (0) | 100% (1) | 0% (0) | 0% (0) |
Mixed-cell carcinoma, high grade (90% serous, 10% endometrioid) | 1 | 0% (0) | 100% (1) | 0% (0) | 100% (1) | 0% (0) |
Residual carcinosarcoma | 1 | 0% (0) * | 0% (0) | 0% (0) | 0% (0) | 0% (0) |
Name of Marker | CK8,18,19 | EpCAM | CD45 | CD31 | DAPI |
---|---|---|---|---|---|
Specific For | Epithelial Marker: Cytoskeleton | Epithelial Marker: Adhesion Molecule | Leucocyte Common Antigen | Endothelial Cell Marker | Nuclear Morphology |
Filter | FITC | TRITC/PE | Cy5 | TRITC/PE | DAPI |
Color (Natural/Artificial) | Green | Red | Magenta | Red | Blue/Cyan |
CTC | Positive | Positive | Negative | Negative | Positive |
Spiked Tumor Cell (NCI-H441) | Positive | Positive | Negative | Negative | Positive |
WBC | Negative | Negative | Positive | Negative | Positive |
CAML | Positive | Positive | Positive | Positive | Positive |
Endothelial Cell (HUVEC) | Negative/± | Negative | Negative | Positive | Positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sulaiman, R.; De, P.; Aske, J.C.; Lin, X.; Dale, A.; Vaselaar, E.; Ageton, C.; Gaster, K.; Espaillat, L.R.; Starks, D.; et al. Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers. Cancers 2022, 14, 4577. https://doi.org/10.3390/cancers14194577
Sulaiman R, De P, Aske JC, Lin X, Dale A, Vaselaar E, Ageton C, Gaster K, Espaillat LR, Starks D, et al. Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers. Cancers. 2022; 14(19):4577. https://doi.org/10.3390/cancers14194577
Chicago/Turabian StyleSulaiman, Raed, Pradip De, Jennifer C. Aske, Xiaoqian Lin, Adam Dale, Ethan Vaselaar, Cheryl Ageton, Kris Gaster, Luis Rojas Espaillat, David Starks, and et al. 2022. "Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers" Cancers 14, no. 19: 4577. https://doi.org/10.3390/cancers14194577
APA StyleSulaiman, R., De, P., Aske, J. C., Lin, X., Dale, A., Vaselaar, E., Ageton, C., Gaster, K., Espaillat, L. R., Starks, D., & Dey, N. (2022). Identification and Morphological Characterization of Features of Circulating Cancer-Associated Macrophage-like Cells (CAMLs) in Endometrial Cancers. Cancers, 14(19), 4577. https://doi.org/10.3390/cancers14194577