Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Biomarkers for Angiogenesis Turnover (BAT)
- VEGF is a strong growth factor that increases endothelial permeability. It can be released by cancer, stromal, and inflammatory cells, and it is stored in the platelets;
- Basic fibroblast growth factor (bFGF) is a pro-angiogenic growth factor released by tumor, stromal, and inflammatory cells and/or by mobilization from the extracellular matrix (ECM). It acts on endothelial cells via a paracrine mode of action; however, it can also be produced endogenously by endothelial cells via autocrine, intracrine, or paracrine modes, trigging angiogenesis signaling;
- VEGF receptor 2 (VEGFR2) is a member of the VEGFR family, and it is mainly localized in the vascular endothelium. VEGF ligands bind to VEGFR2, hence, triggering endothelial cell proliferation, survival, migration, and vascular permeability. Lastly, it contributes to angiogenesis activation;
- Thrombospondin (TSP1) is a family of five proteins involved in tissue remodeling associated with tumor cell proliferation and other physiological processes. It has been shown to suppress tumor growth by both inhibiting angiogenesis and activating transforming growth factor beta (TGF-β). Additionally, TSP1 exerts an anti-angiogenic effect through a direct effect on the migration of endothelial cells and the availability of VEGF.
1.2. Circulating Cells (CCs)
2. Materials and Methods
2.1. Study Procedures
2.2. Sample Size
2.3. Statistical Analysis
3. Results
Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halfdanarson, T.R.; Rabe, K.G.; Rubin, J.; Petersen, G.M. Pancreatic neuroendocrine tumors (PNETs): Incidence, prognosis and recent trend toward improved survival. Ann. Oncol. 2008, 19, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; et al. Everolimus for Advanced Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Lane, H.A.; Wood, J.M.; McSheehy, P.M.; Allegrini, P.R.; Boulay, A.; Brueggen, J.; Littlewood-Evans, A.; Maira, S.; Martiny-Baron, G.; Schnell, C.R.; et al. mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties dis-tinct from a VEGFR tyrosine kinase inhibitor. Clin. Cancer Res. 2009, 15, 1612–1622. [Google Scholar] [CrossRef]
- Yao, J.C.; Pavel, M.; Lombard-Bohas, C.; Van Cutsem, E.; Voi, M.; Brandt, U.; He, W.; Chen, D.; Capdevila, J.; De Vries, E.G.E.; et al. Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers From the Randomized, Phase III RADIANT-3 Study. J. Clin. Oncol. 2016, 34, 3906–3913. [Google Scholar] [CrossRef]
- Qian, Z.R.; Ter-Minassian, M.; Chan, J.A.; Imamura, Y.; Hooshmand, S.M.; Kuchiba, A.; Morikawa, T.; Brais, L.K.; Daskalova, A.; Heafield, R.; et al. Prognostic Significance of MTOR Pathway Component Expression in Neuroendocrine Tumors. J. Clin. Oncol. 2013, 31, 3418–3425. [Google Scholar] [CrossRef] [PubMed]
- Missiaglia, E.; Dalai, I.; Barbi, S.; Beghelli, S.; Falconi, M.; della Peruta, M.; Piemonti, L.; Capurso, G.; Florio, A.D.; delle Fave, G.; et al. Pancreatic endocrine tumors: Expression profiling evidences a role for AKT-mTOR pathway. J. Clin. Oncol. 2010, 28, 245–255. [Google Scholar] [CrossRef]
- O’Reilly, K.E.; Rojo, F.; She, Q.-B.; Solit, D.; Mills, G.B.; Smith, D.; Lane, H.; Hofmann, F.; Hicklin, D.J.; Ludwig, D.L.; et al. mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt. Cancer Res. 2006, 66, 1500–1508. [Google Scholar] [CrossRef]
- Bertolini, F.; Shaked, Y.; Mancuso, P.; Kerbel, R.S. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat. Cancer 2006, 6, 835–845. [Google Scholar] [CrossRef]
- Mancuso, P.; Martin-Padura, I.; Calleri, A.; Marighetti, P.; Quarna, J.; Rabascio, C.; Braidotti, P.; Bertolini, F. Circulating perivascular progenitos: A target of PDGFR inhibition. Int. J. Cancer. 2011, 129, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P.; Antoniotti, P.; Quarna, J.; Calleri, A.; Rabascio, C.; Tacchetti, C.; Braidotti, P.; Wu, H.-K.; Zurita, A.J.; Saronni, L.; et al. Validation of a Standardized Method for Enumerating Circulating Endothelial Cells and Progenitors: Flow Cytometry and Molecular and Ultrastructural Analyses. Clin. Cancer Res. 2008, 15, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.H.; Sudhakar, D.R.; Kalaiarasan, P.; Subbarao, N.; Wadhawa, G.; Lohani, M.; Khan, M.K.A.; Khan, A.U. Insight into the Effect of Inhibitor Resistant S130G Mutant on Physico-Chemical Properties of SHV Type BetaLactamase: A Molecular Dynamics Study. PLoS ONE 2014, 9, e112456. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P.; Colleoni, M.; Calleri, A.; Orlando, L.; Maisonneuve, P.; Pruneri, G.; Agliano, A.; Goldhirsch, A.; Shaked, Y.; Kerbel, R.S.; et al. Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 2006, 108, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Calleri, A.; Bono, A.; Bagnardi, V.; Quarna, J.; Mancuso, P.; Rabascio, C.; Dellapasqua, S.; Campagnoli, E.; Shaked, Y.; Goldhirsch, A.; et al. Predictive Potential of Angiogenic Growth Factors and Circulating Endothelial Cells in Breast Cancer Patients Receiving Metronomic Chemotherapy Plus Bevacizumab. Clin. Cancer Res. 2009, 15, 7652–7657. [Google Scholar] [CrossRef] [PubMed]
- Dellapasqua, S.; Bertolini, F.; Bagnardi, V.; Campagnoli, E.; Scarano, E.; Torrisi, R.; Shaked, Y.; Mancuso, P.; Goldhirsch, A.; Rocca, A.; et al. Metronomic Cyclophosphamide and Capecitabine Combined With Bevacizumab in Advanced Breast Cancer. J. Clin. Oncol. 2008, 26, 4899–4905. [Google Scholar] [CrossRef]
- Bello, C.; DePrimo, S.E.; Friece, C.; Smeraglia, J.; Sherman, L.; Tye, L.; Baum, C.; Meropol, N.J.; Lenz, H.; Kulke, M.H. Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. J. Clin. Oncol. 2006, 24, 4045. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, Z.; Li, Q.; Wang, L.W.; Rashid, A.; Zhu, Z.G.; Evans, D.B.; Vauthey, J.N.; Xie, K.P.; Yao, J.C. Elevated expression of vascular endothelial growth factor correlates with increased angiogenesis and decreased progression-free survival among patients with low-grade neuroendocrine tumors. Cancer 2007, 109, 1478–1486. [Google Scholar] [CrossRef]
- Takahashi, Y.; Akishima-Fukasawa, Y.; Kobayashi, N.; Sano, T.; Kosuge, T.; Nimura, Y.; Kanai, Y.; Hiraoka, N. Prognostic value of tumor architecture, tumor-associated vascular characteristics, and expression of angiogenic molecules in pancreatic en-docrine tumors. Clin. Cancer Res. 2007, 13, 187–196. [Google Scholar] [CrossRef]
- Fazio, N.; Martini, J.-F.; E Croitoru, A.; Schenker, M.; Li, S.; Rosbrook, B.; Fernandez, K.; Tomasek, J.; Thiis-Evensen, E.; Kulke, M.; et al. Pharmacogenomic analyses of sunitinib in patients with pancreatic neuroendocrine tumors. Future Oncol. 2019, 15, 1997–2007. [Google Scholar] [CrossRef]
- Pinato, D.J.; Tan, T.M.; Toussi, S.T.K.; Ramachandran, R.; Martin, N.; Meeran, K.; Ngo, N.; Dina, R.; Sharma, R. An expression signature of the angiogenic response in gastrointestinal neuroendocrine tumours: Correlation with tumour phenotype and survival outcomes. Br. J. Cancer 2013, 110, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Scoazec, J.Y. Angiogenesis in neuroendocrine tumors: Therapeutic applications. Neuroendocrinology 2012, 97, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Faivre, S.; Delbaldo, C.; Vera, K.; Robert, C.; Lozahic, S.; Lassau, N.; Bello, C.; Deprimo, S.; Brega, N.; Massimini, G.; et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget ty-rosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 2006, 24, 25–35. [Google Scholar] [CrossRef] [PubMed]
- E DePrimo, S.; Bello, C.L.; Smeraglia, J.; Baum, C.M.; Spinella, D.; I Rini, B.; Michaelson, M.D.; Motzer, R.J. Circulating protein biomarkers of pharmacodynamic activity of sunitinib in patients with metastatic renal cell carcinoma: Modulation of VEGF and VEGF-related proteins. J. Transl. Med. 2007, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Zurita, A.J.; Khajavi, M.; Wu, H.-K.; Tye, L.; Huang, X.; Kulke, M.H.; Lenz, H.-J.; Meropol, N.J.; Carley, W.; E DePrimo, S.; et al. Circulating cytokines and monocyte subpopulations as biomarkers of outcome and biological activity in sunitinib-treated patients with advanced neuroendocrine tumours. Br. J. Cancer 2015, 112, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Sims, D.E. The pericyte—A review. Tissue Cell. 1986, 18, 153–174. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, Z.-L.; Zhou, M.; Elson, P.; Rini, B.; Aydin, H.; Feenstra, K.; Tan, M.-H.; Berghuis, B.; Tabbey, R.; et al. Pericyte coverage of differentiated vessels inside tumor vasculature is an independent unfavorable prognostic factor for patients with clear cell renal cell carcinoma. Cancer 2012, 119, 313–324. [Google Scholar] [CrossRef]
- Cooke, V.G.; LeBleu, V.S.; Keskin, D.; Khan, Z.; O’Connell, J.T.; Teng, Y.; Duncan, M.B.; Xie, L.; Maeda, G.; Vong, S.; et al. Pericyte Depletion Results in Hypoxia-Associated Epithelial-to-Mesenchymal Transition and Metastasis Mediated by Met Signaling Pathway. Cancer Cell. 2012, 21, 66–81. [Google Scholar] [CrossRef]
- Cejka, D.; Preusser, M.; Fuereder, T.; Sieghart, W.; Werzowa, J.; Strommer, S.; Wacheck, V. mTOR inhibition sensitizes gastric cancer to alkylating chemotherapy in vivo. Anticancer Res. 2009, 28, 3801–3808. [Google Scholar]
- Martins, D.; Spada, F.; Lambrescu, I.; Rubino, M.; Cella, C.; Gibelli, B.; Grana, C.; Ribero, D.; Bertani, E.; Ravizza, D.; et al. Predictive Markers of Response to Everolimus and Sunitinib in Neuroendocrine Tumors. Target. Oncol. 2017, 12, 611–622. [Google Scholar] [CrossRef]
- Ceausu, R.A.; Cimpean, A.M.; Dimova, I.; Hlushchuk, R.; Djonov, V.; Gaje, P.N.; Raica, M. Everolimus dual effects of an area vas-culosa angiogenesis and lymphangiogenesis. In Vivo 2013, 27, 61–66. [Google Scholar] [PubMed]
Characteristic | Statistics 1 |
---|---|
Age (years) at | |
Diagnosis | 50.0 (10.1) 2 |
Everolimus start | 54.4 (10.2) |
Metastases | |
Synchronous | 29 (76.3) |
Metachronous | 9 (23.7) |
Ki 67 (%) | |
(<3) | 1 (2.7) |
(3–20) | 31 (81.5) |
(21–55) | 5 (13.1) |
missing | 1 (2.7) |
Sex | |
Male | 19 (50.0) |
Female | 19 (50.0) |
Baseline68Ga-PET/CT | 32 (84.2) |
Previous Treatments 3 | |
Liver-directed treatments | 10 (26.3) |
Chemotherapy | 11 (29.0) |
Peptide Receptor Radionuclide Therapy (PRRT) | 20 (52.6) |
Somatostatin Analogs (SSA) | 30 (78.9) |
Sunitinib | 5 (13.1) |
Surgery | |
primary site | 14 (36.8) |
metastatic site | 2 (5.3) |
primary and metastatic site | 9 (23.7) |
none | 13 (34.2) |
Functionally active tumors | |
Yes | 5 (13.2) |
No | 33 (86.8) |
Time | N | Mean (IQR) 1 | Adj p-Value 2 | |
---|---|---|---|---|
CEC CD146+ | Baseline | 36 | 119 (67.7–163) | |
Month 1 | 37 | 64.6 (31.9–73.7) | <0.001 | |
Month 3 | 34 | 54.8 (23.4–66.0) | <0.001 | |
at PD | 13 | 52.4 (22.8–66.5) | 0.01 | |
CEC, Apo (%) | Baseline | 36 | 51.3 (39.0–68.0) | - |
Month 1 | 37 | 59.5 (38.0–80.0) | 0.34 | |
Month 3 | 34 | 57.6 (42.0–70.0) | 0.59 | |
at PD | 13 | 52.9 (46.0–67.0) | 1.00 | |
CEC CD146+ Vital | Baseline | 36 | 61.0 (24.5–84.3) | - |
Month 1 | 37 | 31.4 (6.3–36.7) | 0.01 | |
Month 3 | 34 | 26.9 (7.3–30.6) | 0.003 | |
at PD | 13 | 23.3 (11.4–33.4) | 0.05 | |
Apoptotic CEC | Baseline | 35 | 59.6 (28.3–68.0) | - |
Month 1 | 36 | 33.7 (16.4–42.8) | 0.002 | |
Month 3 | 33 | 28.6 (13.6–38.9) | <0.001 | |
at PD | 13 | 29.2 (11.4–33.3)) | 0.02 | |
CD140b+ pericytes | Baseline | 36 | 22.4 (7.6–30.8) | - |
Month 1 | 37 | 15.6 (0.0–16.2) | 0.50 | |
Month 3 | 33 | 13.2 (2.5–14.7) | 0.25 | |
at PD | 13 | 11.4 (3.6–16.5) | 0.36 | |
CEC CD109+ | Baseline | 34 | 111 (50.4–160) | - |
Month 1 | 37 | 51.5 (21.6–71.3) | 0.003 | |
Month 3 | 34 | 51.3 (21.0–54.1) | 0.004 | |
at PD | 13 | 50.9 (19.6–75.0) | 0.05 | |
PPC CD31-CD140b+ | Baseline | 36 | 107 (51.4–153) | - |
Month 1 | 37 | 49.9 (27.361.8) | 0.001 | |
Month 3 | 33 | 62.0 (26.8–73.5) | 0.02 | |
at PD | 13 | 53.1 (24.9–75.6) | 0.04 | |
Syto16+CD45dimCD34+ | Baseline | 36 | 729 (401–909) | - |
Month 1 | 37 | 481 (226–601) | 0.002 | |
Month 3 | 33 | 534 (256–711) | 0.01 | |
at PD | 12 | 537 (186–611) | 0.33 | |
Syto16+CD45-CD34+ | Baseline | 36 | 52.3 (27.8–67.2) | - |
Month 1 | 37 | 36.7 (23.5–44.8) | 0.56 | |
Month 3 | 33 | 55.2 (25.057.6) | 0.99 | |
at PD | 12 | 56.8 (37.5–63.7) | 0.99 | |
Syto16+CD45dimCD133+CD34+ | Baseline | 36 | 213 (87.4–269) | - |
Month 1 | 37 | 164 (62.3–234) | 0.46 | |
Month 3 | 33 | 126 (67.6–160) | 0.04 | |
at PD | 12 | 157 (46.2–295) | 0.66 | |
Syto16+CD45dimVEGFR2+ | Baseline | 36 | 6.57 (0.00–9.25) | - |
Month 1 | 37 | 1.90 (0.00–2.50) | 0.007 | |
Month 3 | 32 | 2.84 (0.00–4.78) | 0.06 | |
at PD | 11 | 2.11 (0.00–3.55) | 0.14 |
Cut-Off (Median) | No. Failures /at Risk | Hazard Ratio (95% CI) | Adj p-Value | ||
---|---|---|---|---|---|
PFS | VEGF (pg/mL) | ≤365 | 12/19 | Ref | |
>365 | 13/19 | 1.06 (0.48–2.33) | 0.88 | ||
VEGF R (pg/mL) | ≤1689 | 12/19 | Ref | ||
>1689 | 13/19 | 1.30 (0.59–2.85) | 0.52 | ||
BFGF (pg/mL) | ≤2.8 | 15/19 | Ref | ||
>2.8 | 10/19 | 0.50 (0.22–1.12) | 0.09 | ||
TPS1 (ng/mL) | ≤144 | 14/19 | Ref | ||
>144 | 11/19 | 0.65 (0.29–1.44) | 0.29 | ||
OS | VEGF (pg/mL) | ≤365 | 8/19 | Ref | |
>365 | 8/19 | 1.05 (0.39–2.79) | 0.93 | ||
VEGF R (pg/mL) | ≤1689 | 9/19 | Ref | ||
>1689 | 7/19 | 0.61 (0.23–1.66) | 0.33 | ||
BFGF (pg/mL) | ≤2.8 | 8/19 | Ref | ||
>2.8 | 8/19 | 0.60 (0.22–1.62) | 0.31 | ||
TPS1 (ng/mL) | ≤144 | 10/19 | Ref | ||
>144 | 6/19 | 0.33 (0.12–0.95) | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cella, C.A.; Spada, F.; Berruti, A.; Bertolini, F.; Mancuso, P.; Barberis, M.; Pisa, E.; Rubino, M.; Gervaso, L.; Laffi, A.; et al. Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes. Cancers 2022, 14, 4471. https://doi.org/10.3390/cancers14184471
Cella CA, Spada F, Berruti A, Bertolini F, Mancuso P, Barberis M, Pisa E, Rubino M, Gervaso L, Laffi A, et al. Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes. Cancers. 2022; 14(18):4471. https://doi.org/10.3390/cancers14184471
Chicago/Turabian StyleCella, Chiara Alessandra, Francesca Spada, Alfredo Berruti, Francesco Bertolini, Patrizia Mancuso, Massimo Barberis, Eleonora Pisa, Manila Rubino, Lorenzo Gervaso, Alice Laffi, and et al. 2022. "Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes" Cancers 14, no. 18: 4471. https://doi.org/10.3390/cancers14184471
APA StyleCella, C. A., Spada, F., Berruti, A., Bertolini, F., Mancuso, P., Barberis, M., Pisa, E., Rubino, M., Gervaso, L., Laffi, A., Pellicori, S., Radice, D., Zorzino, L., Calleri, A., Funicelli, L., Petralia, G., & Fazio, N. (2022). Addressing the Role of Angiogenesis in Patients with Advanced Pancreatic Neuroendocrine Tumors Treated with Everolimus: A Biological Prospective Analysis of Soluble Biomarkers and Clinical Outcomes. Cancers, 14(18), 4471. https://doi.org/10.3390/cancers14184471