Identification of Novel Molecular Subgroups in Esophageal Adenocarcinoma to Predict Response to Neo-Adjuvant Therapies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Tissue Samples
2.2. Cluster Analyses
2.3. CIBERSORTx
2.4. Validation of the three Biological Subgroups of EAC Patients Treated by Surgery Only Using Nanostring Technology
2.5. Supervised “Response to Chemoradiotherapy According to CROSS” Analyses in the Discovery Cohort
2.6. Statistics Patients Characteristics
3. Results
3.1. EAC Patients from One Dutch Academic Center Were Included as the Discovery Cohort and Patients with EAC from the TCGA Dataset Served as the Validation Cohort for Cluster Analysis
3.2. Unsupervised Cluster Analysis by Consensus Cluster Plus in the Discovery Cohort and Validation in the TCGA Cohort
3.3. Genomic Data from the TCGA Dataset Indicates Similar Mutational Loads between the Subgroups as Defined by the RNA Expression Profiles
3.4. Clinical and Histo-Pathological Characteristics of the Subgroups
3.5. Differential Gene Expression and Pathway Enrichment Analyses Identifies Specific (Aberrant) Signaling Pathways within Each Subgroup
3.6. Validation of the Subgroups by Nanostring Technology on RNA from FFPE Samples
3.7. CIBERSORTx to Investigate Differences in Immune Cells within the Three Subgroups
3.8. Response Prediction by Unsupervised Clustering of Patients Treated with Neoadjuvant Chemoradiotherapy Combined with Surgery
3.9. KEGG Pathway Analysis to Identify Specific Pathways in Responders versus Non-Responders to Neo-Adjuvant Therapy
3.10. CIBERSORTx Shows a Specific Immune Phenotype in Complete Responders Compared to Incomplete Responders
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, J.; van Lanschot, J.J.B.; Hulshof, M.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomised controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Courrech Staal, E.F.; Aleman, B.M.; Boot, H.; van Velthuysen, M.L.; van Tinteren, H.; van Sandick, J.W. Systematic review of the benefits and risks of neoadjuvant chemoradiation for oesophageal cancer. Br. J. Surg. 2010, 97, 1482–1496. [Google Scholar] [CrossRef]
- Lopci, E.; Kauppi, J.; Lugaresi, M.; Mattioli, B.; Daddi, N.; Fortunato, F.; Rasanen, J.; Mattioli, S. Siewert type I and II oesophageal adenocarcinoma: Sensitivity/specificity of computed tomography, positron emission tomography and endoscopic ultrasound for assessment of lymph node metastases in groups of thoracic and abdominal lymph node stations. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 518–525. [Google Scholar] [CrossRef]
- Donlon, N.E.; Sheppard, A.; Davern, M.; O’Connell, F.; Phelan, J.J.; Power, R.; Nugent, T.; Dinneen, K.; Aird, J.; Greene, J.; et al. Linking Circulating Serum Proteins with Clinical Outcomes in Esophageal Adenocarcinoma—An Emerging Role for Chemokines. Cancers 2020, 12, 3356. [Google Scholar] [CrossRef] [PubMed]
- Goedegebuure, R.S.A.; Harrasser, M.; de Klerk, L.K.; van Schooten, T.S.; van Grieken, N.C.T.; Eken, M.; Grifhorst, M.S.; Pocorni, N.; Jordanova, E.S.; van Berge Henegouwen, M.I.; et al. Pre-treatment tumor-infiltrating T cells influence response to neoadjuvant chemoradiotherapy in esophageal adenocarcinoma. Oncoimmunology 2021, 10, 1954807. [Google Scholar] [CrossRef] [PubMed]
- Dulak, A.M.; Stojanov, P.; Peng, S.; Lawrence, M.S.; Fox, C.; Stewart, C.; Bandla, S.; Imamura, Y.; Schumacher, S.E.; Shefler, E.; et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 2013, 45, 478–486. [Google Scholar] [CrossRef]
- Secrier, M.; Li, X.; de Silva, N.; Eldridge, M.D.; Contino, G.; Bornschein, J.; MacRae, S.; Grehan, N.; O’Donovan, M.; Miremadi, A.; et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 2016, 48, 1131–1141. [Google Scholar] [CrossRef]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.H.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef]
- CThe Cancer Genome Atlas Research Network; Bass, A.J.; Thorsson, V.; Shmulevich, I.; Reynolds, S.M.; Miller, M.; Bernard, B.; Hinoue, T.; Laird, P.W.; Curtis, C.; et al. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Research Network; Kim, J.; Bowlby, R.; Mungall, A.J.; Robertson, A.G.; Odze, R.D.; Cherniack, A.D.; Shih, J.; Pedamallu, C.S.; Cibulskis, C.; et al. Integrated genomic characterization of oesophageal carcinoma. Nature 2017, 541, 169–175. [Google Scholar] [CrossRef]
- Mandard, A.M.; Dalibard, F.; Mandard, J.C.; Marnay, J.; Henry-Amar, M.; Petiot, J.F.; Roussel, A.; Jacob, J.H.; Segol, P.; Samama, G.; et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994, 73, 2680–2686. [Google Scholar] [CrossRef]
- Siewert, J.R.; Hölscher, A.H.; Becker, K.; Gössner, W. Cardia cancer: Attempt at a therapeutically relevant classification. Chirurg 1987, 58, 25–32. [Google Scholar] [PubMed]
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef] [PubMed]
- Steen, C.B.; Liu, C.L.; Alizadeh, A.A.; Newman, A.M. Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx. Methods Mol. Biol. 2020, 2117, 135–157. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019, 37, 773–782. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Weiner, J. Riverplot: Sankey or Ribbon Plots, Version: 010. Repository CRAN Date/Publication 2021-01-22 14:10:02 UTC. R Package: Madison, WI, USA, 2021.
- Del Pozo Martin, Y.; Park, D.; Ramachandran, A.; Ombrato, L.; Calvo, F.; Chakravarty, P.; Spencer-Dene, B.; Derzsi, S.; Hill, C.S.; Sahai, E.; et al. Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Rep. 2015, 13, 2456–2469. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef]
- Langer, R.; Ott, K.; Feith, M.; Lordick, F.; Siewert, J.R.; Becker, K. Prognostic significance of histopathological tumor regression after neoadjuvant chemotherapy in esophageal adenocarcinomas. Mod. Pathol. 2009, 22, 1555–1563. [Google Scholar] [CrossRef] [PubMed]
- Akira, S.; Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004, 4, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Elliott, D.R.F.; Walker, A.W.; O’Donovan, M.; Parkhill, J.; Fitzgerald, R.C. A non-endoscopic device to sample the oesophageal microbiota: A case-control study. Lancet Gastroenterol. Hepatol. 2017, 2, 32–42. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef]
- Souza, R.F.; Shewmake, K.; Terada, L.S.; Spechler, S.J. Acid exposure activates the mitogen-activated protein kinase pathways in Barrett’s esophagus. Gastroenterology 2002, 122, 299–307. [Google Scholar] [CrossRef]
- Cindy Yang, S.Y.; Lien, S.C.; Wang, B.X.; Clouthier, D.L.; Hanna, Y.; Cirlan, I.; Zhu, K.; Bruce, J.P.; El Ghamrasni, S.; Iafolla, M.A.J.; et al. Pan-cancer analysis of longitudinal metastatic tumors reveals genomic alterations and immune landscape dynamics associated with pembrolizumab sensitivity. Nat. Commun. 2021, 12, 5137. [Google Scholar] [CrossRef] [PubMed]
- Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 2020, 20, 7–24. [Google Scholar] [CrossRef] [PubMed]
- Kis-Toth, K.; Szanto, A.; Thai, T.-H.; Tsokos, G.C. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. J. Immunol. 2011, 187, 1222–1234. [Google Scholar] [CrossRef]
- QIAGEN. 2022. Available online: https://targetexplorer.ingenuity.com/pathway/ING/ING:1nilf#!/api/rest/v1/client/searchPathwayNodes?pathwayId=ING:1nilf&rows=0&facetLimit=5000&responseType=default (accessed on 26 July 2022).
- QIAGEN. 2022. Available online: https://targetexplorer.ingenuity.com/pathway/ING/ING:3ttx1#!/api/rest/v1/client/searchPathwayNodes?pathwayId=ING:3ttx1&rows=0&facetLimit=5000&responseType=default (accessed on 26 July 2022).
- Mari, L.; Hoefnagel, S.J.M.; Zito, D.; van de Meent, M.; van Endert, P.; Calpe, S.; Sancho Serra, M.D.C.; Heemskerk, M.H.M.; van Laarhoven, H.W.M.; Hulshof, M.; et al. microRNA 125a Regulates MHC-I Expression on Esophageal Adenocarcinoma Cells, Associated With Suppression of Antitumor Immune Response and Poor Outcomes of Patients. Gastroenterology 2018, 155, 784–798. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Study of Pembrolizumab (MK-3475) Versus Placebo in Participants With Esophageal Carcinoma Who Are Receiving Chemotherapy and Radiation Therapy (MK-3475-975/KEYNOTE-975) Merck Sharp & Dohme Corp clinicaltrials.gov2019 [ClinicalTrials.gov Identifier: NCT04210115]. 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04210115 (accessed on 26 July 2022).
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Leek, J.T.; Johnson, W.E.; Parker, H.S.; Fertig, E.J.; Jaffe, A.E.; Zhang, Y.; Storey, J.D.; Torres, L.C. sva: Surrogate Variable Analysis, R Package Version 3.44.0; R Package: Madison, WI, USA, 2022.
- Anghel, C.V.; Quon, G.; Haider, S.; Nguyen, F.; Deshwar, A.G.; Morris, Q.D.; Boutros, P.C. ISOpureR: An R implementation of a computational purification algorithm of mixed tumour profiles. BMC Bioinform. 2015, 16, 156. [Google Scholar] [CrossRef] [Green Version]
Characteristics | AUMC (n = 107) | TCGA (n = 77) | p Value |
---|---|---|---|
Sex | |||
Male/female (no.) | 95/12 | 66/11 | |
Male/female (%) | 89/11 | 86/14 | 0.65 † |
Age | |||
Median (IQR) years | 66.7 (15.7) years | 68.0 (19.0) years | 0.65 ^ |
Year of diagnosis | - | ||
’98/’99/’00/’01/’04/’05/’06/’07/’08/’09/’10/ | 0/0/0/0/0/0/0/0/0/0/0/ | 1/2/8/11/5/3/5/2/1/3/8/ | |
’11/‘12/’13/’14/’15/’16/’17/NA (no.) | 0/16/20/16/27/22/6/0 | 5/12/6/0/0/0/0/5 | |
AJCC Stage | 0.00 ** | ||
I/II/III/IV/NA (no.) | 0/27/65/12/3 | 10/22/32/10/3 | |
I/II/III/IV (%) | 0/26/63/12 | 14/30/43/14 | |
Clinical T stage at baseline | - | ||
Tx/T0/T1/T2/T3/T4/NA (no.) | 4/0/2/19/78/4/0 | 2/0/1/2/13/59 | |
Tx/T0/T1/T2/T3/T4 (%) | 4/0/2/18/73/4 | - | |
Clinical T stage at baseline in patients treated with nC(R)T/surgery with or without adjuvant therapy | NA | NA | |
Tx/T0/T1/T2/T3/T4/NA (no.) | 3/0/1/11/51/2/0 | ||
Tx/T0/T1/T2/T3/T4 (%) | 4/0/1/16/75/3 | ||
Histologic grade | 0.00 * | ||
G1/G2/G3/NA (no.) | 23/33/46/5 | 1/27/24/25 | |
G1/G2/G3 (%) | 23/32/45 | 2/52/46 | |
Lauren classification | NA | NA | |
Intestinal/Diffuse/Mixed/NA (no.) | 70/14/22/1 | ||
Intestinal/Diffuse/Mixed (%) | 66/13/21 | ||
Signet ring cells | NA | NA | |
present/absent/NA (no.) | 25/56/26 | ||
present/absent (%) | 31/69 | ||
Patients per initial treatment strategy n(%)If applicable also Mandard (m) scorem1/m2/m3/m4/m5/NA (no.) | |||
nCRT CROSS/surgery | 46(43%) 6/9/17/12/0/2 | 0 | - |
nCRT CROSS/surgery/adjuvant SOX | 10 (9%) 3/5/2/0/0/0 | 0 | - |
nCRT CROSS+TRAP/surgery | 4 (4%) 1/1/2/0/0/0 | 0 | - |
nCRT CROSS/no surgery | 7 (7%) | 0 | - |
nCT EOX/surgery/adjuvant EOX | 4 (4%) 2/0/0/0/1/1 | 0 | - |
nCT EOX/surgery | 3 (3%) 0/1/0/2/0/0 | 0 | - |
nCT ECC/surgery/adjuvant ECC | 1 (1%) 0/0/0/1/0/0 | 0 | - |
only surgery | 1 (1%) | 0 | - |
dCRT carboplatin/paclitaxel/no surgery | 16 (15%) | 0 | - |
palliative therapy | 13 (12%) | 0 | - |
No treatment | 2 (2%) | 0 | - |
Surgery, priorly treated with radiation and chemotherapy (but no neo-adjuvant therapy) | 0 | 2 (3%) | - |
No neo-adjuvant therapy, surgery | 0 | 65 (84%) | - |
No neo-adjuvant therapy, no surgery | 0 | 10 (13%) | - |
Mandard score in all patients treated with nC(R)T/surgery with or without adjuvant therapy (n = 70) | NA | NA | |
1/2/3/4/5/NA (no.) | 12/16/21/15/1/3 | ||
1/2/3/4/5 (%) | 18/25/32/23/2 | ||
T stage resection specimen in all patients treated with nC(R)T/surgery with or without adjuvant therapy (n = 70) | NA | NA | |
Tx/T1/T2/T3/T4/NA (no.) | 12/14/12/26/2/2 | ||
Tx/T1/T2/T3/T4 (%) | 18/21/18/39/3 |
Characteristics | AUMC1 (n = 30) | AUMC2 (n = 40) | AUMC3 (n = 37) | p Value |
---|---|---|---|---|
Sex | 1.00 † | |||
Male/female (no.) | 27/3 | 35/5 | 33/4 | |
Male/female (%) | 90/9 | 88/13 | 89/11 | |
Age | 0.47 ‡ | |||
Median (IQR) years | 69 (18.1) | 66 (14.6) | 64(14.0) | |
AJCC Stage | 0.80 ^^ | |||
I/II/III/IV/NA (no.) | 0/8/17/5/0 | 0/8/27/3/2 | 0/11/21/4/1 | |
I/II/III/IV (%) | 0/27/57/17 | 0/21/71/8 | 0/31/58/11 | |
Clinical T stage at baseline | 0.15 ^^ | |||
Tx/T1/T2/T3/T4/NA (no.) | 0/0/0/4/24/2/0 | 3/0/0/6/31/0/0 | 1/0/2/9/23/2/0 | |
Tx/T1/T2/T3/T4 (%) | 0/0/0/13/80/7 | 8/0/0/15/78/0 | 3/0/5/24/62/5 | |
Clinical T stage at baseline in all patients treated with nC(R)T/surgery with or without adjuvant therapy | 0.25 * | |||
Tx/T1/T2/T3/T4/NA (no.) | 0/0/0/0/16/1/0 | 2/0/0/5/21/0/0 | 1/0/1/6/14/1/0 | |
Tx/T1/T2/T3/T4 (%) | 0/0/0/0/94/6 | 7/0/0/18/75/0 | 4/0/4/26/61/4 | |
Histologic grade | 0.046 * | |||
G1/G2/G3/NA (no.) | 4/11/13/2 | 5/13/21/1 | 14/9/12/2 | |
G1/G2/G3 (%) | 14/39/46 | 13/33/54 | 40/26/34 | |
Lauren classification | 0.79 * | |||
Intestinal/Diffuse/Mixed/NA (no.) | 17/5/8/0 | 28/5/7/0 | 25/4/7/1 | |
Intestinal/Diffuse/Mixed (%) | 57/17/27 | 70/13/18 | 69/11/19 | |
Signet ring cells | 0.08 † | |||
present/absent/NA (no.) | 11/11/8 | 8/22/10 | 6/23/8 | |
present/absent (%) | 50/50 | 27/73 | 21/79 | |
Mandard score in all patients treated with nC(R)T/surgery with or without adjuvant | 0.18 * | |||
1/2/3/4/5/NA (no.) | 3/4/3/5/1/1 | 8/7/7/5/0/1 | 1/5/11/5/0/1 | |
1/2/3/4/5 (%) | 19/25/19/31/6 | 30/26/26/19/0 | 5/23/50/23/0 | |
T resection specimen in all patients treated with nC(R)T/surgery with or without adjuvant | 0.01 * | |||
Tx/T1/T2/T3/T4/NA (no.) | 3/1/0/11/2/0 | 7/5/7/7/0/1 | 1/8/5/8/0/1 | |
Tx/T1/T2/T3/T4 (%) | 18/6/0/65/12 | 30/19/26/26/0 | 5/36/23/36/0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoefnagel, S.J.M.; Koemans, W.J.; Khan, H.N.; Koster, J.; Meijer, S.L.; van Dieren, J.M.; Kodach, L.L.; van Sandick, J.W.; Calpe, S.; del Sancho-Serra, C.M.; et al. Identification of Novel Molecular Subgroups in Esophageal Adenocarcinoma to Predict Response to Neo-Adjuvant Therapies. Cancers 2022, 14, 4498. https://doi.org/10.3390/cancers14184498
Hoefnagel SJM, Koemans WJ, Khan HN, Koster J, Meijer SL, van Dieren JM, Kodach LL, van Sandick JW, Calpe S, del Sancho-Serra CM, et al. Identification of Novel Molecular Subgroups in Esophageal Adenocarcinoma to Predict Response to Neo-Adjuvant Therapies. Cancers. 2022; 14(18):4498. https://doi.org/10.3390/cancers14184498
Chicago/Turabian StyleHoefnagel, Sanne J. M., Willem J. Koemans, Hina N. Khan, Jan Koster, Sybren L. Meijer, Jolanda M. van Dieren, Liudmila L. Kodach, Johanna W. van Sandick, Silvia Calpe, Carmen M. del Sancho-Serra, and et al. 2022. "Identification of Novel Molecular Subgroups in Esophageal Adenocarcinoma to Predict Response to Neo-Adjuvant Therapies" Cancers 14, no. 18: 4498. https://doi.org/10.3390/cancers14184498
APA StyleHoefnagel, S. J. M., Koemans, W. J., Khan, H. N., Koster, J., Meijer, S. L., van Dieren, J. M., Kodach, L. L., van Sandick, J. W., Calpe, S., del Sancho-Serra, C. M., Correia, A. C. P., Van Berge Henegouwen, M. I., Gisbertz, S. S., Hulshof, M. C. C. M., Mattioli, S., Spaander, M. C. W., & Krishnadath, K. K. (2022). Identification of Novel Molecular Subgroups in Esophageal Adenocarcinoma to Predict Response to Neo-Adjuvant Therapies. Cancers, 14(18), 4498. https://doi.org/10.3390/cancers14184498