NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.1.1. Systemic Treatment
2.1.2. Locoregional Treatment
2.2. Assessment of Adverse Events
2.2.1. Cardiac Adverse Events
2.2.2. Skin Adverse Events
2.3. DNA Extraction, Tag SNP Selection and Genotyping
2.4. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Association of Selected SNPs with Tumor Differentiation Grade
3.3. Association of Selected SNPs with Cardiac Adverse Events
3.4. Association of Selected SNPs with Skin Adverse Events
3.5. Association of Selected SNPs with the Occurrence of a New Primary Tumor
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef]
- Barazzuol, L.; Coppes, R.P.; van Luijk, P. Prevention and treatment of radiotherapy-induced side effects. Mol. Oncol. 2020, 14, 1538–1554. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; Committee, E.G. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Marinko, T.; Dolenc, J.; Bilban-Jakopin, C. Cardiotoxicity of concomitant radiotherapy and trastuzumab for early breast cancer. Radiol. Oncol. 2014, 48, 105–112. [Google Scholar] [CrossRef]
- Biau, J.; Chautard, E.; Verrelle, P.; Dutreix, M. Altering DNA Repair to Improve Radiation Therapy: Specific and Multiple Pathway Targeting. Front. Oncol. 2019, 9, 1009. [Google Scholar] [CrossRef]
- Jiang, M.; Jia, K.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; He, Y.; Zhou, C. Alterations of DNA damage repair in cancer: From mechanisms to applications. Ann. Transl. Med. 2020, 8, 1685. [Google Scholar] [CrossRef] [PubMed]
- Ranjha, L.; Howard, S.M.; Cejka, P. Main steps in DNA double-strand break repair: An introduction to homologous recombination and related processes. Chromosoma 2018, 127, 187–214. [Google Scholar] [CrossRef] [Green Version]
- Cortesi, L.; Piombino, C.; Toss, A. Germline Mutations in Other Homologous Recombination Repair-Related Genes Than BRCA1/2: Predictive or Prognostic Factors? J. Pers. Med. 2021, 11, 245. [Google Scholar] [CrossRef] [PubMed]
- Piombino, C.; Cortesi, L. Insights into the Possible Molecular Mechanisms of Resistance to PARP Inhibitors. Cancers 2022, 14, 2804. [Google Scholar] [CrossRef] [PubMed]
- Mladenova, V.; Mladenov, E.; Stuschke, M.; Iliakis, G. DNA Damage Clustering after Ionizing Radiation and Consequences in the Processing of Chromatin Breaks. Molecules 2022, 27, 1540. [Google Scholar] [CrossRef]
- Easton, D.F.; Pharoah, P.D.; Antoniou, A.C.; Tischkowitz, M.; Tavtigian, S.V.; Nathanson, K.L.; Devilee, P.; Meindl, A.; Couch, F.J.; Southey, M.; et al. Gene-panel sequencing and the prediction of breast-cancer risk. N. Engl. J. Med. 2015, 372, 2243–2257. [Google Scholar] [CrossRef] [PubMed]
- Grundy, M.K.; Buckanovich, R.J.; Bernstein, K.A. Regulation and pharmacological targeting of RAD51 in cancer. NAR Cancer 2020, 2, zcaa024. [Google Scholar] [CrossRef] [PubMed]
- He, X.F.; Wei, W.; Su, J.; Yang, Z.X.; Liu, Y.; Zhang, Y.; Ding, D.P.; Wang, W. Association between the XRCC3 polymorphisms and breast cancer risk: Meta-analysis based on case-control studies. Mol. Biol. Rep. 2012, 39, 5125–5134. [Google Scholar] [CrossRef]
- Dashti, S.; Taherian-Esfahani, Z.; Keshtkar, A.; Ghafouri-Fard, S. Associations between XRCC3 Thr241Met polymorphisms and breast cancer risk: Systematic-review and meta-analysis of 55 case-control studies. BMC Med. Genet. 2019, 20, 79. [Google Scholar] [CrossRef]
- Liu, W.; Ma, S.; Liang, L.; Kou, Z.; Zhang, H.; Yang, J. The association between XRCC3 rs1799794 polymorphism and cancer risk: A meta-analysis of 34 case-control studies. BMC Med. Genom. 2021, 14, 117. [Google Scholar] [CrossRef]
- Sekhar, D.; Pooja, S.; Kumar, S.; Rajender, S. RAD51 135G>C substitution increases breast cancer risk in an ethnic-specific manner: A meta-analysis on 21,236 cases and 19,407 controls. Sci. Rep. 2015, 5, 11588. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, P.; Dong, Y.; Zhu, X.; Zhang, X. Relationship between Rad51 G135C and G172T variants and the susceptibility to cancer: A meta-analysis involving 54 case-control studies. PLoS ONE 2014, 9, e87259. [Google Scholar] [CrossRef]
- Yao, F.; Fang, Y.; Chen, B.; Jin, F.; Wang, S. Association between the NBS1 Glu185Gln polymorphism and breast cancer risk: A meta-analysis. Tumor Biol. 2013, 34, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Tutt, A.N.J.; Garber, J.E.; Kaufman, B.; Viale, G.; Fumagalli, D.; Rastogi, P.; Gelber, R.D.; de Azambuja, E.; Fielding, A.; Balmaña, J.; et al. Adjuvant Olaparib for Patients with BRCA1- or BRCA2-Mutated Breast Cancer. N. Engl. J. Med. 2021, 384, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Isakoff, S.J.; Mayer, E.L.; He, L.; Traina, T.A.; Carey, L.A.; Krag, K.J.; Rugo, H.S.; Liu, M.C.; Stearns, V.; Come, S.E.; et al. TBCRC009: A Multicenter Phase II Clinical Trial of Platinum Monotherapy with Biomarker Assessment in Metastatic Triple-Negative Breast Cancer. J. Clin. Oncol. 2015, 33, 1902–1909. [Google Scholar] [CrossRef]
- Yin, M.; Liao, Z.; Huang, Y.J.; Liu, Z.; Yuan, X.; Gomez, D.; Wang, L.E.; Wei, Q. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS ONE 2011, 6, e20055. [Google Scholar] [CrossRef]
- Andreassen, C.N.; Alsner, J.; Overgaard, M.; Overgaard, J. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother. Oncol. 2003, 69, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Z.; Han, F.J.; Liu, M.; Xia, C.C.; Shi, W.Y.; Dong, L.H. Association between Single Nucleotide Polymorphisms in XRCC3 and Radiation-Induced Adverse Effects on Normal Tissue: A Meta-Analysis. PLoS ONE 2015, 10, e0130388. [Google Scholar] [CrossRef]
- Chang-Claude, J.; Ambrosone, C.B.; Lilla, C.; Kropp, S.; Helmbold, I.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz, F.; Schmezer, P.; et al. Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br. J. Cancer 2009, 100, 1680–1686. [Google Scholar] [CrossRef]
- Falvo, E.; Strigari, L.; Citro, G.; Giordano, C.; Boboc, G.; Fabretti, F.; Bruzzaniti, V.; Bellesi, L.; Muti, P.; Blandino, G.; et al. SNPs in DNA repair or oxidative stress genes and late subcutaneous fibrosis in patients following single shot partial breast irradiation. J. Exp. Clin. Cancer Res. 2012, 31, 7. [Google Scholar] [CrossRef]
- Barnett, G.C.; Coles, C.E.; Elliott, R.M.; Baynes, C.; Luccarini, C.; Conroy, D.; Wilkinson, J.S.; Tyrer, J.; Misra, V.; Platte, R.; et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: A prospective analysis study. Lancet. Oncol. 2012, 13, 65–77. [Google Scholar] [CrossRef]
- Marinko, T.; Borstnar, S.; Blagus, R.; Dolenc, J.; Bilban-Jakopin, C. Early Cardiotoxicity after Adjuvant Concomitant Treatment with Radiotherapy and Trastuzumab in Patients with Breast Cancer. Radiol. Oncol. 2018, 52, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Bredy, C.; Ministeri, M.; Kempny, A.; Alonso-Gonzalez, R.; Swan, L.; Uebing, A.; Diller, G.P.; Gatzoulis, M.A.; Dimopoulos, K. New York Heart Association (NYHA) classification in adults with congenital heart disease: Relation to objective measures of exercise and outcome. Eur. Heart J. Qual. Care Clin. Outcomes 2018, 4, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2016, 18, 891–975. [Google Scholar] [CrossRef] [PubMed]
- Trotti, A.; Colevas, A.D.; Setser, A.; Rusch, V.; Jaques, D.; Budach, V.; Langer, C.; Murphy, B.; Cumberlin, R.; Coleman, C.N.; et al. CTCAE v3.0: Development of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 2003, 13, 176–181. [Google Scholar] [CrossRef]
- Fehlauer, F.; Tribius, S.; Höller, U.; Rades, D.; Kuhlmey, A.; Bajrovic, A.; Alberti, W. Long-term radiation sequelae after breast-conserving therapy in women with early-stage breast cancer: An observational study using the LENT-SOMA scoring system. Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 651–658. [Google Scholar] [CrossRef]
- Goricar, K.; Erculj, N.; Zadel, M.; Dolzan, V. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage. Radiol. Oncol. 2012, 46, 46–53. [Google Scholar] [CrossRef]
- Tregouet, D.A.; Garelle, V. A new JAVA interface implementation of THESIAS: Testing haplotype effects in association studies. Bioinformatics 2007, 23, 1038–1039. [Google Scholar] [CrossRef]
- Dupont, W.D.; Plummer, W.D., Jr. Power and sample size calculations. A review and computer program. Control. Clin. Trials 1990, 11, 116–128. [Google Scholar] [CrossRef]
- Xu, Z.; Taylor, J.A. SNPinfo: Integrating GWAS and candidate gene information into functional SNP selection for genetic association studies. Nucleic Acids Res. 2009, 37, W600–W605. [Google Scholar] [CrossRef]
- Kobayashi, J.; Antoccia, A.; Tauchi, H.; Matsuura, S.; Komatsu, K. NBS1 and its functional role in the DNA damage response. DNA Repair 2004, 3, 855–861. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Chiou, J.J.; Tseng, W.H.; Liu, C.H.; Liu, C.K.; Lin, Y.J.; Wang, H.H.; Yao, A.; Chen, Y.T.; Hsu, C.N. FASTSNP: An always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 2006, 34, W635–W641. [Google Scholar] [CrossRef]
- Hasselbach, L.; Haase, S.; Fischer, D.; Kolberg, H.C.; Stürzbecher, H.W. Characterisation of the promoter region of the human DNA-repair gene Rad51. Eur. J. Gynaecol. Oncol. 2005, 26, 589–598. [Google Scholar]
- Chen, F.; Zhang, H.; Pu, F. Association between a functional variant in RAD51 gene’s 3′ untranslated region and its mRNA expression in lymphoblastoid cell lines. SpringerPlus 2016, 5, 1688. [Google Scholar] [CrossRef] [PubMed]
- Grešner, P.; Jabłońska, E.; Gromadzińska, J. Rad51 paralogs and the risk of unselected breast cancer: A case-control study. PLoS ONE 2020, 15, e0226976. [Google Scholar] [CrossRef]
- Meattini, I.; Guenzi, M.; Fozza, A.; Vidali, C.; Rovea, P.; Meacci, F.; Livi, L. Overview on cardiac, pulmonary and cutaneous toxicity in patients treated with adjuvant radiotherapy for breast cancer. Breast Cancer 2017, 24, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Rassaf, T.; Totzeck, M. Biomarkers for the detection of apparent and subclinical cancer therapy-related cardiotoxicity. J. Thorac. Dis. 2018, 10, S4282–S4295. [Google Scholar] [CrossRef]
- Osti, M.F.; Nicosia, L.; Agolli, L.; Gentile, G.; Falco, T.; Bracci, S.; Di Nardo, F.; Minniti, G.; De Sanctis, V.; Valeriani, M.; et al. Potential Role of Single Nucleotide Polymorphisms of XRCC1, XRCC3, and RAD51 in Predicting Acute Toxicity in Rectal Cancer Patients Treated with Preoperative Radiochemotherapy. Am. J. Clin. Oncol. 2017, 40, 535–542. [Google Scholar] [CrossRef]
- Venkatesh, G.H.; Manjunath, V.B.; Mumbrekar, K.D.; Negi, H.; Fernandes, D.J.; Sharan, K.; Banerjee, S.; Bola Sadashiva, S.R. Polymorphisms in radio-responsive genes and its association with acute toxicity among head and neck cancer patients. PLoS ONE 2014, 9, e89079. [Google Scholar] [CrossRef]
- Gupta, A.; Mathew, D.; Bhat, S.A.; Ghoshal, S.; Pal, A. Genetic Variants of DNA Repair Genes as Predictors of Radiation-Induced Subcutaneous Fibrosis in Oropharyngeal Carcinoma. Front. Oncol. 2021, 11, 652049. [Google Scholar] [CrossRef] [PubMed]
- Mehdinejad, M.; Sobhan, M.R.; Mazaheri, M.; Zare Shehneh, M.; Neamatzadeh, H.; Kalantar, S.M. Genetic Association between ERCC2, NBN, RAD51 Gene Variants and Osteosarcoma Risk: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2017, 18, 1315–1321. [Google Scholar] [CrossRef]
- Hussain, S.K.; Mu, L.N.; Cai, L.; Chang, S.C.; Park, S.L.; Oh, S.S.; Wang, Y.; Goldstein, B.Y.; Ding, B.G.; Jiang, Q.; et al. Genetic variation in immune regulation and DNA repair pathways and stomach cancer in China. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2304–2309. [Google Scholar] [CrossRef]
- Sehl, M.E.; Langer, L.R.; Papp, J.C.; Kwan, L.; Seldon, J.L.; Arellano, G.; Reiss, J.; Reed, E.F.; Dandekar, S.; Korin, Y.; et al. Associations between single nucleotide polymorphisms in double-stranded DNA repair pathway genes and familial breast cancer. Clin. Cancer Res. 2009, 15, 2192–2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Zhang, H.; Chen, K.; Zhao, C.; Gao, J. Genetic variability of DNA repair mechanisms influences treatment outcome of gastric cancer. Oncol. Lett. 2015, 10, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Goričar, K.; Kovač, V.; Jazbec, J.; Zakotnik, B.; Lamovec, J.; Dolžan, V. Genetic variability of DNA repair mechanisms and glutathione-S-transferase genes influences treatment outcome in osteosarcoma. Cancer Epidemiol. 2015, 39, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.C.; Sinilnikova, O.M.; Simard, J.; Léoné, M.; Dumont, M.; Neuhausen, S.L.; Struewing, J.P.; Stoppa-Lyonnet, D.; Barjhoux, L.; Hughes, D.J.; et al. RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: Results from a combined analysis of 19 studies. Am. J. Hum. Genet. 2007, 81, 1186–1200. [Google Scholar] [CrossRef] [PubMed]
- Falvo, E.; Strigari, L.; Citro, G.; Giordano, C.; Arcangeli, S.; Soriani, A.; D’Alessio, D.; Muti, P.; Blandino, G.; Sperduti, I.; et al. Dose and polymorphic genes xrcc1, xrcc3, gst play a role in the risk of articledeveloping erythema in breast cancer patients following single shot partial breast irradiation after conservative surgery. BMC Cancer 2011, 11, 291. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.K.; Shukla, P.C.; Quan, A.; Desjardins, J.F.; Lovren, F.; Pan, Y.; Garg, V.; Gosal, S.; Garg, A.; Szmitko, P.E.; et al. BRCA2 protein deficiency exaggerates doxorubicin-induced cardiomyocyte apoptosis and cardiac failure. J. Biol. Chem. 2012, 287, 6604–6614. [Google Scholar] [CrossRef]
- De Ruyck, K.; Van Eijkeren, M.; Claes, K.; Morthier, R.; De Paepe, A.; Vral, A.; De Ridder, L.; Thierens, H. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: Association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int. J. Radiat. Oncol. Biol. Phys. 2005, 62, 1140–1149. [Google Scholar] [CrossRef]
- Cheuk, I.W.; Yip, S.P.; Kwong, D.L.; Wu, V.W. Association of XRCC1 and XRCC3 gene haplotypes with the development of radiation-induced fibrosis in patients with nasopharyngeal carcinoma. Mol. Clin. Oncol. 2014, 2, 553–558. [Google Scholar] [CrossRef]
- Fachal, L.; Gómez-Caamaño, A.; Peleteiro, P.; Carballo, A.; Calvo-Crespo, P.; Sánchez-García, M.; Lobato-Busto, R.; Carracedo, A.; Vega, A. Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients. Radiother. Oncol. 2012, 105, 321–328. [Google Scholar] [CrossRef]
- Werbrouck, J.; De Ruyck, K.; Duprez, F.; Veldeman, L.; Claes, K.; Van Eijkeren, M.; Boterberg, T.; Willems, P.; Vral, A.; De Neve, W.; et al. Acute normal tissue reactions in head-and-neck cancer patients treated with IMRT: Influence of dose and association with genetic polymorphisms in DNA DSB repair genes. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1187–1195. [Google Scholar] [CrossRef]
- Lazzari, G.; Natalicchio, M.I.; Terlizzi, A.; Perri, F.; Silvano, G. Single nucleotide polymorphisms and unacceptable late toxicity in breast cancer adjuvant radiotherapy: A case report. Breast Cancer 2017, 9, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangoni, M.; Bisanzi, S.; Carozzi, F.; Sani, C.; Biti, G.; Livi, L.; Barletta, E.; Costantini, A.S.; Gorini, G. Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.N.; Alsner, J.; Overgaard, J.; Herskind, C.; Haviland, J.; Owen, R.; Homewood, J.; Bliss, J.; Yarnold, J. TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiother. Oncol. 2005, 75, 18–21. [Google Scholar] [CrossRef]
- Sterpone, S.; Cornetta, T.; Padua, L.; Mastellone, V.; Giammarino, D.; Testa, A.; Tirindelli, D.; Cozzi, R.; Donato, V. DNA repair capacity and acute radiotherapy adverse effects in Italian breast cancer patients. Mutat. Res. 2010, 684, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Popanda, O.; Tan, X.L.; Ambrosone, C.B.; Kropp, S.; Helmbold, I.; von Fournier, D.; Haase, W.; Sautter-Bihl, M.L.; Wenz, F.; Schmezer, P.; et al. Genetic polymorphisms in the DNA double-strand break repair genes XRCC3, XRCC2, and NBS1 are not associated with acute side effects of radiotherapy in breast cancer patients. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1048–1050. [Google Scholar] [CrossRef]
- Ali, A.M.; AbdulKareem, H.; Al Anazi, M.; Reddy Parine, N.; Shaik, J.P.; Alamri, A.; Ali Khan Pathan, A.; Warsy, A. Polymorphisms in DNA Repair Gene XRCC3 and Susceptibility to Breast Cancer in Saudi Females. Biomed. Res. Int. 2016, 2016, 8721052. [Google Scholar] [CrossRef]
- Wu, R.; Patel, A.; Tokumaru, Y.; Asaoka, M.; Oshi, M.; Yan, L.; Ishikawa, T.; Takabe, K. High RAD51 gene expression is associated with aggressive biology and with poor survival in breast cancer. Breast Cancer Res. Treat. 2022, 193, 49–63. [Google Scholar] [CrossRef]
- Maacke, H.; Opitz, S.; Jost, K.; Hamdorf, W.; Henning, W.; Krüger, S.; Feller, A.C.; Lopens, A.; Diedrich, K.; Schwinger, E.; et al. Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer 2000, 88, 907–913. [Google Scholar] [CrossRef]
- Dufloth, R.M.; Arruda, A.; Heinrich, J.K.; Schmitt, F.; Zeferino, L.C. The investigation of DNA repair polymorphisms with histopathological characteristics and hormone receptors in a group of Brazilian women with breast cancer. Genet. Mol. Res. 2008, 7, 574–582. [Google Scholar] [CrossRef]
- Romanowicz-Makowska, H.; Bryś, M.; Forma, E.; Maciejczyk, R.; Połać, I.; Samulak, D.; Michalska, M.; Smolarz, B. Single nucleotide polymorphism (SNP) Thr241Met in the XRCC3 gene and breast cancer risk in Polish women. Pol. J. Pathol. 2012, 63, 121–125. [Google Scholar]
- Blasiak, J.; Przybyłowska, K.; Czechowska, A.; Zadrozny, M.; Pertyński, T.; Rykała, J.; Kołacińska, A.; Morawiec, Z.; Drzewoski, J. Analysis of the G/C polymorphism in the 5’-untranslated region of the RAD51 gene in breast cancer. Acta Biochim. Pol. 2003, 50, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Tulbah, S.; Alabdulkarim, H.; Alanazi, M.; Parine, N.R.; Shaik, J.; Pathan, A.A.; Al-Amri, A.; Khan, W.; Warsy, A. Polymorphisms in RAD51 and their relation with breast cancer in Saudi females. Onco Targets Ther. 2016, 9, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.; Zhang, H.T.; Wang, Z.; Xie, Y.; Tang, R.; Mao, Y.; Li, Y. DNA repair gene XRCC3 polymorphisms and cancer risk: A meta-analysis of 48 case-control studies. Eur. J. Hum. Genet. 2006, 14, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, T.; Seshachalam, A.; Rathnam, K.K.; Talluri, S.; Venkatabalasubramanian, S.; Dunna, N.R. Homologous recombination DNA repair gene RAD51, XRCC2 & XRCC3 polymorphisms and breast cancer risk in South Indian women. PLoS ONE 2022, 17, e0259761. [Google Scholar] [CrossRef]
- Wang, W.; Li, J.L.; He, X.F.; Li, A.P.; Cai, Y.L.; Xu, N.; Sun, S.M.; Wu, B.Y. Association between the RAD51 135 G>C polymorphism and risk of cancer: A meta-analysis of 19,068 cases and 22,630 controls. PLoS ONE 2013, 8, e75153. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Yang, L.; Xu, H.; Zhang, T.; An, R.; Zhu, K. Association between RAD51 135 G/C polymorphism and risk of 3 common gynecological cancers: A meta-analysis. Medicine 2018, 97, e11251. [Google Scholar] [CrossRef]
- Patrono, C.; Sterpone, S.; Testa, A.; Cozzi, R. Polymorphisms in base excision repair genes: Breast cancer risk and individual radiosensitivity. World J. Clin. Oncol. 2014, 5, 874–882. [Google Scholar] [CrossRef]
- Lee, E.; Eum, S.Y.; Slifer, S.H.; Martin, E.R.; Takita, C.; Wright, J.L.; Hines, R.B.; Hu, J.J. Association Between Polymorphisms in DNA Damage Repair Genes and Radiation Therapy-Induced Early Adverse Skin Reactions in a Breast Cancer Population: A Polygenic Risk Score Approach. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 948–957. [Google Scholar] [CrossRef]
Characteristic | Category/Unit | N (%) |
---|---|---|
Age | Years | 50.9 (42.1–59.1) 1 |
Body mass index | kg/m2 | 27.1 (24.3–29.7) 1 |
Smoking | Yes | 16 (15.8) |
No | 85 (84.2) | |
Diabetes | Yes | 1 (1.0) |
No | 100 (99.0) | |
Arterial hypertension | Yes | 29 (28.7) |
No | 72 (71.3) | |
Hyperlipidemia | Yes | 21 (20.8) |
No | 80 (79.2) | |
Tumor type | Invasive ductal carcinoma | 96 (95.0) |
Invasive lobular carcinoma | 2 (2.0) | |
Other | 3 (3.0) | |
Tumor differentiation grade | 1 | 1 (1.0) |
2 | 31 (30.7) | |
3 | 69 (68.3) |
Characteristic | Category/Unit | N (%) |
---|---|---|
Type of surgery | Conservative surgery | 53 (52.5) |
Mastectomy | 48 (47.5) | |
Side of surgery | Right | 53 (52.5) |
Left | 48 (47.5) | |
Chemotherapy scheme | AC/EC/FAC/FEC with taxanes | 54 (53.5) |
AC/EC/FAC/FEC without taxanes | 43 (42.6) | |
Other | 4 (4.0) | |
Taxanes | Docetaxel | 41 (40.6) |
Paclitaxel | 17 (16.7) | |
No | 43 (42.6) | |
Anthracyclines | Epirubicin | 93 (92.1) |
Doxorubicin | 6 (6.0) | |
No | 2 (2.0) | |
Hormonal therapy | Yes | 57 (56.4) |
No | 44 (43.6) | |
Site of RT | Breast/mammary region | 58 (57.4) |
(Breast/mammary region) + regional lymph nodes | 43 (42.6) | |
RT technique | 2D RT | 80 (79.2) |
3D CRT | 14 (13.9) | |
Electrons to the chest wall | 7 (6.9) | |
Treatment scheme of RT | 25 × 2 Gy | 84 (83.2) |
17 or 18 × 2.5 Gy | 17 (16.8) |
Marker | Category | N (%) | |
---|---|---|---|
Cardiac adverse events markers | NT-proBNP | <125 ng/L | 65 (64.4) |
≥125 ng/L | 36 (35.6) | ||
NYHA | Class 1 | 84 (83.2) | |
Class 2 | 17 (16.8) | ||
LVEF reduction | No | 92 (91.1) | |
Yes | 9 (8.9) | ||
Skin adverse events | LENT-SOMA | Grade 1 | 68 (67.3) |
Grade 2 | 31 (30.7) | ||
Grade 3 | 2 (2.0) | ||
CTCAE v.3 | Grade 1 | 89 (88.1) | |
Grade 2 | 12 (11.9) | ||
Treatment outcome | Disease recurrence | No | 98 (97.0) |
Yes | 3 (3.0) | ||
New primary tumor | No | 92 (91.1) | |
Yes | 9 (8.9) | ||
Death | No | 99 (98.0) | |
Yes | 2 (2.0) |
Gene | SNP | DNA Change † | Protein Change † | Functional Effect | Genotype | N (%) | MAF | pHWE |
---|---|---|---|---|---|---|---|---|
NBN | rs1805794 | NM_002485.5: c.553G>C | NP_002476.2: p.Glu185Gln | nsSNP, may influence splicing [38] and may affect interactions with other proteins [39] | CC | 47 (46.5) | 0.31 | 0.479 |
CG | 46 (45.5) | |||||||
GG | 8 (7.9) | |||||||
NBN | rs709816 | NM_002485.5: c.1197A>G | NP_002476.2: p.Asp399= | May influence splicing [40] | AA | 39 (38.6) | 0.36 | 0.219 |
AG | 52 (51.5) | |||||||
GG | 10 (9.9) | |||||||
NBN | rs1063054 | NM_002485.5: c.*1209A>C | / | May affect miRNA binding [38] | AA | 42 (41.6) | 0.35 | 0.835 |
AC | 47 (46.5) | |||||||
CC | 12 (11.9) | |||||||
RAD51 | rs1801320 | NM_002875.5: c.-98G>C | / | May affect TF binding, affects promoter activity [41] | GG | 73 (72.3) | 0.14 | 0.106 |
GC | 28 (27.7) | |||||||
CC | 0 (0.0) | |||||||
RAD51 | rs1801321 | NM_002875.5: c.-61G>T | / | May affect TF binding, affects promoter activity [41] | GG | 34 (33.7) | 0.40 | 0.237 |
GT | 54 (53.5) | |||||||
TT | 13 (12.9) | |||||||
RAD51 | rs12593359 | NM_002875.5: c.*502T>G | / | May affect miRNA binding [38,42] | TT | 23 (22.8) | 0.50 | 0.273 |
GT | 56 (55.4) | |||||||
GG | 22 (21.8) | |||||||
XRCC3 | rs1799794 | NM_005432.4: c.-316A>G | / | May affect TF binding [38] | AA | 54 (53.5) | 0.27 | 0.797 |
AG | 39 (38.6) | |||||||
GG | 8 (7.9) | |||||||
XRCC3 | rs861539 | NM_005432.4: c.722C>T | NP_005423.1: p.Thr241Met | nsSNP, may influence splicing [38] and may affect interactions with other proteins [43] | CC | 44 (43.6) | 0.34 | 0.924 |
CT | 45 (44.6) | |||||||
TT | 12 (11.9) |
SNP | Genotype | Grade 1 + 2 N (%) | Grade 3 N (%) | OR (95% CI) | p |
---|---|---|---|---|---|
NBN rs1805794 | CC | 16 (34.0) | 31 (66.0) | Ref. | |
CG | 12 (26.1) | 34 (73.9) | 1. 46 (0.60–3.57) | 0.404 | |
GG | 4 (50.0) | 4 (50.0) | 0.52 (0.11–2.34) | 0.391 | |
CG + GG | 16 (29.6) | 38 (70.4) | 1.23 (0.53–2.84) | 0.635 | |
NBN rs709816 | AA | 13 (33.3) | 26 (66.7) | Ref. | |
AG | 15 (28.8) | 37 (71.2) | 1.23 (0.50–3.02) | 0.646 | |
GG | 4 (40.0) | 6 (60.0) | 0.75 (0.18–3.13) | 0.693 | |
AG + GG | 19 (30.6) | 43 (69.4) | 1.13 (0.48–2.67) | 0.777 | |
NBN rs1063054 | AA | 17 (40.5) | 25 (59.5) | Ref. | |
AC | 12 (25.5) | 35 (74.5) | 1.98 (0.81–4.88) | 0.136 | |
CC | 3 (25.0) | 9 (75.0) | 2.04 (0.48–8.65) | 0.333 | |
AC + CC | 15 (25.4) | 44 (74.6) | 2.00 (0.85–4.67) | 0.111 | |
RAD51 rs1801320 | GG | 20 (27.4) | 53 (72.6) | Ref. | |
GC | 12 (42.9) | 16 (57.1) | 0.50 (0.20–1.25) | 0.138 | |
RAD51 rs1801321 | GG | 11 (32.4) | 23 (67.6) | Ref. | |
GT | 14 (25.9) | 40 (74.1) | 1.37 (0.53–3.50) | 0.516 | |
TT | 7 (53.8) | 6 (46.2) | 0.41 (0.11–1.51) | 0.181 | |
GT + TT | 21 (31.3) | 46 (68.7) | 1.05 (0.43–2.54) | 0.918 | |
RAD51 rs12593359 | TT | 10 (43.5) | 13 (56.5) | Ref. | |
GT | 16 (28.6) | 40 (71.4) | 1.92 (0.70–5.27) | 0.203 | |
GG | 6 (27.3) | 16 (72.7) | 2.05 (0.59–7.15) | 0.260 | |
GT + TT | 22 (28.2) | 56 (71.8) | 1.96 (0.75–5.12) | 0.170 | |
XRCC3 rs1799794 | AA | 14 (25.9) | 40 (74.1) | Ref. | |
AG | 11 (28.2) | 28 (71.8) | 0.89 (0.35–2.25) | 0.807 | |
GG | 7 (87.5) | 1 (12.5) | 0.05 (0.01–0.44) | 0.007 | |
AG + GG | 18 (38.3) | 29 (61.7) | 0.56 (0.24–1.31) | 0.185 | |
XRCC3 rs861539 | CC | 15 (34.1) | 29 (65.9) | Ref. | |
CT | 13 (28.9) | 32 (71.1) | 1.27 (0.52–3.12) | 0.598 | |
TT | 4 (33.3) | 8 (66.7) | 1.03 (0.27–4.00) | 0.961 | |
CT + TT | 17 (29.8) | 40 (70.2) | 1.22 (0.52–2.83) | 0.648 |
SNP | Genotype | NYHA 1 N (%) | NYHA 2 N (%) | OR (95% CI) | p | OR (95% CI)adj | padj |
---|---|---|---|---|---|---|---|
NBN rs1805794 | CC | 37 (78.7) | 10 (21.3) | Ref. | Ref. | ||
CG | 41 (89.1) | 5 (10.9) | 0.45 (0.14–1.44) | 0.179 | 0.31 (0.08–1.25) | 0.099 | |
GG | 6 (75.0) | 2 (25.0) | 1.23 (0.22–7.07) | 0.814 | 0.86 (0.13–5.61) | 0.871 | |
CG + GG | 47 (87.0) | 7 (13.0) | 0.55 (0.19–1.59) | 0.269 | 0.40 (0.12–1.37) | 0.145 | |
NBN rs709816 | AA | 30 (76.9) | 9 (23.1) | Ref. | Ref. | ||
AG | 46 (88.5) | 6 (11.5) | 0.44 (0.14–1.35) | 0.149 | 0.31 (0.08–1.18) | 0.086 | |
GG | 8 (80.0) | 2 (20.0) | 0.83 (0.15–4.65) | 0.835 | 0.54 (0.09–3.44) | 0.515 | |
AG + GG | 54 (87.1) | 8 (12.9) | 0.49 (0.17–1.41) | 0.189 | 0.36 (0.11–1.21) | 0.098 | |
NBN rs1063054 | AA | 35 (83.3) | 7 (16.7) | Ref. | Ref. | ||
AC | 40 (85.1) | 7 (14.9) | 0.88 (0.28–2.74) | 0.819 | 0.91 (0.25–3.25) | 0.881 | |
CC | 9 (75.0) | 3 (25.0) | 1.67 (0.36–7.76) | 0.515 | 1.23 (0.23–6.63) | 0.808 | |
AC + CC | 49 (83.1) | 10 (16.9) | 1.02 (0.35–2.94) | 0.970 | 0.99 (0.30–3.22) | 0.982 | |
RAD51 rs1801320 | GG | 61 (83.6) | 12 (16.4) | Ref. | Ref. | ||
GC | 23 (82.1) | 5 (17.9) | 1.11 (0.35–3.48) | 0.865 | 1.01 (0.28–3.62) | 0.986 | |
RAD51 rs1801321 | GG | 32 (94.1) | 2 (5.9) | Ref. | Ref. | ||
GT | 44 (81.5) | 10 (18.5) | 3.64 (0.75–17.74) | 0.110 | 4.36 (0.76–25.11) | 0.099 | |
TT | 8 (61.5) | 5 (38.5) | 10.00 (1.63–61.33) | 0.013 | 9.27 (1.28–67.02) | 0.027 | |
GT + TT | 52 (77.6) | 15 (22.4) | 4.62 (0.99–21.52) | 0.052 | 5.41 (0.98–29.80) | 0.053 | |
RAD51 rs12593359 | TT | 15 (65.2) | 8 (34.8) | Ref. | Ref. | ||
GT | 48 (85.7) | 8 (14.3) | 0.31 (0.10–0.98) | 0.045 | 0.47 (0.13–1.69) | 0.248 | |
GG | 21 (95.5) | 1 (4.5) | 0.09 (0.01–0.79) | 0.030 | 0.07 (0.01–0.81) | 0.034 | |
GT + TT | 69 (88.5) | 9 (11.5) | 0.25 (0.08–0.74) | 0.012 | 0.31 (0.09–1.05) | 0.060 | |
XRCC3 rs1799794 | AA | 45 (83.3) | 9 (16.7) | Ref. | Ref. | ||
AG | 32 (82.1) | 7 (17.9) | 1.09 (0.37–3.24) | 0.872 | 2.07 (0.56–7.59) | 0.275 | |
GG | 7 (87.5) | 1 (12.5) | 0.71 (0.08–6.54) | 0.766 | 1.67 (0.14–19.52) | 0.683 | |
AG + GG | 39 (83.0) | 8 (17.0) | 1.03 (0.36–2.92) | 0.962 | 2.00 (0.57–7.04) | 0.279 | |
XRCC3 rs861539 | CC | 36 (81.8) | 8 (18.2) | Ref. | Ref. | ||
CT | 37 (82.2) | 8 (17.8) | 0.97 (0.33–2.87) | 0.960 | 0.89 (0.26–3.09) | 0.850 | |
TT | 11 (91.7) | 1 (8.3) | 0.41 (0.05–3.64) | 0.423 | 0.16 (0.01–2.19) | 0.169 | |
CT + TT | 48 (84.2) | 9 (15.8) | 0.84 (0.296–2.40) | 0.750 | 0.68 (0.20–2.25) | 0.523 |
LENT-SOMA | CTCAE v.3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SNP | Genotype | 2/3, N (%) | OR (95% CI) | p | OR (95% CI)adj | padj | 2, N (%) | OR (95% CI) | p | OR (95% CI)adj | padj |
NBN rs1805794 | CC | 15 (31.9) | Ref. | Ref. | 6 (12.8) | Ref. | Ref. | ||||
CG | 14 (30.4) | 0.93 (0.39–2.25) | 0.878 | 1.14 (0.43–3.05) | 0.788 | 4 (8.7) | 0.65 (0.17–2.48) | 0.529 | 0.75 (0.18–3.13) | 0.695 | |
GG | 4 (50.0) | 2.13 (0.47–9.71) | 0.327 | 2.93 (0.43–20.07) | 0.274 | 2 (25.0) | 2.28 (0.37–13.99) | 0.374 | 3.08 (0.31–30.81) | 0.339 | |
CG + GG | 18 (33.3) | 1.07 (0.46–2.46) | 0.880 | 1.29 (0.50–3.31) | 0.594 | 6 (11.1) | 0.85 (0.26–2.85) | 0.798 | 0.98 (0.26–3.63) | 0.974 | |
NBN rs709816 | AA | 12 (30.8) | Ref. | Ref. | 6 (15.4) | Ref. | Ref. | ||||
AG | 17 (32.7) | 1.09 (0.45–2.67) | 0.846 | 1.22 (0.45–3.33) | 0.694 | 4 (7.7) | 0.46 (0.12–1.75) | 0.254 | 0.44 (0.11–1.85) | 0.262 | |
GG | 4 (40.0) | 1.50 (0.36–6.31) | 0.580 | 2.52 (0.40–16.04) | 0.329 | 2 (20.0) | 1.38 (0.23–8.13) | 0.725 | 2.22 (0.22–21.91) | 0.496 | |
AG + GG | 21 (33.9) | 1.15 (0.49–2.72) | 0.746 | 1.34 (0.51–3.53) | 0.555 | 6 (9.7) | 0.59 (0.18–1.98) | 0.392 | 0.59 (0.16–2.198) | 0.429 | |
NBN rs1063054 | AA | 12 (28.6) | Ref. | Ref. | 3 (7.1) | Ref. | Ref. | ||||
AC | 15 (31.9) | 1.17(0.47–2.91) | 0.732 | 1.497 (0.53–4.23) | 0.447 | 6 (12.8) | 1.90 (0.45–8.14) | 0.386 | 2.74 (0.54–13.85) | 0.222 | |
CC | 6 (50.0) | 2.50 (0.67–9.31) | 0.172 | 3.19 (0.74–13.74) | 0.119 | 3 (25.0) | 4.33 (0.75–25.11) | 0.102 | 6.69 (0.90–49.51) | 0.063 | |
AC + CC | 21 (35.6) | 1.38 (0.59–3.25) | 0.459 | 1.79 (0.67–4.76) | 0.245 | 9 (15.3) | 2.34 (0.59–9.23) | 0.225 | 3.42 (0.74–15.84) | 0.116 | |
RAD51 rs1801320 | GG | 24 (32.9) | Ref. | Ref. | 10 (13.7) | Ref. | Ref. | ||||
GC | 9 (32.1) | 0.97 (0.38–2.46) | 0.944 | 0.98 (0.35–2.78) | 0.975 | 2 (7.1) | 0.49 (0.10–2.37) | 0.371 | 0.46 (0.08–2.48) | 0.365 | |
RAD51 rs1801321 | GG | 9 (26.5) | Ref. | Ref. | 2 (5.9) | Ref. | Ref. | ||||
GT | 17 (31.5) | 1.28 (0.49–3.31) | 0.616 | 1.46 (0.51–4.18) | 0.481 | 7 (13.0) | 2.38 (0.47–12.22) | 0.298 | 2.76 (0.49–15.49) | 0.248 | |
TT | 7 (53.8) | 3.24 (0.86–12.26) | 0.083 | 2.30 (0.50–10.57) | 0.286 | 3 (23.1) | 4.80 (0.70–32.90) | 0.110 | 3.18 (0.38–26.51) | 0.285 | |
GT + TT | 24 (35.8) | 1.55 (0.62–3.86) | 0.345 | 1.599 (0.58–4.39) | 0.362 | 10 (14.9) | 2.81 (0.58–13.61) | 0.200 | 2.86 (0.54–15.12) | 0.216 | |
RAD51 rs12593359 | TT | 10 (43.5) | Ref. | Ref. | 3 (13.0) | Ref. | Ref. | ||||
GT | 17 (30.4) | 0.57 (0.21–1.54) | 0.267 | 0.85 (0.27–2.66) | 0.785 | 7 (12.5) | 0.95 (0.22–4.06) | 0.947 | 1.43 (0.28–7.23) | 0.665 | |
GG | 6 (27.3) | 0.49 (0.14–1.70) | 0.260 | 0.52 (0.13–2.096) | 0.356 | 2 (9.1) | 0.67 (0.10–4.43) | 0.675 | 0.77 (0.10–5.98) | 0.799 | |
GT + TT | 23 (29.5) | 0.54 (0.21–1.42) | 0.212 | 0.73 (0.25–2.14) | 0.571 | 9 (11.5) | 0.87 (0.22–3.52) | 0.845 | 1.20 (0.26–5.57) | 0.821 | |
XRCC3 rs1799794 | AA | 12 (22.2) | Ref. | Ref. | 5 (9.3) | Ref. | Ref. | ||||
AG | 16 (41.0) | 2.44 (0.99–6.02) | 0.054 | 1.82 (0.65–5.095) | 0.256 | 5 (12.8) | 1.44 (0.39–5.37) | 0.586 | 0.80 (0.19–3.43) | 0.765 | |
GG | 5 (62.5) | 5.83 (1.22–28.00) | 0.028 | 10.90 (1.61–73.72) | 0.014 | 2 (25.0) | 3.27 (0.52–20.69) | 0.209 | 3.80 (0.44–32.68) | 0.224 | |
AG + GG | 21 (44.7) | 2.83 (1.19–6.69) | 0.018 | 2.43 (0.92–6.39) | 0.073 | 7 (14.9) | 1.72 (0.51–5.82) | 0.387 | 1.07 (0.28–4.11) | 0.917 | |
XRCC3 rs861539 | CC | 19 (43.2) | Ref. | Ref. | 6 (13.6) | Ref. | Ref. | ||||
CT | 13 (28.9) | 0.54 (0.22–1.29) | 0.162 | 0.58 (0.21–1.56) | 0.278 | 5 (11.1) | 0.79 (0.22–2.81) | 0.718 | 0.83 (0.21–3.33) | 0.797 | |
TT | 1 (8.3) | 0.12 (0.01–1.01) | 0.051 | 0.11 (0.01–1.10) | 0.060 | 1 (8.3) | 0.58 (0.06–5.31) | 0.626 | 0.72 (0.07–7.81) | 0.787 | |
CT + TT | 14 (24.6) | 0.43 (0.18–1.00) | 0.050 | 0.45 (0.17–1.16) | 0.097 | 6 (10.5) | 0.75 (0.22–2.49) | 0.633 | 0.81 (0.22–3.02) | 0.755 |
SNP | Genotype | No New Primary Tumor N (%) | New Primary Tumor N (%) | OR (95% CI) | p |
---|---|---|---|---|---|
NBN rs1805794 | CC | 42 (89.4) | 5 (10.6) | Ref. | |
CG | 42 (91.3) | 4 (8.7) | 0.80 (0.20–3.19) | 0.752 | |
GG | 8 (100) | 0 (0) | / | 0.590 * | |
CG + GG | 50 (92.6) | 4 (7.4) | 0.67 (0.17–2.66) | 0.572 | |
NBN rs709816 | AA | 35 (89.7) | 4 (10.3) | Ref. | |
AG | 48 (92.3) | 4 (7.7) | 0.73 (0.17–3.12) | 0.670 | |
GG | 9 (90) | 1 (10) | 0.97 (0.10–9.80) | 0.981 | |
AG + GG | 57 (91.9) | 5 (8.1) | 0.77 (0.19–3.05) | 0.707 | |
NBN rs1063054 | AA | 36 (85.7) | 6 (14.3) | Ref. | |
AC | 44 (93.6) | 3 (6.4) | 0.41 (0.10–1.75) | 0.228 | |
CC | 12 (100) | 0 (0) | / | 0.319 * | |
AC + CC | 56 (94.9) | 3 (5.1) | 0.32 (0.08–1.37) | 0.124 | |
RAD51 rs1801320 | GG | 65 (89) | 8 (11) | Ref. | |
GC | 27 (96.4) | 1 (3.6) | 0.30 (0.04–2.52) | 0.268 | |
RAD51 rs1801321 | GG | 30 (88.2) | 4 (11.8) | Ref. | |
GT | 49 (90.7) | 5 (9.3) | 0.77 (0.19–3.08) | 0.706 | |
TT | 13 (100) | 0 (0) | / | 0.319 * | |
GT + TT | 62 (92.5) | 5 (7.5) | 0.60 (0.15–2.42) | 0.477 | |
RAD51 rs12593359 | TT | 23 (100) | 0 (0) | Ref. | |
GT | 51 (91.1) | 5 (8.9) | / | 0.314 * | |
GG | 18 (81.8) | 4 (18.2) | / | 0.049 * | |
GT + GG | 69 (88.5) | 9 (11.5) | / | 0.114 * | |
XRCC3 rs1799794 | AA | 50 (92.6) | 4 (7.4) | Ref. | |
AG | 34 (87.2) | 5 (12.8) | 1.84 (0.46–7.34) | 0.389 | |
GG | 8 (100) | 0 (0) | / | 1.000 * | |
AG + GG | 42 (89.4) | 5 (10.6) | 1.49 (0.38–5.90) | 0.572 | |
XRCC3 rs861539 | CC | 41 (93.2) | 3 (6.8) | Ref. | |
CT | 41 (91.1) | 4 (8.9) | 1.33 (0.28–6.33) | 0.717 | |
TT | 10 (83.3) | 2 (16.7) | 2.73 (0.40–18.61) | 0.304 | |
CT + TT | 51 (89.5) | 6 (10.5) | 1.61 (0.38–6.82) | 0.520 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goričar, K.; Dugar, F.; Dolžan, V.; Marinko, T. NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer. Cancers 2022, 14, 4365. https://doi.org/10.3390/cancers14184365
Goričar K, Dugar F, Dolžan V, Marinko T. NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer. Cancers. 2022; 14(18):4365. https://doi.org/10.3390/cancers14184365
Chicago/Turabian StyleGoričar, Katja, Franja Dugar, Vita Dolžan, and Tanja Marinko. 2022. "NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer" Cancers 14, no. 18: 4365. https://doi.org/10.3390/cancers14184365
APA StyleGoričar, K., Dugar, F., Dolžan, V., & Marinko, T. (2022). NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer. Cancers, 14(18), 4365. https://doi.org/10.3390/cancers14184365