Clinical Testing for Mismatch Repair in Neoplasms Using Multiple Laboratory Methods
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. Microsatellite Instability (MSI) Analysis
2.3. IHC Analysis
2.4. MLH1 Methylation
2.5. Definition of Concordance, Minor Discordance, and Major Discordance
2.6. Classification of Genetic Testing Results in MLH1, MSH2, MSH6, and PMS2
2.7. Statistical Methods
3. Results
3.1. Mismatch Repair Deficiency with PCR and IHC in Solid Neoplasms
3.2. IHC and MSI Analyses Are Concordant in Most Neoplasms
3.3. Null Mutations of MMR Genes and Methylation of the MLH1 Gene Promoter Are Attributable to Most Incidents of dMMR
3.4. Most Incidents of MSI-High Can Be Attributed to Null Mutations of MMR Genes and MLH1 Gene Promoter Methylation
3.5. Most of the Neoplasms with Major Discordance Do Not Have Documented Underlying Genetic/Epigenetic Pathogenic Abnormality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olave, M.C.; Graham, R.P. Mismatch repair deficiency: The what, how and why it is important. Genes Chromosomes Cancer 2021. [Google Scholar] [CrossRef] [PubMed]
- Barrow, E.; Hill, J.; Evans, D.G. Cancer risk in Lynch Syndrome. Fam. Cancer 2013, 12, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Ghidini, M.; Ghidini, A.; Tomasello, G. Outcomes Following Immune Checkpoint Inhibitor Treatment of Patients With Microsatellite Instability-High Cancers: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 1068–1071. [Google Scholar] [CrossRef] [PubMed]
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 2005, 23, 609–618. [Google Scholar] [CrossRef]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Overman, M.J.; McDermott, R.; Leach, J.L.; Lonardi, S.; Lenz, H.J.; Morse, M.A.; Desai, J.; Hill, A.; Axelson, M.; Moss, R.A.; et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol. 2017, 18, 1182–1191. [Google Scholar] [CrossRef]
- Shia, J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J. Mol. Diagn. 2008, 10, 293–300. [Google Scholar] [CrossRef]
- Berg, K.D.; Glaser, C.L.; Thompson, R.E.; Hamilton, S.R.; Griffin, C.A.; Eshleman, J.R. Detection of microsatellite instability by fluorescence multiplex polymerase chain reaction. J. Mol. Diagn. 2000, 2, 20–28. [Google Scholar] [CrossRef]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; de la Chapelle, A.; Ruschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
- Perez-Cabornero, L.; Infante Sanz, M.; Velasco Sampedro, E.; Lastra Aras, E.; Acedo Becares, A.; Miner Pino, C.; Duran Dominguez, M. Frequency of rearrangements in Lynch syndrome cases associated with MSH2: Characterization of a new deletion involving both EPCAM and the 5′ part of MSH2. Cancer Prev. Res. 2011, 4, 1556–1562. [Google Scholar] [CrossRef]
- Abdulfatah, E.; Wakeling, E.; Sakr, S.; Al-Obaidy, K.; Bandyopadhyay, S.; Morris, R.; Feldman, G.; Ali-Fehmi, R. Molecular classification of endometrial carcinoma applied to endometrial biopsy specimens: Towards early personalized patient management. Gynecol. Oncol. 2019, 154, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Antoniotti, C.; Korn, W.M.; Marmorino, F.; Rossini, D.; Lonardi, S.; Masi, G.; Randon, G.; Conca, V.; Boccaccino, A.; Tomasello, G.; et al. Tumour mutational burden, microsatellite instability, and actionable alterations in metastatic colorectal cancer: Next-generation sequencing results of TRIBE2 study. Eur. J. Cancer 2021, 155, 73–84. [Google Scholar] [CrossRef]
- Bacher, J.W.; Flanagan, L.A.; Smalley, R.L.; Nassif, N.A.; Burgart, L.J.; Halberg, R.B.; Megid, W.M.; Thibodeau, S.N. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis. Markers 2004, 20, 237–250. [Google Scholar] [CrossRef]
- Bai, H.; Wang, R.; Cheng, W.; Shen, Y.; Li, H.; Xia, W.; Ding, Z.; Zhang, Y. Evaluation of Concordance Between Deficient Mismatch Repair and Microsatellite Instability Testing and Their Association with Clinicopathological Features in Colorectal Cancer. Cancer Manag. Res. 2020, 12, 2863–2873. [Google Scholar] [CrossRef] [PubMed]
- Chapusot, C.; Martin, L.; Puig, P.L.; Ponnelle, T.; Cheynel, N.; Bouvier, A.M.; Rageot, D.; Roignot, P.; Rat, P.; Faivre, J.; et al. What is the best way to assess microsatellite instability status in colorectal cancer? Study on a population base of 462 colorectal cancers. Am. J. Surg. Pathol. 2004, 28, 1553–1559. [Google Scholar] [CrossRef]
- Cicek, M.S.; Lindor, N.M.; Gallinger, S.; Bapat, B.; Hopper, J.L.; Jenkins, M.A.; Young, J.; Buchanan, D.; Walsh, M.D.; Le Marchand, L.; et al. Quality assessment and correlation of microsatellite instability and immunohistochemical markers among population- and clinic-based colorectal tumors results from the Colon Cancer Family Registry. J. Mol. Diagn. 2011, 13, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Gatius, S.; Velasco, A.; Varela, M.; Cuatrecasas, M.; Jares, P.; Setaffy, L.; Bonhomme, B.; Santon, A.; Lindemann, K.; Croce, S.; et al. Comparison of the Idylla MSI assay with the Promega MSI Analysis System and immunohistochemistry on formalin-fixed paraffin-embedded tissue of endometrial carcinoma: Results from an international, multicenter study. Virchows Arch. 2022. [Google Scholar] [CrossRef]
- Guyot D’Asnieres De Salins, A.; Tachon, G.; Cohen, R.; Karayan-Tapon, L.; Junca, A.; Frouin, E.; Godet, J.; Evrard, C.; Randrian, V.; Duval, A.; et al. Discordance between immunochemistry of mismatch repair proteins and molecular testing of microsatellite instability in colorectal cancer. ESMO Open 2021, 6, 100120. [Google Scholar] [CrossRef]
- Hirotsu, Y.; Nagakubo, Y.; Amemiya, K.; Oyama, T.; Mochizuki, H.; Omata, M. Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clin. Chim. Acta 2020, 502, 207–213. [Google Scholar] [CrossRef]
- Jaffrelot, M.; Fares, N.; Brunac, A.C.; Laurenty, A.P.; Danjoux, M.; Grand, D.; Icher, S.; Meilleroux, J.; Mery, E.; Buscail, E.; et al. An unusual phenotype occurs in 15% of mismatch repair-deficient tumors and is associated with non-colorectal cancers and genetic syndromes. Mod. Pathol. 2022, 35, 427–437. [Google Scholar] [CrossRef]
- Lee, J.H.; Cragun, D.; Thompson, Z.; Coppola, D.; Nicosia, S.V.; Akbari, M.; Zhang, S.; McLaughlin, J.; Narod, S.; Schildkraut, J.; et al. Association between IHC and MSI testing to identify mismatch repair-deficient patients with ovarian cancer. Genet. Test. Mol. Biomark. 2014, 18, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Libera, L.; Sahnane, N.; Carnevali, I.W.; Cimetti, L.; Cerutti, R.; Chiaravalli, A.M.; Riva, C.; Tibiletti, M.G.; Sessa, F.; Furlan, D. Microsatellite analysis of sporadic and hereditary gynaecological cancer in routine diagnostics. J. Clin. Pathol. 2017, 70, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Loughrey, M.B.; McGrath, J.; Coleman, H.G.; Bankhead, P.; Maxwell, P.; McGready, C.; Bingham, V.; Humphries, M.P.; Craig, S.G.; McQuaid, S.; et al. Identifying mismatch repair-deficient colon cancer: Near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 2021, 78, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Malapelle, U.; Parente, P.; Pepe, F.; De Luca, C.; Pisapia, P.; Sgariglia, R.; Nacchio, M.; Gragnano, G.; Russo, G.; Conticelli, F.; et al. Evaluation of Micro Satellite Instability and Mismatch Repair Status in Different Solid Tumors: A Multicenter Analysis in a Real World Setting. Cells 2021, 10, 1878. [Google Scholar] [CrossRef] [PubMed]
- McConechy, M.K.; Talhouk, A.; Li-Chang, H.H.; Leung, S.; Huntsman, D.G.; Gilks, C.B.; McAlpine, J.N. Detection of DNA mismatch repair (MMR) deficiencies by immunohistochemistry can effectively diagnose the microsatellite instability (MSI) phenotype in endometrial carcinomas. Gynecol. Oncol. 2015, 137, 306–310. [Google Scholar] [CrossRef]
- Parente, P.; Malapelle, U.; Angerilli, V.; Balistreri, M.; Lonardi, S.; Pucciarelli, S.; De Luca, C.; Pepe, F.; Russo, G.; Vigliar, E.; et al. MMR profile and microsatellite instability status in colorectal mucinous adenocarcinoma with synchronous metastasis: A new clue for the clinical practice. J. Clin. Pathol. 2022. [Google Scholar] [CrossRef]
- Shimozaki, K.; Hayashi, H.; Tanishima, S.; Horie, S.; Chida, A.; Tsugaru, K.; Togasaki, K.; Kawasaki, K.; Aimono, E.; Hirata, K.; et al. Concordance analysis of microsatellite instability status between polymerase chain reaction based testing and next generation sequencing for solid tumors. Sci. Rep. 2021, 11, 20003. [Google Scholar] [CrossRef]
- Smithgall, M.C.; Remotti, H.; Hsiao, S.J.; Mansukhani, M.; Liu-Jarin, X.; Fernandes, H. Investigation of discrepant mismatch repair immunohistochemistry and microsatellite instability polymerase chain reaction test results for gynecologic cancers using next-generation sequencing. Hum. Pathol. 2022, 119, 41–50. [Google Scholar] [CrossRef]
- Stelloo, E.; Jansen, A.M.L.; Osse, E.M.; Nout, R.A.; Creutzberg, C.L.; Ruano, D.; Church, D.N.; Morreau, H.; Smit, V.; van Wezel, T.; et al. Practical guidance for mismatch repair-deficiency testing in endometrial cancer. Ann. Oncol. 2017, 28, 96–102. [Google Scholar] [CrossRef]
- Timmerman, S.; Van Rompuy, A.S.; Van Gorp, T.; Vanden Bempt, I.; Brems, H.; Van Nieuwenhuysen, E.; Han, S.N.; Neven, P.; Victoor, J.; Laenen, A.; et al. Analysis of 108 patients with endometrial carcinoma using the PROMISE classification and additional genetic analyses for MMR-D. Gynecol. Oncol. 2020, 157, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Ukkola, I.; Nummela, P.; Pasanen, A.; Kero, M.; Lepisto, A.; Kytola, S.; Butzow, R.; Ristimaki, A. Detection of microsatellite instability with Idylla MSI assay in colorectal and endometrial cancer. Virchows Arch. 2021, 479, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, W.; Huang, Y.; Huang, M.; Li, S.; Zhai, X.; Zhao, J.; Gao, C.; Xie, W.; Qin, H.; et al. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer. BMC Cancer 2021, 21, 282. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Huang, Y.; Fang, X.; Liu, C.; Deng, W.; Zhong, C.; Xu, J.; Xu, D.; Yuan, Y. A Novel and Reliable Method to Detect Microsatellite Instability in Colorectal Cancer by Next-Generation Sequencing. J. Mol. Diagn. 2018, 20, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Marsischky, G.T.; Filosi, N.; Kane, M.F.; Kolodner, R. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 1996, 10, 407–420. [Google Scholar] [CrossRef]
- Graham, R.P.; Kerr, S.E.; Butz, M.L.; Thibodeau, S.N.; Halling, K.C.; Smyrk, T.C.; Dina, M.A.; Waugh, V.M.; Rumilla, K.M. Heterogenous MSH6 loss is a result of microsatellite instability within MSH6 and occurs in sporadic and hereditary colorectal and endometrial carcinomas. Am. J. Surg. Pathol. 2015, 39, 1370–1376. [Google Scholar] [CrossRef]
- Pearlman, R.; Markow, M.; Knight, D.; Chen, W.; Arnold, C.A.; Pritchard, C.C.; Hampel, H.; Frankel, W.L. Two-stain immunohistochemical screening for Lynch syndrome in colorectal cancer may fail to detect mismatch repair deficiency. Mod. Pathol. 2018, 31, 1891–1900. [Google Scholar] [CrossRef] [Green Version]
Microsatellite Instability (MSI) | Immunohistochemistry (IHC) | Cases with Discrepancy? | Cases with Major Discrepancy? | Cases with Minor Discrepancy? | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases (%) | ||||||||||||
MSI-High | MSI-Low | MSS | dMMR | Indeter. | Proficient | Yes | No | Yes | No | Yes | No | |
Gastrointestinal (n = 340) | 16(5) | 13(4) | 31(91) | 18(5) | 1(0) | 321(95) | 3(4) | 337(96) | 1(0) | 339(100) | 2(0) | 338(100) |
Colorectal Carcinoma (n = 316) | 15(5) | 10(3) | 291(92) | 16(5) | 1(0) | 299(95) | 2(1) | 314(99) | 0(0) | 316(100) | 2(1) | 314(99) |
Pancreatic Carcinoma (n = 14) | 1(7) | 1(7) | 12(86) | 2(14) | 0(0) | 12(86) | 1(7) | 13(93) | 1(7) | 13(93) | 0(0%) | 14(100) |
Miscellaneous (n = 10) | 0(0) | 2(20) | 8(80) | 0(0) | 0(0) | 10(100) | 0(0) | 10(100) | 0(0) | 10(100) | 0(0%) | 10(100) |
Gynecologic (n = 189) | 21(11) | 7(4) | 161(85) | 21(11) | 3(2) | 165(87) | 8(4) | 181(96) | 3(2) | 186(98) | 5(2) | 184(98) |
Endometrial Carcinoma (n = 133) | 20(15) | 5(4) | 108(81) | 20(15) | 1(1) | 112(84) | 6(7) | 127(93) | 3(2) | 130(98) | 3(2) | 130(98) |
Ovarian Carcinoma (n = 42) | 0(0) | 2(5) | 40(95) | 0(0) | 2(5) | 40(95) | 2(5) | 40(95) | 0(0) | 42(100) | 2(5) | 40(95) |
Miscellaneous (n = 14) | 1(7) | 0(0) | 13(93) | 1(7) | 0(0) | 13(93) | 0(0) | 14(100) | 0(0) | 14(100) | 0(0) | 14(100) |
Genitourinary (n = 144) | 11(8) | 3(2) | 130(90) | 10(7) | 1(1) | 133(92) | 3(2) | 141(98) | 2(1) | 142(9) | 1(1) | 143(99) |
Urothelial Carcinoma (n = 103) | 6(6) | 1(1) | 96(93) | 5(5) | 0(0) | 98(95) | 1(2) | 102(99) | 1(1) | 102(99) | 0(1) | 103(99) |
Prostate Adenocarcinoma (n = 27) | 5(18) | 1(4) | 21(78) | 5(18) | 1(4) | 21(78) | 2(11) | 25(93) | 1(4) | 26(96) | 1(4) | 26(96) |
Miscellaneous (n = 14) | 0(0) | 1(7) | 13(93) | 0(0) | 0(0) | 14(100) | 0(7) | 14(100) | 0(0) | 14(100) | 0(0) | 14(100) |
Endocrine (n = 9) | 0(0) | 0(0) | 9(100) | 1(11) | 0(0) | 8(89) | 1(11) | 8 (89) | 1(11) | 8(89) | 0(0) | 9(89) |
Adrenocortical carcinoma (n = 4) | 0(0) | 0(0) | 4(100) | 0(0) | 0(0) | 4(100) | 0(0) | 4(100) | 0(0) | 4(100) | 0(0) | 4(100) |
Neuroendocrine tumors (n = 5) | 0(0) | 0(0) | 5(100) | 1(20) | 0(0) | 4(80) | 1(20) | 4(80) | 1(20) | 4(80) | 0(20) | 5(100) |
Unknown primary (n = 14) | 1(7) | 0(0) | 13(93) | 3(21) | 0(0) | 11(79) | 2(14) | 12(86) | 2(14) | 12(86) | 0(14) | 14(100) |
(Adenocarcinoma) | ||||||||||||
Other neoplasm (n = 10) | 0(0) | 0(0) | 10(100) | 0(0) | 1(10) | 9(90) | 1(10) | 9(10) | 0(0) | 10(100) | 1(10) | 9(10) |
All (n = 706) | 49(7) | 23(3) | 634(90) | 53(7) | 6(1%) | 647(92) | 18(3) | 688(97) | 9(1) | 697(99) | 9(1) | 697(99) |
Immunohistochemistry (IHC) | Microsatellite Instability (MSI) | ||||
---|---|---|---|---|---|
Loss of MMR | MSI-High (%) | MSI-Low (%) | MSS (%) | Total (%) | |
dMMR | 44(90) * | 3(13) ** | 6(1) *** | 53(8) | |
MLH1/PMS2 | 26(53) * | 2(9) ** | 1(0) *** | 29(4) | |
MSH2/MSH6 | 10(20) * | 0(0) | 3(0) *** | 13(2) | |
MLH1/MSH2 | 1(2) * | 0(0) | 0(0) | 1(0) | |
MSH2 | 3(6) * | 0(0) | 0(0) | 3(0) | |
MSH6 | 1(2) * | 1(4) ** | 2(0) *** | 4(1) | |
PMS2 | 3(6) * | 0(0) | 0(0) | 3(0) | |
Indeterminate | 2(4) ** | 1(4) ** | 3(0) ** | 6(1)s | |
Proficient | 3(6) *** | 19(83) | 625(99) * | 647(92) | |
Total | 49(100) | 23(100) | 634(100) | 706(100) |
Cases with Major Discordance | |||
---|---|---|---|
MSI Analysis | IHC Analysis | NGS Results (Interpretation) | Tumor Histology |
MSI-High | pMMR | NM_000179.2(MSH6): c.818G > T p.G273V (germline VUS) | Endometrial Carcinoma |
MSI-High | pMMR | MLH1 Promoter Methylation (somatic epigenetic silencing) | Endometrial Carcinoma |
MSI-High | pMMR | NM_000179.2(MSH6): c.1483C > T p.R495Ter (somatic pathogenic null) NM_000179.2(MSH6): c.3577_3581del. p.E1193fs*2 (germline pathogenic null) | Urothelial Carcinoma |
MSS | dMMR (Loss of MSH6) | No mutations | Endometrial Carcinoma |
MSS | dMMR (Loss of MSH6) | NM_000179.2(MSH6): c.3037_3038dupAA.p.K1014fs (somatic pathogenic null) | Neuroendocrine Carcinoma |
MSS | dMMR (Loss of MSH2/MSH6) | NM_000179.2(MSH6): c.3260C > G p.P1087R (germline VUS) | Pancreatic Carcinoma |
MSS | dMMR (Loss of MSH2/MSH6) | No mutations | Prostate Adenocarcinoma |
MSS | dMMR (Loss of MLH1/PMS2) | No mutations | Epithelioid neoplasm of unknown primary |
MSS | dMMR (Loss of MSH2/MSH6 | No mutations | Adenocarcinoma of unknown primary |
CASES WITH MINOR DISCORDANCE | |||
MSI-High | Indeterminate (questionable weak expression of MSH2 and MSH6) | NM_000179.2(MSH6)c.2859del p.E953fs (somatic pathogenic null) NM_000179.2(MSH6):c.1444C > pR482Ter (somatic pathogenic null) NM_000179.2(MSH6): c.3984_3987dupGTCA p.L1330fs*12 (germline pathogenic null) | Prostate Adenocarcinoma |
MSI-High | Indeterminate (questionable MSH6 expression and IHC staining was inadequate) | NM_000251.2(MSH2): c.1231A > T p.I411L (somatic VUS) NM_000251.2(MSH2): c.214G > T p.A72S (somatic VUS) | Endometrial Carcinoma |
MSI-Low | dMMR (Loss of MLH1/PMS2) | MLH1 Promoter Methylation (somatic epigenetic silencing) | Endometrial Carcinoma |
MSI-Low | dMMR (Loss of MSH6) | No mutations | Colorectal Carcinoma |
MSI-Low | dMMR (Loss of MLH1/PMS2) | MLH1 Promoter Methylation (somatic epigenetic silencing) | Endometrial Carcinoma |
MSI-Low | Indeterminate (questionable MSH6 loss) | No mutations | Colorectal Carcinoma |
MSS | Indeterminate (strong cytoplasmic positivity for MLH1, but nuclei were negative) | No mutations | Melanoma |
MSS | Indeterminate (focal weak nuclear staining for MSH2/MSH6 but no positive internal control) | No mutations | Ovarian Carcinoma |
MSS | Indeterminate (30% of cells were negative for MLH1 and PMS2) | NM_000251.3(MSH2):c.74G > A. p.G25D (germline VUS) | Ovarian Carcinoma |
MMR Gene Mutations (and Epigenetic Changes) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Somatic/Germline | |||||||||||||
MLH1 Methylation and Null Mutations | Missense Mutations | ||||||||||||
MLH1 Methylation | MLH1-Null | MSH2-Null | MSH6-Null | PMS2-Null | Total Null | MLH1-VUS | MSH2-VUS | MSH6 VUS | PMS2-VUS | MSH2-LP | Total Missense | All Cases | |
IHC Patterns | |||||||||||||
dMMR | 19/0 | 2/0 | 6/3 | 3/1 | 2/1 | 30/5 | 0/0 | 1/0 | 1/1 | 2/0 | 1/0 | 5/0 | 53 |
MLH1/PMS2 | 19/0 | 2/0 | 0/0 | 1/1 | 0/0 | * 20/1 | 0/0 | 0/0 | 0/0 | 1/0 | 0/0 | 1/0 | 29 |
MSH2/MSH6 | 0/0 | 0/0 | 5/1 | 1/0 | 0/0 | 6/1 | 0/0 | 0/0 | 0/1 | 0/0 | 1/0 | 2/0 | 13 |
MLH1/MSH2 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 1/0 | 0/0 | 0/0 | 0/0 | 0/0 | 1 |
MSH2 | 0/0 | 0/0 | 1/2 | 0/0 | 0/0 | 1/2 | 0/0 | 0/0 | 1/0 | 0/0 | 0/0 | 1/0 | 3 |
MSH6 | 0/0 | 0/0 | 0/0 | 1/0 | 0/0 | 1/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 0/0 | 4 |
PMS2 | 0/0 | 0/0 | 0/0 | 0/0 | 2/1 | 2/1 | 0/0 | 0/0 | 0/0 | 1/0 | 0/0 | 1/0 | 3 |
Indeterminate | 0/0 | 0/0 | 0/0 | 1/1 | 0/0 | 1/1 | 0/0 | 1/1 | 0/0 | 0/0 | 0/0 | 1/0 | 6 |
Proficient | 1/0 | 0/0 | 2/0 | 2/1 | 1/0 | 6/1 | 3/8 | 8/7 | 6/9 | 0/5 | 0/0 | 17/30 | 647 |
All | 20/0 | 2/0 | 8/3 | 6/3 | 3/1 | 37/7 | 3/8 | 10/8 | 7/10 | 2/5 | 1/0 | 23/31 | 706 |
MSI Analysis | |||||||||||||
MSI-High | 18/0 | 2/0 | 6/3 | 4/3 | 2/1 | * 30/7 | 0/0 | 2/0 | 1/1 | 2/0 | 1/0 | 6/1 | 49 |
MSI-Low | 2/0 | 0/0 | 0/0 | 0/0 | 0/0 | 2/0 | 0/1 | 2/0 | 0/0 | 0/0 | 0/0 | 2/1 | 23 |
MSS | 0/0 | 0/0 | 2/0 | 2/0 | 1/0 | 5/0 | 3/7 | 6/8 | 6/9 | 0/5 | 0/0 | 15/29 | 634 |
All | 20/0 * | 2/0 | 8/3 | 6/ | 3/1 | 37/7 | 3/8 | 10/8 | 7/10 | 2/5 | 1/0 | 23/31 | 706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.K.; Chen, H.; Roy-Chowdhuri, S.; Rashid, A.; Alvarez, H.; Routbort, M.; Patel, K.P.; Luthra, R.; Medeiros, L.J.; Toruner, G.A. Clinical Testing for Mismatch Repair in Neoplasms Using Multiple Laboratory Methods. Cancers 2022, 14, 4550. https://doi.org/10.3390/cancers14194550
Yang RK, Chen H, Roy-Chowdhuri S, Rashid A, Alvarez H, Routbort M, Patel KP, Luthra R, Medeiros LJ, Toruner GA. Clinical Testing for Mismatch Repair in Neoplasms Using Multiple Laboratory Methods. Cancers. 2022; 14(19):4550. https://doi.org/10.3390/cancers14194550
Chicago/Turabian StyleYang, Richard K., Hui Chen, Sinchita Roy-Chowdhuri, Asif Rashid, Hector Alvarez, Mark Routbort, Keyur P. Patel, Raja Luthra, L. Jeffrey Medeiros, and Gokce A. Toruner. 2022. "Clinical Testing for Mismatch Repair in Neoplasms Using Multiple Laboratory Methods" Cancers 14, no. 19: 4550. https://doi.org/10.3390/cancers14194550
APA StyleYang, R. K., Chen, H., Roy-Chowdhuri, S., Rashid, A., Alvarez, H., Routbort, M., Patel, K. P., Luthra, R., Medeiros, L. J., & Toruner, G. A. (2022). Clinical Testing for Mismatch Repair in Neoplasms Using Multiple Laboratory Methods. Cancers, 14(19), 4550. https://doi.org/10.3390/cancers14194550