Update in Molecular Testing for Intraocular Lymphoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Vitreous Biopsy
3. Cytological Evaluation
4. Immunohistochemistry and Flow Cytometry
5. Cytokine Analysis (IL-6 and IL-10)
6. Molecular Analysis
6.1. B- and T-Cell Receptor Clonality
6.2. B-Cell Lymphoma 2 (BCL2) Translocation
6.3. Myeloid Differentiation Primary Response 88 (MYD88)
7. Perioperative Tissue Handling
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chan, C.C.; Rubenstein, J.L.; Coupland, S.E.; Davis, J.L.; Harbour, J.W.; Johnston, P.B.; Cassoux, N.; Touitou, V.; Smith, J.R.; Batchelor, T.T.; et al. Primary vitreoretinal lymphoma: A report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist 2011, 16, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Raval, V.; Binkley, E.; Aronow, M.E.; Valenzuela, J.; Peereboom, D.M.; Singh, A.D. Primary central nervous system lymphoma-ocular variant: An interdisciplinary review on management. Surv. Ophthalmol. 2021, 66, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Vogel, M.H.; Font, R.L.; Zimmerman, L.E.; Levine, R.A. Reticulum cell sarcoma of the retina and uvea. Report of six cases and review of the literature. Am. J. Ophthalmol. 1968, 66, 205–215. [Google Scholar] [CrossRef]
- Raju, V.K.; Green, W.R. Reticulum cell sarcoma of the uvea. Ann. Ophthalmol. 1982, 14, 555–560. [Google Scholar] [PubMed]
- Machemer, R.; Buettner, H.; Norton, E.W.; Parel, J.M. Vitrectomy: A pars plana approach. Trans. Am. Acad Ophthalmol. Otolaryngol. 1971, 75, 813–820. [Google Scholar] [PubMed]
- Amaro, M.H.; Muccioli, C.; Abreu, M.T. Ocular masquerade syndrome due to intraocular lymphoma--two forms of retinal pigment epithelium involvement: Case reports. Arq. Bras. Oftalmol. 2007, 70, 521–525. [Google Scholar] [CrossRef]
- Zhuang, L.; Lai, J.; Chen, K.; Ding, T.; Yuan, Y.; Ma, Y.; Kang, H.; Lin, Z.; Fan, N.; Ma, J.; et al. Intraocular involvement is associated with a high risk of disease relapse in primary central nervous system lymphoma. Oncol. Rep. 2019, 41, 397–404. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Thaung, C.; Pavesio, C.; Lightman, S.; Westcott, M.; Okhravi, N.; Aylward, W.; Charteris, D.; da Cruz, L. The Role of Chorioretinal Biopsy in the Diagnosis of Intraocular Lymphoma. Am. J. Ophthalmol. 2015, 160, 1127–1132. [Google Scholar] [CrossRef]
- Parver, L.M.; Font, R.L. Malignant lymphoma of the retina and brain. Initial diagnosis by cytologic examination of vitreous aspirate. Arch. Ophthalmol. 1979, 97, 1505–1507. [Google Scholar] [CrossRef]
- Fend, F.; Ferreri, A.J.; Coupland, S.E. How we diagnose and treat vitreoretinal lymphoma. Br. J. Haematol. 2016, 173, 680–692. [Google Scholar] [CrossRef]
- Hassan, M.; Heiferman, M.J.; Mruthyunjaya, P. Biopsy Techniques for Intraocular Lymphoma. In Ocular and Adnexal Lymphoma; Raval, V.R., Mruthyunjaya, P., Singh, A.D., Eds.; Springer Nature: Chennai, India, 2022. [Google Scholar]
- Gonzales, J.A.; Chan, C.C. Biopsy techniques and yields in diagnosing primary intraocular lymphoma. Int. Ophthalmol. 2007, 27, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Akpek, E.K.; Ahmed, I.; Hochberg, F.H.; Soheilian, M.; Dryja, T.P.; Jakobiec, F.A.; Foster, C.S. Intraocular-central nervous system lymphoma: Clinical features, diagnosis, and outcomes. Ophthalmology 1999, 106, 1805–1810. [Google Scholar] [CrossRef]
- Davis, J.L.; Miller, D.M.; Ruiz, P. Diagnostic testing of vitrectomy specimens. Am. J. Ophthalmol. 2005, 140, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Kanavi, M.R.; Soheilian, M.; Hosseini, S.B.; Azari, A.A. 25-gauge transconjunctival diagnostic vitrectomy in suspected cases of intraocular lymphoma: A case series and review of the literature. Int. J. Ophthalmol. 2014, 7, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Mruthyunjaya, P.; Jumper, J.M.; McCallum, R.; Patel, D.J.; Cox, T.A.; Jaffe, G.J. Diagnostic yield of vitrectomy in eyes with suspected posterior segment infection or malignancy. Ophthalmology 2002, 109, 1123–1129. [Google Scholar] [CrossRef]
- Santos, M.C.; Jiang, A.; Li, A.S.; Rao, P.K.; Wilson, B.; Harocopos, G.J. Vitreoretinal Lymphoma: Optimizing Diagnostic Yield and Accuracy. Am. J. Ophthalmol. 2021, 236, 120–129. [Google Scholar] [CrossRef]
- Yeh, S.; Weichel, E.D.; Faia, L.J.; Albini, T.A.; Wroblewski, K.K.; Stetler-Stevenson, M.; Ruiz, P.; Sen, H.N.; Chan, C.C.; Nussenblatt, R.B. 25-Gauge transconjunctival sutureless vitrectomy for the diagnosis of intraocular lymphoma. Br. J. Ophthalmol. 2010, 94, 633–638. [Google Scholar] [CrossRef]
- Hwang, C.S.; Yeh, S.; Bergstrom, C.S. Diagnostic vitrectomy for primary intraocular lymphoma: When, why, how? Int. Ophthalmol. Clin. 2014, 54, 155–171. [Google Scholar] [CrossRef]
- Palexas, G.N.; Green, W.R.; Goldberg, M.F.; Ding, Y. Diagnostic pars plana vitrectomy report of a 21-year retrospective study. Trans. Am. Ophthalmol. Soc. 1995, 93, 281–308; discussion 308–314. [Google Scholar]
- Levasseur, S.D.; Rahhal, F.M. Travel to high mountain elevations following vitrectomy with intraocular gas. Retina 2013, 33, 1456–1461. [Google Scholar] [CrossRef]
- Kimura, K.; Usui, Y.; Goto, H.; Japanese Intraocular Lymphoma Study, G. Clinical features and diagnostic significance of the intraocular fluid of 217 patients with intraocular lymphoma. Jpn. J. Ophthalmol. 2012, 56, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Sugita, S.; Takase, H.; Sugamoto, Y.; Arai, A.; Miura, O.; Mochizuki, M. Diagnosis of intraocular lymphoma by polymerase chain reaction analysis and cytokine profiling of the vitreous fluid. Jpn. J. Ophthalmol. 2009, 53, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhao, Z.; Chang, Q. Evaluation of cytologic specimens obtained during experimental vitreous biopsy using B-cell lymphoma line. Eur. J. Ophthalmol. 2014, 24, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Char, D.H.; Ljung, B.M.; Deschenes, J.; Miller, T.R. Intraocular lymphoma: Immunological and cytological analysis. Br. J. Ophthalmol. 1988, 72, 905–911. [Google Scholar] [CrossRef]
- Coupland, S.E. Vitreous biopsy: Specimen preparation and interpretation. Monogr. Clin. Cytol. 2012, 21, 61–71. [Google Scholar] [CrossRef]
- Davis, J.L. Intraocular lymphoma: A clinical perspective. Eye 2013, 27, 153–162. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, D.; Wang, V.M.; Sen, H.N.; Chan, C.C. Molecular biomarkers for the diagnosis of primary vitreoretinal lymphoma. Int. J. Mol. Sci. 2011, 12, 5684–5697. [Google Scholar] [CrossRef]
- Levasseur, S.D.; Wittenberg, L.A.; White, V.A. Vitreoretinal lymphoma: A 20-year review of incidence, clinical and cytologic features, treatment, and outcomes. JAMA Ophthalmol. 2013, 131, 50–55. [Google Scholar] [CrossRef]
- Missotten, T.; Tielemans, D.; Bromberg, J.E.; van Hagen, P.M.; van Lochem, E.G.; van Dongen, J.J.; Baarsma, G.S.; Langerak, A.W. Multicolor flowcytometric immunophenotyping is a valuable tool for detection of intraocular lymphoma. Ophthalmology 2013, 120, 991–996. [Google Scholar] [CrossRef]
- De Hoog, J.; Dik, W.A.; Lu, L.; Heezen, K.C.; Ten Berge, J.C.; Swagemakers, S.M.A.; van der Spek, P.J.; van Dongen, J.J.M.; van der Velden, V.H.J.; Rothova, A.; et al. Combined cellular and soluble mediator analysis for improved diagnosis of vitreoretinal lymphoma. Acta Ophthalmol. 2019, 97, 626–632. [Google Scholar] [CrossRef]
- Wolf, L.A.; Reed, G.F.; Buggage, R.R.; Nussenblatt, R.B.; Chan, C.C. Vitreous cytokine levels. Ophthalmology 2003, 110, 1671–1672. [Google Scholar] [CrossRef]
- Ohta, K.; Sano, K.; Imai, H.; Kikuchi, T. Cytokine and molecular analyses of intraocular lymphoma. Ocul. Immunol. Inflamm. 2009, 17, 142–147. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.W.; Kim, H.; Lee, C.S.; Kim, M.; Lee, S.C. Differential Diagnosis for Vitreoretinal Lymphoma with Vitreoretinal Findings, Immunoglobulin Clonality Tests, and Interleukin Levels. Retina 2019, 39, 1165–1176. [Google Scholar] [CrossRef] [PubMed]
- Cassoux, N.; Giron, A.; Bodaghi, B.; Tran, T.H.; Baudet, S.; Davy, F.; Chan, C.C.; Lehoang, P.; Merle-Beral, H. IL-10 measurement in aqueous humor for screening patients with suspicion of primary intraocular lymphoma. Investig. Ophthalmol. Vis. Sci. 2007, 48, 3253–3259. [Google Scholar] [CrossRef] [PubMed]
- Hiemcke-Jiwa, L.S.; Ten Dam-van Loon, N.H.; Leguit, R.J.; Nierkens, S.; Ossewaarde-van Norel, J.; de Boer, J.H.; Roholl, F.F.; de Weger, R.A.; Huibers, M.M.H.; de Groot-Mijnes, J.D.F.; et al. Potential Diagnosis of Vitreoretinal Lymphoma by Detection of MYD88 Mutation in Aqueous Humor With Ultrasensitive Droplet Digital Polymerase Chain Reaction. JAMA Ophthalmol. 2018, 136, 1098–1104. [Google Scholar] [CrossRef]
- Bonzheim, I.; Giese, S.; Deuter, C.; Susskind, D.; Zierhut, M.; Waizel, M.; Szurman, P.; Federmann, B.; Schmidt, J.; Quintanilla-Martinez, L.; et al. High frequency of MYD88 mutations in vitreoretinal B-cell lymphoma: A valuable tool to improve diagnostic yield of vitreous aspirates. Blood 2015, 126, 76–79. [Google Scholar] [CrossRef]
- Pulido, J.S.; Salomao, D.R.; Frederick, L.A.; Viswanatha, D.S. MyD-88 L265P mutations are present in some cases of vitreoretinal lymphoma. Retina 2015, 35, 624–627. [Google Scholar] [CrossRef]
- Pulido, J.S.; Raja, H.; Vile, R.G.; Salomao, D.R.; Viswanatha, D.S. Mighty MyD88 in Health and Disease. Retina 2016, 36, 429–431. [Google Scholar] [CrossRef]
- Raja, H.; Salomao, D.R.; Viswanatha, D.S.; Pulido, J.S. Prevalence of Myd88 L265p Mutation in Histologically Proven, Diffuse Large B-Cell Vitreoretinal Lymphoma. Retina 2016, 36, 624–628. [Google Scholar] [CrossRef]
- Sen, H.N.; Bodaghi, B.; Hoang, P.L.; Nussenblatt, R. Primary intraocular lymphoma: Diagnosis and differential diagnosis. Ocul. Immunol. Inflamm. 2009, 17, 133–141. [Google Scholar] [CrossRef]
- Kase, S.; Namba, K.; Kanno-Okada, H.; Onozawa, M.; Hidaka, D.; Iwata, D.; Mizuuchi, K.; Fukuhara, T.; Fukuhara, J.; Kitaichi, N.; et al. Immunohistochemical and Immunocytochemical Analyses in Patients with Vitreoretinal Lymphoma. Ocul. Immunol. Inflamm. 2020, 28, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C.; Wallace, D.J. Intraocular lymphoma: Update on diagnosis and management. Cancer Control. 2004, 11, 285–295. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Chen, Z.; Fu, T.; Jin, X.; Yu, T.; Liang, Y.; Zhao, X.; Huang, L. Ki-67 is a valuable prognostic predictor of lymphoma but its utility varies in lymphoma subtypes: Evidence from a systematic meta-analysis. BMC Cancer 2014, 14, 153. [Google Scholar] [CrossRef]
- Coupland, S.E.; Anastassiou, G.; Bornfeld, N.; Hummel, M.; Stein, H. Primary intraocular lymphoma of T-cell type: Report of a case and review of the literature. Graefes Arch. Clin. Exp. Ophthalmol. 2005, 243, 189–197. [Google Scholar] [CrossRef]
- Jahan-Tigh, R.R.; Ryan, C.; Obermoser, G.; Schwarzenberger, K. Flow cytometry. J. Investig. Dermatol. 2012, 132, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Ruiz, P., Jr.; Shah, M.; Mandelcorn, E.D. Evaluation of the reactive T-cell infiltrate in uveitis and intraocular lymphoma with flow cytometry of vitreous fluid (an American Ophthalmological Society thesis). Trans. Am. Ophthalmol Soc. 2012, 110, 117–129. [Google Scholar] [PubMed]
- Davis, J.L.; Viciana, A.L.; Ruiz, P. Diagnosis of intraocular lymphoma by flow cytometry. Am. J. Ophthalmol. 1997, 124, 362–372. [Google Scholar] [CrossRef]
- Tomita, N.; Takeuchi, K.; Hyo, R.; Hashimoto, C.; Takemura, S.; Taguchi, J.; Fujita, H.; Fujisawa, S.; Ogawa, K.; Motomura, S.; et al. Diffuse large B cell lymphoma without immunoglobulin light chain restriction by flow cytometry. Acta Haematol. 2009, 121, 196–201. [Google Scholar] [CrossRef]
- Cossarizza, A.; Chang, H.D.; Radbruch, A.; Akdis, M.; Andra, I.; Annunziato, F.; Bacher, P.; Barnaba, V.; Battistini, L.; Bauer, W.M.; et al. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur. J. Immunol. 2017, 47, 1584–1797. [Google Scholar] [CrossRef]
- Alas, S.; Bonavida, B. Rituximab inactivates signal transducer and activation of transcription 3 (STAT3) activity in B-non-Hodgkin′s lymphoma through inhibition of the interleukin 10 autocrine/paracrine loop and results in down-regulation of Bcl-2 and sensitization to cytotoxic drugs. Cancer Res. 2001, 61, 5137–5144. [Google Scholar]
- Gupta, M.; Han, J.J.; Stenson, M.; Maurer, M.; Wellik, L.; Hu, G.; Ziesmer, S.; Dogan, A.; Witzig, T.E. Elevated serum IL-10 levels in diffuse large B-cell lymphoma: A mechanism of aberrant JAK2 activation. Blood 2012, 119, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kishimoto, T. The biology and medical implications of interleukin-6. Cancer Immunol. Res. 2014, 2, 288–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.C.; Whitcup, S.M.; Solomon, D.; Nussenblatt, R.B. Interleukin-10 in the vitreous of patients with primary intraocular lymphoma. Am. J. Ophthalmol. 1995, 120, 671–673. [Google Scholar] [CrossRef]
- Benjamin, D.; Park, C.D.; Sharma, V. Human B cell interleukin 10. Leuk Lymphoma 1994, 12, 205–210. [Google Scholar] [CrossRef]
- Akpek, E.K.; Maca, S.M.; Christen, W.G.; Foster, C.S. Elevated vitreous interleukin-10 level is not diagnostic of intraocular-central nervous system lymphoma. Ophthalmology 1999, 106, 2291–2295. [Google Scholar] [CrossRef]
- Akpek, E.K.; Foster, C.S. Primary Intraocular Lymphoma With a Low Interleukin 10 to Interleukin 6 Ratio and Heterogeneous IgH Gene Arrangement. Arch. Ophthalmol. 2000, 118, 731–732. [Google Scholar]
- van Dongen, J.J.; Langerak, A.W.; Bruggemann, M.; Evans, P.A.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; Garcia-Sanz, R.; et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef]
- Kase, S.; Namba, K.; Iwata, D.; Mizuuchi, K.; Kitaichi, N.; Tagawa, Y.; Okada-Kanno, H.; Matsuno, Y.; Ishida, S. Diagnostic efficacy of cell block method for vitreoretinal lymphoma. Diagn. Pathol. 2016, 11, 29. [Google Scholar] [CrossRef]
- Weigert, M.; Perry, R.; Kelley, D.; Hunkapiller, T.; Schilling, J.; Hood, L. The joining of V and J gene segments creates antibody diversity. Nature 1980, 283, 497–499. [Google Scholar] [CrossRef]
- Imkeller, K.; Wardemann, H. Assessing human B cell repertoire diversity and convergence. Immunol. Rev. 2018, 284, 51–66. [Google Scholar] [CrossRef]
- Papavasiliou, F.; Casellas, R.; Suh, H.; Qin, X.F.; Besmer, E.; Pelanda, R.; Nemazee, D.; Rajewsky, K.; Nussenzweig, M.C. V(D)J recombination in mature B cells: A mechanism for altering antibody responses. Science 1997, 278, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Hershberg, U.; Luning Prak, E.T. The analysis of clonal expansions in normal and autoimmune B cell repertoires. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140239. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.M.; Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 1988, 334, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.C. Molecular pathology of primary intraocular lymphoma. Trans. Am. Ophthalmol. Soc. 2003, 101, 275–292. [Google Scholar] [CrossRef] [PubMed]
- White, V.A.; Gascoyne, R.D.; Paton, K.E. Use of the polymerase chain reaction to detect B- and T-cell gene rearrangements in vitreous specimens from patients with intraocular lymphoma. Arch. Ophthalmol. 1999, 117, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Baehring, J.M.; Androudi, S.; Longtine, J.J.; Betensky, R.A.; Sklar, J.; Foster, C.S.; Hochberg, F.H. Analysis of clonal immunoglobulin heavy chain rearrangements in ocular lymphoma. Cancer 2005, 104, 591–597. [Google Scholar] [CrossRef]
- van Krieken, J.H.; Langerak, A.W.; Macintyre, E.A.; Kneba, M.; Hodges, E.; Sanz, R.G.; Morgan, G.J.; Parreira, A.; Molina, T.J.; Cabecadas, J.; et al. Improved reliability of lymphoma diagnostics via PCR-based clonality testing: Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007, 21, 201–206. [Google Scholar] [CrossRef]
- Elenitoba-Johnson, K.S.; Bohling, S.D.; Mitchell, R.S.; Brown, M.S.; Robetorye, R.S. PCR analysis of the immunoglobulin heavy chain gene in polyclonal processes can yield pseudoclonal bands as an artifact of low B cell number. J. Mol. Diagn. 2000, 2, 92–96. [Google Scholar] [CrossRef]
- Coupland, S.E.; Loddenkemper, C.; Smith, J.R.; Braziel, R.M.; Charlotte, F.; Anagnostopoulos, I.; Stein, H. Expression of immunoglobulin transcription factors in primary intraocular lymphoma and primary central nervous system lymphoma. Investig. Ophthalmol. Vis. Sci. 2005, 46, 3957–3964. [Google Scholar] [CrossRef]
- Scarfo, L.; Ghia, P. Reprogramming cell death: BCL2 family inhibition in hematological malignancies. Immunol. Lett. 2013, 155, 36–39. [Google Scholar] [CrossRef]
- Zhang, N.; Meng, X.; Mei, L.; Hu, J.; Zhao, C.; Chen, W. The Long Non-Coding RNA SNHG1 Attenuates Cell Apoptosis by Regulating miR-195 and BCL2-Like Protein 2 in Human Cardiomyocytes. Cell. Physiol. Biochem. 2018, 50, 1029–1040. [Google Scholar] [CrossRef] [PubMed]
- Montovani, J.; Sales, M.M.; Pardini, M.I.M. Detection of Protein BCL2/JH Rearrangement in Epidermoid Carcinomas of Mouth and Pharynx. Int. Arch. Otorhinolaryngol. 2010, 14, 288–293. [Google Scholar]
- Yunis, J.J.; Frizzera, G.; Oken, M.M.; McKenna, J.; Theologides, A.; Arnesen, M. Multiple recurrent genomic defects in follicular lymphoma. A possible model for cancer. N. Engl. J. Med. 1987, 316, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.M.; Warnke, R.A.; Sklar, J.; Cleary, M.L. Molecular analysis of the t(14;18) chromosomal translocation in malignant lymphomas. N. Engl. J. Med. 1987, 317, 1185–1189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.W.; Cheng, N.L.; Chen, Z.W.; Wang, J.F.; Li, S.H.; Bai, W. Clinical Impact of t(14;18) in Diffuse Large B-cell Lymphoma. Chin. J. Cancer Res. 2011, 23, 160–164. [Google Scholar] [CrossRef]
- Wallace, D.J.; Shen, D.; Reed, G.F.; Miyanaga, M.; Mochizuki, M.; Sen, H.N.; Dahr, S.S.; Buggage, R.R.; Nussenblatt, R.B.; Chan, C.C. Detection of the bcl-2 t(14;18) translocation and proto-oncogene expression in primary intraocular lymphoma. Investig. Ophthalmol. Vis. Sci 2006, 47, 2750–2756. [Google Scholar] [CrossRef]
- Xu, L.; Hunter, Z.R.; Yang, G.; Zhou, Y.; Cao, Y.; Liu, X.; Morra, E.; Trojani, A.; Greco, A.; Arcaini, L.; et al. MYD88 L265P in Waldenstrom macroglobulinemia, immunoglobulin M monoclonal gammopathy, and other B-cell lymphoproliferative disorders using conventional and quantitative allele-specific polymerase chain reaction. Blood 2013, 121, 2051–2058. [Google Scholar] [CrossRef]
- Kaminski, M.S.; Tuck, M.; Estes, J.; Kolstad, A.; Ross, C.W.; Zasadny, K.; Regan, D.; Kison, P.; Fisher, S.; Kroll, S.; et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N. Engl. J. Med. 2005, 352, 441–449. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, H.; Choi, J.W.; Oh, H.; Kim, Y.S. Clinicopathologic significance of MYD88 L265P mutation in diffuse large B-cell lymphoma: A meta-analysis. Sci. Rep. 2017, 7, 1785. [Google Scholar] [CrossRef]
- Carreno, E.; Clench, T.; Steeples, L.R.; Salvatore, S.; Lee, R.W.J.; Dick, A.D.; Pawade, J. Clinical spectrum of vitreoretinal lymphoma and its association with MyD88 L265P mutation. Acta Ophthalmol. 2019, 97, e138–e139. [Google Scholar] [CrossRef] [PubMed]
- Yonese, I.; Takase, H.; Yoshimori, M.; Onozawa, E.; Tsuzura, A.; Miki, T.; Mochizuki, M.; Miura, O.; Arai, A. CD79B mutations in primary vitreoretinal lymphoma: Diagnostic and prognostic potential. Eur. J. Haematol. 2019, 102, 191–196. [Google Scholar] [CrossRef] [PubMed]
- de Groen, R.A.L.; Schrader, A.M.R.; Kersten, M.J.; Pals, S.T.; Vermaat, J.S.P. MYD88 in the driver′s seat of B-cell lymphomagenesis: From molecular mechanisms to clinical implications. Haematologica 2019, 104, 2337–2348. [Google Scholar] [CrossRef]
- Narasimhan, S.; Joshi, M.; Parameswaran, S.; Rishi, P.; Khetan, V.; Ganesan, S.; Biswas, J.; Sundaram, N.; Sreenivasan, J.; Verma, S.; et al. MYD88 L265P mutation in intraocular lymphoma: A potential diagnostic marker. Indian J. Ophthalmol. 2020, 68, 2160–2165. [Google Scholar] [CrossRef] [PubMed]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, X.; Chen, B.; Xiao, J.; Li, Y.; Zhou, X.; Zhou, Q.; Chen, K.; Wang, Q. Clinical Relevance of the High Prevalence of MYD88 L265P Mutated Vitreoretinal Lymphoma Identified by Droplet Digital Polymerase Chain Reaction. Ocul. Immunol. Inflamm. 2021, 29, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Hattori, K.; Sakata-Yanagimoto, M.; Suehara, Y.; Yokoyama, Y.; Kato, T.; Kurita, N.; Nishikii, H.; Obara, N.; Takano, S.; Ishikawa, E.; et al. Clinical significance of disease-specific MYD88 mutations in circulating DNA in primary central nervous system lymphoma. Cancer Sci. 2018, 109, 225–230. [Google Scholar] [CrossRef]
- Bohers, E.; Viailly, P.J.; Becker, S.; Marchand, V.; Ruminy, P.; Maingonnat, C.; Bertrand, P.; Etancelin, P.; Picquenot, J.M.; Camus, V.; et al. Non-invasive monitoring of diffuse large B-cell lymphoma by cell-free DNA high-throughput targeted sequencing: Analysis of a prospective cohort. Blood Cancer J. 2018, 8, 74. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Scherer, F.; Jin, M.C.; Soo, J.; Craig, A.F.M.; Esfahani, M.S.; Chabon, J.J.; Stehr, H.; Liu, C.L.; Tibshirani, R.; et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2018, 36, 2845–2853. [Google Scholar] [CrossRef]
- Tsubota, K.; Usui, Y.; Goto, H. Identification of Prognostic Markers in Patients with Primary Vitreoretinal Lymphoma by Clustering Analysis Using Clinical Data. J. Clin. Med. 2020, 9, 2298. [Google Scholar] [CrossRef]
- Cani, A.K.; Hovelson, D.H.; Demirci, H.; Johnson, M.W.; Tomlins, S.A.; Rao, R.C. Next generation sequencing of vitreoretinal lymphomas from small-volume intraocular liquid biopsies: New routes to targeted therapies. Oncotarget 2017, 8, 7989–7998. [Google Scholar] [CrossRef]
- Arai, A.; Takase, H.; Yoshimori, M.; Yamamoto, K.; Mochizuki, M.; Miura, O. Gene expression profiling of primary vitreoretinal lymphoma. Cancer Sci. 2020, 111, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, B.; Lee, H.; Park, H.; Ho Byeon, S.; Choi, J.R.; Lee, S.C.; Lee, S.T.; Lee, C.S. Whole exome sequencing identifies mutational signatures of vitreoretinal lymphoma. Haematologica 2020, 105, e458–e460. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, B.; Kolijn, P.M.; Ten Berge, J.; Nagtzaam, N.M.A.; van Rijswijk, A.; Swagemakers, S.M.A.; van der Spek, P.J.; Missotten, T.; van Velthoven, M.E.J.; de Hoog, J.; et al. Vitreous proteomics, a gateway to improved understanding and stratification of diverse uveitis aetiologies. Acta Ophthalmol. 2022, 100, 403–413. [Google Scholar] [CrossRef] [PubMed]
Test | Analysis |
---|---|
Cytology | H&E, Giemsa, Diff-Quik |
Immunohistochemistry and Flow Cytometry | CD19, CD20, CD22, CD79a |
BCL6, CD10 | |
Ki-67 | |
Rarely T-cell markers | |
Cytokine analysis | IL-10:IL-6 ratio >1.0 |
Aqueous IL-10 level | |
Polymerase chain reaction | B- and T-cell receptor clonality |
B-cell lymphoma 2 (BCL2) translocation | |
Myeloid differentiation primary response 88 (MYD88) L265P mutation |
Test | Sensitivity | Specificity | References |
---|---|---|---|
Cytology | 31–87% | 98–100% | [14,16,17,19,28,29] |
Flow Cytometry | 82–100% | 95–100% | [17,30,31] |
IL-10:IL-6 ratio >1.0 | 75–90% | 75–100% | [17,22,28,31,32,33,34] |
Aqueous IL-10 level | 90% | 90% | [35] |
Immunoglobulin heavy chain (IgH) rearrangement | 40–100% | 79–99% | [17,19,28,34] |
Myeloid differentiation primary response 88 (MYD88) L265P mutation | 67–91% | 92–100% | [28,36,37,38,39,40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiferman, M.J.; Yu, M.D.; Mruthyunjaya, P. Update in Molecular Testing for Intraocular Lymphoma. Cancers 2022, 14, 4546. https://doi.org/10.3390/cancers14194546
Heiferman MJ, Yu MD, Mruthyunjaya P. Update in Molecular Testing for Intraocular Lymphoma. Cancers. 2022; 14(19):4546. https://doi.org/10.3390/cancers14194546
Chicago/Turabian StyleHeiferman, Michael J., Michael D. Yu, and Prithvi Mruthyunjaya. 2022. "Update in Molecular Testing for Intraocular Lymphoma" Cancers 14, no. 19: 4546. https://doi.org/10.3390/cancers14194546
APA StyleHeiferman, M. J., Yu, M. D., & Mruthyunjaya, P. (2022). Update in Molecular Testing for Intraocular Lymphoma. Cancers, 14(19), 4546. https://doi.org/10.3390/cancers14194546